基于Butler矩阵的双频双极化多波束天线关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多波束天线在通信系统中得到了非常广泛的应用,而双频、双极化是其重要的研究方向之一。本文基于传统平面电路工艺加工技术,以C波段无线通信为应用背景,对双频双极化多波束天线系统中的关键技术进行深入系统研究,具体研究内容包括:
     1.提出并研制了一种单层微带宽带Butler矩阵结构。在三线宽带耦合器中加载集总分布元件,使得耦合器的尺寸接近减小一半;采用多个U型耦合线代替Schiffman移相器中的单个U型耦合线,可在较宽频带范围内获得良好的传输、相位特性。仿真和测试结果表明该Butler矩阵可实现20%的相对带宽。
     2.采用悬置带线设计Butler矩阵的定向耦合器、交叉结和Schiffman移相器,对双面耦合定向耦合器和双面交叉结进行电容加载,实现相速度补偿,从而使得耦合器和交叉结具有良好的宽带性能。仿真和测试结果表明该Butler矩阵在50%的带宽内损耗小和端口一致性好,且具有尺寸紧凑和加工方便等优点。
     3.提出了一种微带馈电双频双极化的矩形贴片天线。在矩形贴片加载标语牌形槽,选择在适当的馈入点用单根微带线进行馈电,激励起的TM01模和TM10模分别工作在两个谐振频点,同时引入两个切角来调节交叉极化电平且基本不影响谐振频率。该天线单元具有交叉极化小、频率比(FR)调节方便且可调范围宽、结构紧凑和方便应用于天线阵等优点。
     4.在双重特性谐振(DBR)滤波器的基础上,对高隔离度双工器进行研究,分别引入缺陷地结构(DGS)、螺旋型紧致微带谐振单元(SCMRC)和双频分支线(DBS),在不增加原有尺寸的基础上,进一步抑制上寄生通带,进而提高了上阻带抑制度。仿真和测试结果表明本文所研制的三种双工器的隔离度大于65dB,插损小于1.3dB。
     5.提出了一种折叠的阶梯阻抗谐振器(SIR)结构,采用折叠SIR设计双工器中的带通滤波器,在T型结中引入SCMRC提高双工器的隔离度和减小了T型结的尺寸。研制的小型化双工器尺寸只有0.87λg×0.23λg,仿真和测试结果表明该双工器的隔离度大于65dB,插损小于1.7dB。
     6.采用宽带Butler矩阵、双频双极化微带天线阵列和双工器等构建了基于Butler矩阵的多波束天线,设计并研制波束切换网络——单刀四掷开关(SP4T)和收发前端等关键部件,在此基础上对基于Butler巨阵的双频双极化多波束天线进行了实验研究,为进一步工程化应用奠定了基础。
Multi-beam antennas find wide application in wireless communication systems, and it is one of the most popular research directions to study dual-frequency dual-polarization multi-beam antennas. In this dissertation, for the application of the C-band wireless communication systems, several key techniques of dual-frequency dual-polarization multi-beam antenna systems are investigated based on the conventional planar circuit fabrication techniques. The detailed contents are as follows:
     1.A microstrip broadband Butler matrix is proposed and fabricated. A3-branch line wideband coupler with lumped and distributed elements is adopted in the design, which can reduce almost half area. To get good phase and transmission performances during a wide band, an improved Schiffman phase shifter is designed, which uses multi-U-shaped coupled-line instead of the single-U-shaped one. The simulated and measured results show that the bandwidth of the designed Butler matrix is20%.
     2. The directional coupler, double-side crossover and Schiffman phase shifters of Butler matrix are designed based on suspended stripline. The double-side coupled directional coupler and double-side crossover are capacitive loaded to implement phase velocity compensation, and the broadband performances are obtained. The simulated and measured results show that the designed Butler matrix is characteristic of low loss and good port consistency over the50%bandwidth, and it is compact and can be fabricated easily.
     3. A compact microstrip-feed dual-frequency dual-polarization rectangle patch antenna embedded a placard-shