南蛇藤生物活性成分分析及其抗动脉粥样硬化药效评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1毛细管电泳法分析南蛇藤中黄酮类物质成分及其含量分布
     建立同时测定南蛇藤中芦丁、山奈酚及槲皮素含量的毛细管电泳法,分析结果差异,探讨南蛇藤的药用质量控制方法:采用30mmol L-1硼酸钠缓冲液(PH=9.0),20kV分离电压条件下,254nm波长下毛细管电泳法测定芦丁、山萘酚、槲皮素含量。结果黄酮类物质芦丁、山萘酚和槲皮素的对照品在12min内实现完全分离,在2.5-500μg mL-1范围内呈良好的线性关系: YRT=841.7C+4919.3(r=0.998);YKF=2599.1C+12999(r=0.999);YQC=5111.8C+13570(r=0.999)。芦丁在皮、叶中含量高达1.41、1.37mg g-1;山奈酚在皮中含量高达2.16mg g-1;槲皮素在根中含量可达0.016mg g-1。研究表明南蛇藤中黄酮类物质含量丰富,不同部位中各黄酮含量有明显差异。毛细管电泳技术同时测定南蛇藤中芦丁、山奈酚与槲皮素具有较好的准确度和精密性,为临床和科研提供了一种简单快速的检测方法,同时为南蛇藤的药用质量控制提供了技术方法和坚实的理论数据。
     2超声波提取-毛细管电泳技术联用优化南蛇藤中熊果酸与齐墩果酸提取工艺及其含量测定
     超声波技术-响应曲面法优化南蛇藤中熊果酸与齐墩果酸的提取工艺,建立一种毛细管电泳法同时测定南蛇藤中熊果酸和齐墩果酸含量的方法,并检测熊果酸与齐墩果酸在南蛇藤不同部位中的含量分布:分别以提取溶剂浓度、料液比、超声时间为考察因素,采用三因素三水平设计中心组合实验,优化熊果酸与齐墩果酸的提取工艺。以硼酸盐缓冲液浓度、pH值、分离电压为考察因素,筛选熊果酸与齐墩果酸的最佳分离条件。结果熊果酸和齐墩果酸的最佳提取条件为:以80%甲醇为提取溶剂,料液比(m/v)为1:20,超声时间50min。以80mmol L-1的硼酸盐缓冲液(pH=9.80)作为电离介质,20kV分离电压,210nm波长下,22min内熊果酸和齐墩果酸得到很好的分离。二者线性方程分别为:YUA=300801x+1210.5(r=0.9992)和YOA=349265x+4118.3(r=0.9992),检测范围分别为0.0624-0.187μg μL-1,0.0348-0.1043μg μL-1,回收率分别为97.23%、96.45%,变异系数(RSD)<5.00%(n=6)。熊果酸在根中含量为0.37mg g-1,约为叶中的5.5倍。齐墩果酸在茎、皮中的含量为0.67、0.52mg g-1,约为叶中的3.7倍和2.8倍。超声技术-响应曲面优化熊果酸与齐墩果酸的提取工艺,毛细管电泳同时检测熊果酸与齐墩果酸含量,具有较好的准确度和精密性,为临床和科研提供了一种简单、快速、准确的检测方法。熊果酸与齐墩果酸在南蛇藤根、茎、叶、皮中均有分布,且不同部位中含量存在明显差异。
     3超声波提取-毛细管电泳技术联用优化南蛇藤中南蛇藤素的提取工艺及其含量测定
     超声波提取-响应曲面法优化南蛇藤中南蛇藤素的提取工艺,建立毛细管电泳法测定南蛇藤素含量的方法并检测其在南蛇藤不同部位中的分布:分别以提取溶剂浓度、料液比、超声时间为考察因素,采用三因素三水平设计中心组合实验,优化南蛇藤素的提取工艺。以硼酸盐缓冲液浓度、pH值、分离电压为考察因素,筛选南蛇藤素的最佳电泳分离条件。结果南蛇藤素的最佳提取条件为:80%甲醇为提取溶剂,料液比(m/v)为1:20,超声时间50min。以10%甲醇和70mmol L-1硼酸盐缓冲液(pH=9.00)作为电解液,分离电压22kV,检测波长210nm作为检测条件。南蛇藤素在15min内得到分离,YCL=543282x+1967.2(r=0.9920),线性检测范围为0.039-0.117μg μL-1。回收率为101.13%,变异系数(RSD)<4.00%(n=6)。南蛇藤素在根、茎、皮、叶中的含量分别为5.13、1.51、0.32、0.34mg g-1。南蛇藤素主要存在于根中,约为茎中的3.4倍,皮和叶的15倍。南蛇藤素在南蛇藤根、茎、叶、皮中均有分布,且不同部位中含量存在明显差异。超声波提取-响应曲面法优化南蛇藤素的提取工艺,同时毛细管电泳检测其含量,具有较好的准确度和精密性,为临床和科研提供了一种简单、快速、准确的检测方法,同时为临床用药提供了参考数据。
     4南蛇藤醇提物毒性和安全性实验研究
     研究中药南蛇藤醇提物的药物毒性和安全性:采用Kaerben法设计实验方案,寻找小鼠灌胃给予南蛇藤醇提物的最大耐受量(MTD)和半数致死量(LD50);在MTD范围内,灌胃给予小鼠0.0、2.5、5.0、10.0g kg-1南蛇藤醇提物21d,记录药物对小鼠毒副作用情况,分析肝脏形态及肝脏指数变化,酶法检测小鼠血清中谷丙转氨酶(ALT)和谷草转氨酶(AST)的水平。结果表明南蛇藤醇提物的MTD为10.0g kg-1,LD50为38.17g kg-1,95%可信限为38.14-38.19g kg-1。在MTD范围内灌胃给药,与对照组相比,肝脏形态学和肝脏指数无明显变化;5.0、10.0g kg-1组ALT升高显著(P<0.01, P<0.001),10g kg-1组AST明显升高(P<0.01)。因此确定南蛇藤醇提物最大耐受量为10.0g kg-1,在此范围内用药对机体毒性较小,能保证用药安全。
     5南蛇藤改善高脂血症豚鼠血脂表型和减轻主动脉壁脂质沉积
     探讨南蛇藤对高脂血症豚鼠脂质代谢、动脉壁脂质沉积的作用及机制:48只英格兰雄性短毛豚鼠(260-310g,5月龄)随机分为普通饮食对照组(CD),高脂饮食模型组(HFD),南蛇藤3个浓度处理组,即低剂量组(HFD-L,2.5g kg-1d-1)、中剂量组(HFD-M,5.0g kg-1d-1)和高剂量组(HFD-H,10.0g kg-1d-1),以及辛伐他汀组(HFD-S,20m g kg-1d-1)。连续药物干预8周后,测定血浆总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和非高密度脂蛋白胆固醇(Non-HDL-C)含量。快速蛋白分析(FPLC)技术分离血浆组分,聚丙烯酰胺凝胶电泳技术(SDS-PAGE)分析极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和HDL-C的蛋白组分。采用实时定量聚合酶链反应(RT-PCR)分析肝脏胆固醇逆向转运相关基因清道夫受体-BI(SR-BI)、低密度脂蛋白受体(LDL-R)、3-羟基-3-甲基戊二酰辅酶A还原酶(HMG-CoA reductase)和胆固醇7α-羟化酶1(CYP7α-1)表达。分别采用油红O染色和HE染色分析主动脉壁脂质沉积与肝脏脂肪性病变。采用Applygen试剂盒测定肝脏中TC、TG、游离胆固醇(FC)、胆固醇酯(CE)。结果显示,与高脂模型组比较,南蛇藤高剂量组TC、TG和Non-HDL-C分别下降45%,21%和49%,南蛇藤中、高剂量组分别升高HDL-C16%和20%。LDL和VLDL中apoB和apoE表达显著降低,而HDL中apoA I表达明显增加;南蛇藤可显著上调SR-BI、LDL-R、CYP7α1和HMG-CoA mRNA水平。南蛇藤显著减少动脉壁中脂质沉积与肝脏脂肪病变,明显降低肝脏中TC、TG、FC和CE水平。研究证明南蛇藤可抑制高脂血症豚鼠主动脉壁脂质沉积,其机制与改善高脂血症豚鼠血脂表型、减轻脂质氧化、增强促胆固醇逆向转运相关基因表达有关。
     6南蛇藤减轻高脂血症豚鼠血脂和主动脉壁的炎症反应
     探讨南蛇藤对高脂血症豚鼠血浆动脉壁炎症反应的作用及机制:48只英格兰雄性短毛豚鼠(260-310g,5月龄)随机分为普通饮食对照组(CD),高脂饮食组(HFD),南蛇藤3个浓度处理组,即低剂量组(HFD-L,2.5g kg-1)、中剂量组(HFD-M,5.0g kg-1d-1)和高剂量组(HFD-H,10.0g kg-1d-1),以及辛伐他汀组(HFD-S,20mg kg-1d-1)。连续药物干预8周后,酶联免疫吸附法(ELISA)法检测血浆中肿瘤坏死因子(TNF-α),C-反应蛋白(CRP)和白介素6(IL-6)含量,分别用硫代巴比妥酸钠法(TBARS)和硝基蓝四氮唑法(NBTRS)测定血浆和肝组织中超氧化物歧化酶(SOD)和丙二醛(MDA)表达水平,检测南蛇藤抗氧化作用。免疫组化(IMHC)和免疫蛋白印记法(Western blot)检测核转录因子(NF-κBp65)和白细胞分化抗原68(CD68)在动脉壁的表达。硝酸还原酶法(NRM)和精氨酸法(ARPM)分别测定肝组织中一氧化氮(NO)和诱导型一氧化氮合酶(iNOS)表达水平。赖氏法(Reitman-Frankel)检测了肝组织中谷丙转氨酶(ALT)和谷草转氨酶(AST)的含量。结果显示,与高脂模型组比较,南蛇藤显著抑制NF-κBp65和CD68在主动脉的表达,并呈浓度依赖性地降低血浆TNF-α、CRP和IL-6等炎症因子的水平(P<0.05or P<0.01)。南蛇藤中、高剂量组显著升高肝脏中SOD活性,明显降低血浆与肝脏中MDA水平。南蛇藤显著抑制高脂食物诱导的NO、 iNOS在肝脏中的高表达以及ALT、AST在肝脏中的高表达(P<0.05or P<0.01)。研究证明南蛇藤可显著抑制高脂血症豚鼠血浆和主动脉壁的炎症反应,其机制与改善高脂血症豚鼠血脂表型、增强抗氧化因子表达和抑制细胞炎症反应转录因子表达有关。
1Contents analysis and distribution of flavonoids in Celastrus orbiculartus Thunb. by capillary zone electrophoresis
     A new capillary zone electrophoresis (CZE) method was developed for the simultaneous quantification of rutin, kaempferol and quercetin in Celastrus orbiculatus Thunb.. Analysed
     results differences and discussed the medicinal quality control methods: The electrophoreticanalysis was performed on30mmol L-1sodium borate solution(pH=9.0),20kV electrophoresis voltage and254nm wavelength.Rutin, kaempferol and quercetin were separated successfully in12minutes by CZE,a good linearity between peak area and concentration was found inrange of2.5-500μg m L-1for three compounds:YR=841.7C+4919.3(r=0.998);YK=2599.1C+12999(r=0.999);YQ=5111.8C+13570(r=0.999).The contents of rutin in bark and leaf were1.41,1.37mg g-1, respectively.The content of kaempferol in bark is2.16mg g-1,thecontent of quercetin in root was0.016mg g-1.Flavonoids were abundant in Celastrus orbiculatus Thunb. and the contents of three flavonoids were distinct difference in different parts.Simultaneous determination rutin, kaempferol and quercetin by CZE method has a good accuracyand precision.It is simple, fast and applicable for clinical and scientific research to determine three flavonoids.This provided a technology method and solid theoretical data for Celastrus orbiculatus Thunb. of medicinal quality control.
     2Optimization extraction process and contents distribution of ursolic acidand oleanoic acid in Celastrus orbiculatus Thunb. by Ultrasonicextraction and capillary zone electrophoresis
     A ultrasonic-assisted extraction (UAE) method was optimized using a centralcomposite experimental design by Response Surface Methodology (RSM), and anefficient Capillary zone electrophoresis (CZE)analysis method was developed for fastextraction and simultaneous determination of ursolic acid and oleanolic acid in Celastrusorbiculatus Thunb.(C.orbiculatus Thunb.),then determined the distributing of ursolic acidand oleanolic acid in different parts of C.orbiculatus Thunb.: Different concentration solvents, solvent to material ratio and extraction time were all as examing factors to design acentral composite experimental of three factors and three levels for optimizing extractionprocess of ursolic acid and oleanolic acid.Concentration of Sodium borate buffersolution,the value of pH and separation voltage were all as examing factors to filter the bestseparation condition of ursolic acid and oleanolic acid.Results showed that the extractioncondition were80%methanol, solvent to material ratio (m/v)20.0mL g-1and extractiontime50.0min,optimized CZE conditions were80mmol L-1Sodium borate buffer solution(pH=9.80) as mobile phase,20kV separation voltage. The UV detection wavelength was210nm. Under the conditions, ursolic acid and oleanolic acid were separated and detectedwithin22min. Linea ranges of two compounds were0.0348-0.1043μg μL-1,YUA=300801x+1210.5(r=0.9992) and0.0624-0.187μg μL-1,YOA=349265x+4118.3(r=0.9992),respectively.The recoveries were97.23%and96.45%,RSD<5.00%(n=6).The contents of ursolic acid in root was0.37mg g-1and it was about five times inthe leaves. The contents of oleanolic acid in stem and bark were0.67,0.52mg g-1they wereabout five times in the leaves. Response surface methodology and capillary zoneelectrophoresis technology optimized the extraction processes and determined the contentsdistributing of ursolic acid and oleanolic acid in Celastrus orbiculatus Thunb. has a goodaccuracy and precision.This rapid,sensitive, accurate and stable method is suitable inresearch practice and clinical settings.Ursolic acid and oleanolic acid are distributing in root,stem, leaf and bark and there are remarkable differences.
     3Optimization the extraction process and content distribution of Celastrolin Celastrus orbiculatus Thunb. by Ultrasonic extraction and capillary zoneelectrophoresis
     A ultrasonic-assisted extraction (UAE) method was optimized using a centralcomposite experimental design by Response Surface Methodology(RSM), and an efficientCapillary zone electrophoresis (CZE)analysis method was developed for fast extractionand simultaneous determination of celastrol in Celastrus orbiculatus Thunb.(C.orbiculatusThunb.),then determined the distributing of celastrol in different parts of C.orbiculatusThunb.: Different concentration solvents, solvent to material ratio and extraction time were allas examing factors to design a central composite experimental of three factors and three levelsfor optimizing extraction process of celastrol.Concentration of Sodium borate buffersolution,the value of pH and separation voltage were all as examing factors to filter the best separation condition of celastrol.Results showed that the extraction condition were80%methanol, solvent to material ratio (m/v)20.0mL g-1and extraction time50.0min,optimized CZE conditions were10%methanol and70mM Sodium borate buffer solution(pH=9.00) as mobile phase,22kV separation voltage. The UV detection wavelength was210nm. Under the conditions, celastrol was separated and detected within15min. Linearanges of the compound was0.039-0.117μg μL-1, YCL=543282x+1967.2(r=0.9920). Therecoveries was101.13%,RSD<4.00%(n=6).The contents of celastrol in root,stem,barkand leaf were5.13,1.51,0.32and0.34mg g-1respectively and the content in root was aboutfive times in the stem. Response surface methodology and capillary zone electrophoresistechnology optimized the extraction process and determined the content distributing ofcelastrol in Celastrus orbiculatus Thunb. has a good accuracy and precision.Thisrapid,sensitive,accurate and stable method is suitable in research practice and clinical settings.Celastrol is distributing in root, stem, leaf and bark and there are remarkable differences.
     4Study on toxicity and safety of Celastrus orbiculatus Thunb. ethanolextract
     To study the drug toxicity and safety of Celastrus orbiculatus Thunb. ethanol extract:The experimental project was designed by Kaerber methods to determine the maximumtolerated dose(MTD) and median lethal dose(LD50) of Celastrus orbiculatus Thunb.ethanol extract given intragastrically in mice. In the range of MTD, different doses ofCelastrus orbiculatus Thunb. ethanol extract(0.0,2.5,5.0,10.0g kg-1) were given to themice and the toxic and side effects were recorded. Meanwhile, the changes of hepaticmorphology and index were analyzed and the level of ALT and AST were detected byenzyme method. Results showed that the MTD of Celastrus orbiculatus Thunb. ethanolextract given intragastrically was10.0g kg-1in mice. Its LD50was38.17g kg-1and theconfidence limit of95%was38.14-38.19g kg-1. After treatment within the range of MTD ofthe herb, there were no significant changes in both hepatic morphology and index. Comparedwith that of control group, the level of ALT increased significantly in5and10.0g kg-1groups(P<0.01or P<0.001)and the level of AST promoted significantly in10g kg-1group(P<0.01). So the MTD of Celastrus orbiculatus Thunb. ethanol extract givenintragastrically was10.0g kg-1in mice. Within the range of MTD, the herb is safe and thetoxicity is very low.
     5Celastrus orbiculatus Thunb. improves blood fat phenotype ofhyperlipidemia guinea pigs and attenuates lipid deposition in aortic wall
     It is to characterize the underlying effects and molecular mechanisms of Celastrusorbiculatus Thunb.(c. orbiculatus Thunb.) on the lipid metabolism and lipid deposition inhyperlipidemia guinea pig:48male England short-hair guinea pigs(260-310g,5monthsold) were randomly divided into control diet group (CD, grass, n=8),high fat diet group(HFD,10%lard+10%yolk power+0.30%cholesterol+79.7%grass, n=8), three c.orbiculatus Thunb.groups,low-dose group (HFD-L,2.5g kg-1d-1), middle-dose group(HFD-M,5.0g kg-1d-1), high-dose group(HFD-L,10.0g kg-1d-1) and simvastatingroup (HFD-S,20mg kg-1d-1).After consecutive drug intervention for8weeks till the endof the experiment, concentrations of total cholesterol (TC), total triglyceride(TG), highdensity cholesterol (HDL-C) and non-high density cholesterol (non-HDL-C) inplasma were determined by enzymatic methods (BioSino). Lipoprotein profiles wereobtained by fast protein liquid chromatography (FPLC), lipoproteins(VLDL,LDL andHDL)containing equal amounts of cholesterol were loaded on a4%to15%sodium dodecylsulfate (SDS) polyacrylamide gradient gel (PAGE).The real-time quantitativepolymerase chain reaction (RT-PCR) analyzed the expression of liver cholesterol reversetransport action related genes scavenger receptor-BI (SR-BI),low density cholesterolreceptor(LDL-R),3-hydroxy-3-methyl glutaryl (HMG)-CoA reductase (HMG-CoAreductase) and cholesterol7-alpha hydroxylase (CYP7α-1). Arterial wall lipiddisposition displayed by oil red O,fat venereal change and morphology of liver displayed byhematoxylin and eosin staining.Compared with HFD group,the levels of TC,TG and non-HDL-C were decreased45%,21%and49%in HFD-H group respectively.The levels ofHDL-C were increased16%and20%in HFD-M and HFD-H. The contents of apolipoproteinB (apoB) and apolipoprotein E (apoE) in LDL and VLDL,while the contents ofapolipoprotein AI (apoAI) in plasma HDL were increased by c. orbiculatusThunb.treatment. SR-BI, LDL-R,HMG)-CoA reductase and CYP7α-1were all increased byc. orbiculatus Thunb. treatment. Arterial wall lipid disposition and fat venereal change werereduced significantly by c. orbiculatus Thunb. treatment. Furthermore,the levels ofTC,TG,FC and CE in guinea pig liver were decreased by c. orbiculatus Thunb. The studyshowed that c. orbiculatus Thunb. can inhibit lipid disposition in hyperlipidemia guinea pig aortic wall, the mechanism is related to improving blood fat phenotype,alleviating lipidoxidation and strengthening the expression of liver cholesterol reverse transport action relatedgenes.
     6Celastrus orbiculatus Thunb. improves blood fat inflammation and attenu-ates inflammatory response in hyperlipidemia guinea pigs aortic wall
     It is to characterize the underlying effects and molecular mechanisms of Celastrusorbiculatus Thunb.(c.orbiculatus Thunb.) on the lipid metabolism and aortic wallinflammation in hyperlipidemia guinea pig:48male England short-hair guinea pigs(260-310g,5months old) were randomly divided into control diet group (CD,grass,n=8),highfat diet group (HFD,10%lard+10%yolk power+0.30%cholesterol+79.7%grass,n=8),three c. orbiculatus Thunb.groups,low-dose group(HFD-L,2.5g kg-1d-1),middle-dose group (HFD-M,5.0g kg-1d-1),high-dose group(HFD-L,10.0g kg-1d-1) andsimvastatin group (HFD-S,20mgkg-1d-1).After consecutive drug intervention for8weekstill the end of the experiment. ELISA assay revealed that the production of tumor necrosisfactor-α,C-reaction protein and interleukin-6in plasma. In order to investigate theantioxidation of c. orbiculatus Thunb.,the levels of superoxide dismutase (SOD) andmalondialdehyde (MDA) in plasma and liver were determined by a spectrophotometricmeasurement of thiobarbituric acid-reactive substances (TBARS) and nitrobluetetrazolium-reactive substances (NBTRS) respectiveely. Immunohistochemistry andwestern blot were used to detect the expression of nuclear factor-kappaBp65(NF-κBp65)and cluster of differentiation antigen68(CD68) in aortic wall. In order to know the effectof C. orbiculatus Thunb. on endothelial dysfunction,the levels of nitric oxide(NO) andinducible nitric oxide synthase (iNOS) in liver were detected by nitrate reduetase methods(NRM)and arginine reforming process methods (ARPM) respecti-vely.At last thelevels of alanine transferase(ALT) and aspartate transferase(AST) in liver weredetected by Reitman-Frankel.The results showed that,compared with HFD group, C.orbiculatus Thunb. can inhibit the expression of NF-κBp65and CD68in aortic wall andrecuce significantly(P<0.05or P<0.01) the levels of inflammatory factors such as TNF-α,CRP and IL-6with dose-dependent.The levels of SOD in liver were increased significantly(p<0.05) in HFD-M and HFD-H, the levels of MDA in liver and plasma were reducededsignificantly (p<0.05) by c. orbiculatus Thunb.. C. orbiculatus Thunb. inhibited the high expression of NO,iNOS, ALT and AST in liver which induced by high fat diet significantly(P<0.05or P<0.01).This study proved that c. orbiculatus Thunb.can inhibit theinflammation in plasma and aortic wall of hyperlipidemia guinea pigs which mechanism isrelated to improving blood fat phenotype, strengthening the expressions of anti-oxidationfactor and attenuating the expressions of correlation factors of inflamattory response in cell.
引文
[1]陈奇,张士善.槲皮素的药理作用及临床应用[J].中华医学杂志,1977,57(8):512~513.
    [2]陈义.毛细管电泳技术及其应用[M].北京:化学工业出版社,2006,48-49.
    [3]陈金月,周芳.红花夹竹桃、红花寄生及桑寄生对小鼠的半数致死量测定[J].时珍国医国药,2008,19(10):2418-2419.
    [4]陈红梅,张小郁,等.齐墩果酸抑制高脂饮食肥胖大鼠体重的实验研究[J].成都医学院学报.2010,5(1):16-20.
    [5]陈源旺,丁立平,王明安.南蛇藤化学成分研究进展[J].亚热带植物科学.2007,36(1):79-84.
    [6]陈星,丰美福,朱国英.雷公藤红素对血管平滑肌细胞内游离Ca2+和H+浓度的影响[J].中国中西医结合杂志.1999,19(9):538-540.
    [7]程军,李金平,田卓,等.南蛇藤素对载脂蛋白E基因敲除小鼠主动脉壁C反应蛋白及组织因子表达的影响[J].中国动脉硬化杂志,2008,16(5):341-344.
    [8]程军,李金平,田卓,等.南蛇藤素对ApoE基因敲除小鼠主动脉粥样硬化斑块内CD40配体表达、巨噬细胞和平滑肌细胞数量的影响[J].中国病理生理杂志,2009,25(3):601-603
    [9]杜玉兰,黎庆涛,王远辉.响应曲面法优化鼠尾藻中脂质的提取工艺[J].天然产物研究与开发),2008,20(6):1091-1094.
    [10]郭远强.南蛇藤果实化学成分和药理活性研究[D]沈阳药科大学博士论文.2004,50-53.
    [11]国家中医药管理局《中华本草编委会》.中华本草:第5分册[M].上海:上海科学技术出版社,1999:17,166-176.
    [12]何秋艳,翁新楚.山楂活性成分对氧化低密度脂蛋白损伤人微血管内皮细胞的防治作用[J].上海大学学报(自然科学版).2007,13(6):751-756.
    [13]黄太康.现代本草纲目[M].北京:中国医药出版社,2002:1859.
    [14]惠斌,吴勇杰,王鸿,等.扁葫藤素对急性实验性炎症的作用及其机制研究[J].中国药理学通报.2003,19(6):656-659.
    [15]咎珂,陈筱青,王强,等.南蛇藤茎的化学成分研究[J].中草药,2007,38(10):1453-1457.
    [16]江苏新医学院.中药大辞典:下册[Z].上海:上海科技出版社,1985.1563-1564.
    [17]蒋毅,李鹤,罗思齐,等.南蛇藤活性成分的研究[J].中草药.1996,27(2):73-75.
    [18]江苏新医学院编.中药大辞典(下册)[M].上海:上海人民出版社,1997.1563.
    [18]康德伸.醋柳黄酮治疗缺血性心脏病的作用[J].老年医学杂志,1994,14(1):61-62.
    [19]孔天,李松涛,李颖,等.齐墩果酸刺激原代脂肪细胞脂解及其机制研究[J].卫生研究.2011,40(1):27-29.
    [20]李金平,程军,田卓,等.南蛇藤素对ApoE基因敲除小鼠主动脉壁MIF及MMP-9表达的影响[J].第三军医大学学报,2008,30(9):827-830.
    [21]李金莲,杨润梅,高南南.豚鼠:一种良好的高脂血症模型动物.中国实验动物学报.2009,6(3):239-242.
    [22]李雪梅,吴符火.几类高脂血症动物模型比较[J].中西医结合学,2004,2(2):132-134.
    [23]李霞.槲皮素、三七总皂甙对动脉粥样硬化大鼠主动脉PDGF-B链mRNA表达量的影响[D].山西医科大学硕士论文.2005.
    [24]李满秀,刘美云.山楂中熊果酸的超声提取及抗氧化性研究[J].食品工业科技.2010,31(4):280-281.
    [25]李孟秋,窦洁,杜伟,等.雷公藤红素对小鼠的免疫抑制作用及其对IL-6mRNA表达影响的研究[J].中国临床药理学与治疗学.2008,13(2):158-163.
    [26]刘惠玲,冯玉静,陈定双,等.南蛇藤根皮的化学成分研究[J].中成药.2010.32(7):116-117.
    [27]刘颖琳,刘耕陶.血管内皮细胞炎症反应与动脉粥样硬化的关系对药物研究的启示[J].中国药理学通报,2001,17(4):361-364.
    [28]刘瑞凝,王伟,谢伟东,等.美白睡莲花中黄酮类成分抗氧化性和拟缺血对神经细胞作用的研究[J].世界科学技术-中医药现代化,2006,8(5):33-36.
    [29]刘玉兰,王慧姝.齐墩果酸对血小板功能的影响[J].沈阳药科大学学报,1993,10(4):275-278.
    [30]吕国红,钟晓凌,张江,等.分光光度法测定枳椇子总黄酮含量的分析[J].食品工业科技,2009,30(12):394-395.
    [31]吕勇.高效毛细管电泳技术在中药分析中的应用进展[J].海峡药学,2010,22:58-59.
    [32]林科,张太平,张鹤云.山楂中熊果酸的提取及其对小鼠的降血脂作用[J].天然产物研究与开发.2007,19:1052-1054.
    [33]孟芳.五种黄酮类化合物抑制LDL及HDL氧化修饰作用的研究[D].四川大学硕士学位论文.2004.
    [34]马文杰,魏得良,黄志芳,等.土牛膝提取物对正常及四氧嘧啶糖尿病模型小鼠血糖的影响[J].当代医学.2010,16(30):3-5.
    [35]王建梅,向敏,吴萍萍等.熊果酸抑制大鼠血管平滑肌细胞增殖的作用及其机制[J].中国药科大学学报.2010,41(1):66-69
    [36]王志波,杨牧祥,于文涛,等.酒速愈对急性酒精中毒小鼠血清AST、ALT的影响[J].中华实用中西医杂志.2006,2:224-225.
    [37]王立新,韩广轩,刘文庸,等.齐墩果酸的化学及药理研究[J].药学实践杂志2001,19(2):104-107.
    [38]王明安,陈馥衡.南蛇藤昆虫拒食成分研究Ⅰ [J].高等学校化学学报,1995,16(8):1248-1250.
    [39]王明安,陈馥衡.南蛇藤昆虫拒食成分研究Ⅱ [J].高等学校化学学报,1996,17(8):1250-1252.
    [40]王明安,刘军,陈馥衡.刺南蛇藤倍半萜的研究[J].药学学报,1997,32(5):368~372.
    [41]王明安,陈馥衡,刘军,等.南蛇藤种油中的倍半萜成分[J].天然产物研究与开发,2001,13(2):5-7.
    [42]宋鑫,陈慧敏,高南南,等.豚鼠动脉粥样硬化模型的建立及与大鼠模型的比较[J].中国药理学通报.2011,27(4):572-577.
    [43]沈嘉,李铣,李颂华,等.HPLC法测定卫矛醇及检测复方中药制剂通痹灵中的卫矛醇[J].中草药.1997,28(12)718-720.
    [44]涂永强,吴大刚,张宪民.灯油藤中新倍半萜的研究[J].高等学校化学学报,1992,13(12):1548-1550.
    [45]汤新慧,严丽芳,徐力致,等.齐墩果酸乌苏酸积雪草酸护肝及抗氧化作用的比较研究[J].时珍国医国药,2010,21(11):2824-2826.
    [46]熊斌,雷志勇,陈虹.熊果酸药理学的研究进展[J].国外医学药学分册,2004,31(3):133-136.
    [47]熊筱娟,陈武,肖小华,等.乌索酸与齐墩果酸对小鼠实验性肝损伤保护作用的比较[J].江西师范大学学报(自然科学版),2004,28(6):540-543.
    [48]徐维敏,张罗修.雷公藤红素对Il-1、Il-2活性及PGE2释放可抑制作用[J].药学学报,1992,26(9):641.
    [49]向阳,马龙.葡萄皮、籽提取物对高脂血症大鼠模型血脂水平的影响[J].新疆医科大学学报,2005,28(6):521-523.
    [50]严艳,邱夏,刘国栋,等.南蛇藤总萜对高脂血症模型大鼠的试验研究[J].扬州大学学报.2010,31(3):17-20.
    [51]颜流水,温振东,黄智敏,等.毛细管电泳法测定金银花中绿原酸、芦丁和槲皮素[J].药物分析杂志,2007,27:367-370.
    [52]颜梅,韩颜颜,徐媛媛,等.毛细管电泳技术在药物分离分析中的研究与应用[J].分析测试技术与仪器,2008,14:79-86.
    [53]杨蒙蒙,佟丽.南蛇藤化学成分及药理作用研究的进展[J].中药新药与临床药理.2004,15(3):222-224.
    [54]张杰.熊果酸改善胰岛素抵抗及对肝脏PTP-1BIRS-2表达的影响[D].第二军医大学博士学位论文.2010.
    [55]周幽心,孙成法,许期年,等.雷公藤红素抑制血管内皮细胞株增殖的体外研究[J].实用癌症杂志,2004,19(6):564-567.
    [56]赵翠翠,张锦,韩维娜,等.山萘酚、芹菜素对H2O2诱导的心肌细胞凋亡过程中线粒体损伤的影响[J].中国病理生理杂志.2008,24(7):1431-1433.
    [57]赵琳,赵彩丹,才谦,等.槲树叶总黄酮提取工艺优选研究.[J].亚太传统医学,2010(6):28-29.
    [58]张蜀艳,李政.齐墩果酸研究进展[J].食品与发酵科技,2010,46(4):20-24.
    [59]中国科学院植物研究所主编.中国高等植物图鉴(第二册)[M].北京:科学出版社,1983,658.
    [60]中国科学院植物研究所主编.中国高等植物科属检索表[M].北京:科学出版社,1985,261.
    [61]钟民涛,黄敏,卢静,等.长爪沙鼠速发型高脂血症模型的初步建立[J].中国实验动物学报,2006,14(3):217-221.
    [62]《中药辞海》编写组.中药辞2版[M].北京:中国医药科技出版社,1999.
    [63] AliF, Hamdulay S S, KinderlererA R, et al. Statin-mediated cytoprotection of hum-an vascular endothelial cells: a role for Kruppel-like factor2-dependent induction ofheme oxygenase-1.[J]. J Thromb Haemost,2007,5(12):2537-2546.
    [64] Antonio M., Gotto J.R.. Low high-density lipoprotein cholesterol as a risk factor incoronary heart disease: a working group report[J].Circulation,2001,103(17):2213-2218.
    [65] Ashen MD, Blumenthal RS. Clinical practice. Low HDL cholesterol levels.[J]. N Eng JMed,2005,353(12):1252-1260.
    [66] Assmann G., Cullen P., Erbey J.,et al. Plasma sitosterol elevations are associated with anincreased incidence of coronary events in men: results of a nested case-control analysisof the Prospective Cardiovascular Münster (PROCAM) study[J].Nutr MetabCardiovasc Dis,2006,16(1):13-21.
    [67] Ayaori M, Sawada S, Yonemura A,et al. Glucocorticoid receptor regulates ATP-bindingcassette transporter-A1expression and apolipoprotein-mediated cholesterol efflux frommacrophages[J]. Arterioscler Thromb Vasc Biol,2006,26(1):163–168.
    [68] Angelin B, Olivecrona H, Reihner H, et al. Hepatic cholesterol metabolism in estrogen-treated men[J]. Gastroenterology,1992,103(5):1657-1663.
    [69] Banno N, Akihisa T, Tokuda H,et al. Anti-inflammatory and antitumor-promotingeffects of the triterpenes from the leaves of Eribortrya japonica[J].Biol Pharm Bull,2005,28(10):1995-1999
    [70] Bhatt DL, Fox KA,Hacke W, et al. A global view of atherothrom-bosis: baselinecharacteristics in the clopidogrel for high athero-thrombotic risk and ischemicstabilization, management, and avoidance (CHARISMA) trial.Am Heart J,2005,150(3):401.
    [71] Blankstein R,Budoff MJ,Shaw LJ,et al. Predictors of coronary heart disease eventsamong asymptomatic persons with low-density lipoprotein cholesterol MESA (Multi-Ethnic Study of Atherosclerosis)[J]. J Am Coll Cardiol,2011,58(4):364-374.
    [72] Berliner JA, Navab M,Fogelman AM et al. Atherosclerosis: basic mechanisms.Oxidation, inflammation, and genetics[J]. Circulation,1995,91(9)2488-2496.
    [73] Basu SK, Brown MS, Ho YK, et al. Mouse macrophages synthesize and secrete a proteinresembling apolipoprotein E[J]. Proc Natl Acad Sci USA,1981,78(12):7545–7549.
    [74] Brown MS, Goldstein JL. Lowering plasma cholesterol by raising LDL receptors[J]. NEngl J Med,1981,305(9):515–517.
    [75] Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis[J].Science,1986,232(4746):34-47.
    [76] Bhattacharyya A., Wile P.G..Diabetic Ketocidosis Precipitated by Thyrotoxicosis [J].Postgrad Med J,1999,75(883):291-292.
    [77] Box GP,Behnken DW. Some new three level design for the study of quantitative varia-bles[J].Technometrics,1960,2(4):456-475.
    [78] Chiang JY,Kimmel R,Stroup D. Regulation of cholesterol7alpha-hydroxylase gene(CYP7α1) transcription by the liver orphan receptor (LXRalpha)[J].Gene,2001,26(1-2)2:257-265.
    [79] Curb JD, Abbott RD, Rodriguez BL, et al. C-reactive protein and the future risk ofthromboembolic stroke in healthy men[J]. Circulation,2003,107(15):2016-2020.
    [80] Despres JP, Lemieux I, Dagenais GR, et al. HDL cholesterol as a marker of coronaryheart disease risk: the Quebec cardiovascular study [J]. Atherosclerosis,2000,153(2):263-272.
    [81] Danesh FR, Wada J, Wallner EI, Sahai A, Srivastava SK, Kanwar YS.Gene regulation ofaldose-, aldehyde-and a renal specific oxido reductase (RSOR) in the pathobiologyof diabetes mellitus. Curr Med Chem.2003Aug;10(15):1399-406.
    [82] Dirsh VM, KiemerAK, WagnerH, et al. The triterpenoid quinonemethide pristimerininhibits induction of inducible nitric oxide synthase inmurine macrophages[J]. Eur JPharmacol.1997,336(2-3):211-217.
    [83] Danesh J, Wheeler JG, HirschfieldGM, et al. C-reactive protein and other circulate-ngmarkers of inflammation in the prediction of coronary heart disease[J]. N Engl JMed,2004,350(14):1387-1397.
    [84] De D, Khanna I. Recent trends in HDL modulating therapies[J]. Ann Rep in Me-d Chem,2007,42:177-191.
    [85] Ensign WY,McNamara DJ,Fernandez ML. Exercise improves plasma lipid profilesand modifies lipoprotein composition in guinea pigs[J]. J Nutr Biochem,2002,13(12):747-753.
    [86] Fernandez ML. Guinea pigs as models for cholesterol and lipoprotein metabolism[J]. JNutr,2001,131(1):10-20.
    [87] Fernandez ML,Volek JS. Guinea pigs: a suitable animal model to study lipoproteinmetabolism,atherosclerosis and inflammation[J].Nutr Metab (Lond),2006,3:17-28.
    [88] Fernandez ML, Ruiz LR, Conde AK, etal. Psyllium reduces plasma LDL in guinea pigsby altering hepatic cholesterol metabolism[J]. J Lipid Res,1995,36(5):1128-1138
    [89] Fernandez ML, Yount NY, McNamara DJ. Whole body and hepatic cholesterol synthe-sis rates in the guinea pig: Effects of dietary fat quality[J]. Biochim Biophys Acta,1990,1044(3):340-348.
    [90] Francisco G, Hernández C, Simó R. Serum markers of vascular inflammation indyslipemia[J]. Clin Chim Acta,2006,369(1):1-16.
    [91] Fox KM, European trial on reduction of cardiac events with Perindopril in stablecoronary Artery disease Investigators.Efficacy of perindopril in reduction ofcardiovascular events among patients with stable coronary artery disease:random-ised, double-blind, placebo-controlled, multicentre trial (the EUROPAstudy)[J]. Lancet,2003,362(9386):782-788.
    [92] Garg R, Vasamreddy CR, Blumenthal RS. Non-high-density lipoprotein cholesterol: whylower is better[J]. Prev Cardiol,2005,8(3):173-177.
    [93] Giner-Larza E M, Manezs S, Recio M C,et al. Oleanonic acid, a3-oxotriterpene frompistacia, inhibits leukotriene synthesis and has anti-inflammatory activity [J].EurJPharmacol,2001,428(1):137-143.
    [94] Gotto AM Jr. Lipid lowering,regression, andcoronaryevents. A review of the Interdisci-plinary Council on Lipids and Cardiovascular Risk Intervention, Seventh Council meeti-ng[J],1995,Circulation,92(3):646-656
    [95] Grundy SM. Low-density lipoprotein, non-high-density lipoprotein, and apolipoprotein Bas targets of lipid-lowering therapy[J]. Circulation,2002,106(20):2526-2529.
    [96] Grove D, Pownall H.J. Comparative specificity of plasma lecithin:cholesterol acyltra-nsferase from ten animal species[J]. Lipids,1991,26(6):416-420
    [97] Grundy SM, Cleeman JI, Merz CN, etal. Implications of recent clinical trials for theNational Cholesterol Education Program Adult Treatment Panel III guidelines[J].Circulation,2004,110(2):227-239.
    [98] Haria M, McTavish D. Pravastatin: A reappraisal of its pharmacological proper-ties and clinical effectiveness in the management of coronary heart disease[J].Drugs,1997,53(2):299-336.
    [99] HattoriY, MatsumuraM, KasaiK.Vascular smooth muscle cell activation by C-reactiveprotein[J]. Cardiovasc Res,2003,58(1):186-195.
    [100]Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros ofcontra-regulation[J]. Trends Biochem Sci,1996,21(4):140-145
    [101]Hansson GK.Inflammation, atherosclerosis,and coronary artery disease[J].N Engl Jmed,2005,352(16)85-1695.
    [102]Hansson GK, Zhou X, Tornquist E, et al. The role of adaptive immunity in atheroscl-erosis[J]. Ann N Y Acad Sci,2000,902:53-62.
    [103]He W, Huang FC, Gavai A, et al. Novel cytokine release inhibitors. Part III: truncatedanalogs of tripterine[J].Bioorg Med Chem Lett,1998,8(24):3659-3664.
    [104]Huang D,Ding Y,Li Y,et al.Anti-tumor activity of a3-oxo derivative of oleanolicacid[J].Cancer Lett,2006,233(2):289-29.
    [105]Huang FC, ChanWK, MoriartyKJ, etal. Novel cytokin release inhibitors: Part I.triterpenes [J]. Bioorg Me Chem Lett,1998,8(14):1883-1886.
    [106]Islam MS, Yoshida H, Matsuki N, etal. Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory activities of phytosteryl ferulates: structure-activity Studies[J]. JPharmacol Sci2009,111(4):328-337.
    [107]Jang SM,Yee ST,Choi J,etal.Ursolic acid enhances the cellular immune system andPancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fatdiet[J].Int immunopharmacol,2009,9(l):113-119.
    [108]Jiang XC,Bruce C,Mar J,et al.Targeted mutation of plasma phospholipid transfer proteingene markedly reduces high-density lipoprotein levels[J].J Clin Invest,1999,103(6):907-914.
    [109]Jin HZ,Hwang BY,Kim HS,etal.Antiinflammatory constituents of Celastrus orbiculatusinhibit the NF-kappaB activition and NO Production [J].J Nat Prod,2002,65(1):89-91.
    [110]Joyce CW, AmarM J, LambertG, etal. The ATP binding cassette transporterA1(ABCA1) modulates the development of aortic atherosclerosis in C57BL/6and apoE-knockout-mice[J]. Proc Natl Acad Sci USA,2002,99(1):407-412.
    [111]Kristy L.West, Maria Luz Fernandez.Guinea Pigs as models to study the hypocholest-erolemi-c effects of drugs[J]. Cardiovascular Drug Reviews,2004,22(1):55-70.
    [112]Kupchan SM,BrungR, Wagner H. Ubersicht uber diecelastraceae-inhactsstoffe chemie,chemotaxonomie,biosynthese,pharmakologie [J]. Phytochemistry,1978,17:1821-1858.
    [113]Lenardo MJ, Baltimore D. NF-κB: a pleiotropic mediator of inducible and tissuespecific gene control[J].Cell,1989,58(2):227-229.
    [114]Lewis G A., Mathieu D., Phan-Tan-Luu R.Pharma Expe Desi[M]. Marcel Dekker, NewYork,1999,34.
    [115]Libby P, Ridker PM, MaseriA. Inflammation and atherosclerosis[J]. Circulation,2002,105(9):1135-1143.
    [116]Libby P. Inflammation in atherosclerosis,2002,420(6917):868-874.
    [117]Li JJ, Chen XJ. Simvastatin inhibits interleukin-6release in human monocytes stimulat-ed by C-reactive protein and lipopolysaccharide.Coron ArteryDis,2003,14(4):329-334.
    [118]LiH,ZhangY Y,HuangX Y,et al. Beneficial effect of tripterine on systemic lupus erythe-m atosus induced by active chromatin in BALB/c mice[J]. Eur J Pharmaco,2005,512(2-3):231-237
    [119]Lin EC, Fernandez ML, Tosca MA,et al. Regulation of hepatic LDL metabolism in theguinea pig by dietary fat and cholesterol.J Lipid Res,1994;35(3),446-457.
    [120]MiyaoY,YasueH,OgawaH,et al.Elevated plasma interleukirr-6levels in patients withacute myocardial infarction[J].Am Heart J,1993;126(6):1299-1304.
    [121]Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arteri-oscler Thromb Vasc Biol,2005,25(1):29-38.
    [123]MoghadasianM H. Experimental atherosclerosis: a histor-ical overview[J]. Life Sc,i2002,70(8):855-865.
    [124]NawawiH, Osman N S, Annuar R,et al. Soluble intercellular adhesion molec-ule-1and interleukin-6levels reflect endo-thelial dysfunction in patients withprimary hypercholesterolaemia treated with atorvastatin [J]. Atherosclerosis,2003,169:283-291.
    [125]Ngassapa O,Soejarto D D,Pezzuto JM,etal.Quinone-methide triptertene and salaspermicand from koloona ochracea[J].J Nat Prod.1994,57(1):1-8.
    [126]Pascal J. Goldschmidt-Clermont PJ, Creager MA,etal. Atherosclerosis2005: Recentdiscoveries and novel hypotheses [J]. Circulation,2005,112(21):3348-3353.
    [127]Pinnaa GF, Fiorucci M, Reimund JM, et al.Celastrol inhibits pro-inflammatory cytokinesecretion in Crohn’s disease biopsies [J].Biochem Biophys Res Commun,2004,322(3):778-786.
    [128]Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis[J]. Int Angiol,2002,21(2):109-116.
    [129]PloskerG L, Wagstaff A J. Fluvastatin: a review of its pharmacology and use inthe management of hypercholesterolaemia[J]. Drugs,1996,51(3):433-459.
    [130]Puppione DL,Sardet C,Yamanaka W,et al. Plasma lipoproteins of cholesterol-fed guineapigs[J]. Biochim Biophys Acta,1971,231(2):295-301.
    [131]Reihner E, Angelin B, Rudling M, etal. Regulation of hepatic cholesterol metabolism inhumans: Stimulatory effects of cholestyramine on HMG-CoA reductase activity and lowdensity lipoprotein receptor expression in gallstone patients[J]. J Lipid Res1990,31(12):2219-2226.
    [132]Reihner E,Angelin B,Bjorkhem I,etal. Hepatic cholesterol metabolism in cholesterolgallstone disease[J]. J Lipid Res,1991,32(3):469-475.
    [133]Reitman JS, Mahley RW,Fry DL.Yucatan miniature swine as a model for diet-induced atherosclerosis[J]. Atherosclerosis,1982,43(1):119-132.
    [134]RizzoM,BemeisK.Who needs to care about small, dense low-densitylipoproteins?[J]. Int J Clin Pract,2007,61(11):1949-1956.
    [135]Richard W,Clair ST. Pathogenesis of atherosclerosis[J].Cardiolog In Review,1997,6(1):14-24.
    [136]RossR.Endothelium,monocytes,platelets,and atherosclerosis[J].MonogAtheroscler.1986,14:169-172.
    [137]Ross R.The pathogenesis of atherosclerosis:a perspective for the1990s [J].Nature,1993,326(6423):801-809.
    [138]Ross R. Atherosclerosis: an inflammatory disease [J]. N Engl J Med,1999,340(2):115-126.
    [139]Rodriguez-Rodriguez R,Herrera MD,de Sotomayor MA. Pomace Olive Oil ImprovesEndothelial Function in Spontaneously Hypertensive Rats by Increasing EndothelialNitric Oxide Synthase Expression[J]. Am J Hypertens,2007,20(7):728-734.
    [140]Ruiz E, Padilla E, Redondo S, et al. Kaempferol inhibits apoptosis in vascular smoothmuscle induced by a component of oxidized LDL [J]. Eur J Pharmaco,l2006,529(1-3):79-83.
    [141]Rubins HB, Robins SJ, Collins D,et al. Distribution of Lipids in8500men withCoronary Artery Disease. Department of Veterans Affairs HDL InterventionTrial StudyGroup [J].Am J Cardiol,1995,75(17):1196-1201.
    [142]Sacks FM,Pfefer MA, Moye LA, et al. The effect of pravastatin on coronary eventsafter myocardial infarction in patients with average cholesterol levels. Cholesterol andRecurrent Events Trial investigators [J]. N Engl J Med,1996,335(14):1001-1009.
    [143]SassaH, KogureK, TakaishiY, et al. Structural basis of potent antiperoxidation activityof the triterpene celastrol in mitochondria: Effect of negative membrane surface chargeon lipid peroxidation[J]. Free Radical Biol Med,1994,17(3):201-207.
    [144]Sharma J N,Al-Omran A,Parvathy SS.Role of nitric oxide in inf lammatory diseases[J].Inflammopharmacology,2007,15(6):252-259.
    [145]Sharma SB,Nasir A,Prabhu KM,et al.Hypoglycaemic and hypolipidemic effect ofEthanolic Extract of Seeds of Eugenia Jambolana in Alloxan-induced Diabetic Rabbits[J].J Ethnophar-macol,2003,85(2-3):201-206.
    [146]SkablinK,GustafssonM,RydbergEK,etal. Subendothe-lial retention of atherogeniclipoproteins in early atherosclerosis[J]. Nature,2002,417(6890):750-754.
    [147]Shi J, Yu J,Pohorly JE,et al. Polyphenolics in grape seeds-biochemistry andfunctionality [J]. J Med Food,2003,6(4):291-299.
    [148]Simonetti P, Ciappellano S,Gardana C,et al. Procyanidins from Vitis vinifera seeds: invivo effects on oxidative stress[J]. JAgricFood Chem.2002,50(21):6217-6221.
    [149]Smilde TJ, VanWissen S, Wollersheim H, et al. Effect of aggressive versusconventional lipid lowering on atheroscle-rosis progression in fami1ial hyperch-olesterolaemia (ASAP): a prospective, randomized, double-blind trial[J].Lancet,2001,357:577-581.
    [150]Somova LO,NadarA,Rammanan P,et al.Cardiovascular, anti hyperlipidemic andantioxidant effects of oleanolic and ursolic acids in experimental hypenension[J]. Phyto-medicine,2003,10(2-3):115-121.
    [151]Somoval LI,Shode FO,Mipando M,et al.Cardiotonic and antidysrhythmic effects ofoleanolic and ursolic acids,methyl maslinate and uvaol[J].Phytomedicine,2004,11:121-129.
    [152]Soga T,Imaizumi M. Capillary electrophoresis method for the analysis of inorganicanions, organic acids, amino acids, nucleotides, carbohydrates and other anioniccompounds[J]. Electrophoresis,2001,22(16):3418-3425.
    [153]SteffenY,Schewe T,Sies H. Epicatechin protects endothelial cells against oxidized LDLand maintains NO synthase[J]. Biochem Biophys Res Commun.2005,331(4):1277-1283.
    [154]Szmitko P E, Verma S. C-reactive protein and the metabolic syndrome: usefuladdition to the cardiovascular risk profile?[J]. J Cardiometab Syndr,2006,1(1):66-69.
    [155]TabasI.Consequences and therapeutic implications of macrophage apoptosis inatherosclerosis: the importance of lesion stage and phagocytic efficiency [J]. ArteriosclerThromb Vasc Biol,2005,25(3):2255-2264.
    [156]Taskinen MR.Diabetic dyslipidemia[J].Atherosclerosis,2002,3(1):47-51.
    [157]TanousD,BrasenJH,ChoyK,et al.Probucol inhibits in-stent thrombosis and neoi-ntimal hyperplasia by promoting re-endothelialization[J]. Atherosclerosis,2006,189(2):342-349.
    [158]Trautwein EA,Forgbert K,Rieckhoff D,et al. Impact of beta-cyclodextrin and resistantstarch on bile acid metabolism and fecal steroid excretion in regard to their hypolipide-mic action in hamsters[J]. Biochim Biophys Acta,1999,1437(1):1-12.
    [159]TuYQ.A sesquiterpene polyol esters from Celastrus rosthornianus[J]. Phytochemistry,1992,31(6):2155-2157.
    [160]TuYQ.Sesquiterpenoids from two species of Celastraceae[J].Phytochemistry,1992,31(4):1281-1283.
    [161]TuYQ, Wu DG,LiZ.Z, etal. Structures of sesquiterpenoids from Celastrus angulatus[J].J.Nat Prod.1993,56(1):126-129.
    [162]Wang M, Zhang X, Xiong X,et al. Efficacy of the Chinese traditional medicinal herbCelastrus orbiculatus Thunb. on human hepatocellular carcinoma in an orthothopicfluoresceent nude mouse model[J].Anticancer Res.2012,32(4):1213-1220.
    [163]Wang CY, Chang TC. Non-HDL cholesterol level is reliable to be an early predictor forvascular inflammation in type2diabetes mellitus[J]. J Clin Endocrinol Metab,200489(9):4762-4767.
    [164]Wang HR,Li JJ,Huang CX.et al. Fluvastatin inhibits the expression of tumor necrosisfactor-alpha and activation of nuclear factor-kappaB in human endothelial cellsstimulated by C-reactive protein[J].Clin Chim Acta,2005,353(1-2):53-60.
    [165]Wilson S H, Best P J,Edwards W D,et al. Nuclear factor-kappa B immunoreactivity ispresent in human coronary plaque and enhanced in patients with unstable anginapectoris[J]. Atherosclerosis,2002,160(1):147-153.
    [166]Wright JL,Churg A. A model of tobacco smoke-induced airflow obstruction in theguinea pig[J].2002,121(5Suppl):188S-191S.
    [167]Williams JK,Sukhova GK, Herrington DM, et al.Pravastatin has cholesterol loweringindependent effects on the artery wall of atherosclerotic monkeys[J]. J Am CollCardiol,1998,31(3):684-691.
    [168]XiangD L,YuanW L,Hua Z,et al. Animal models for the atherosclerosis research: areview[J]. Protein Cell2011,2(3):189-201.
    [169]ZhangJ,XuYm,WangWM, et al.Experinental study on anti-tumor effect of extractivefrom celastrus orbiculatus in vivo[J].Zhongguo Zhong Yao Za Zhi,2006,31(18):1514-1516.
    [170]ZhangDH,MarconiA, Xu LM, et al.Tripterine inhibits the expression of adhesionmolecules in activated endothelial cells [J].J Leukoc Biol,2006,80(2):309-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700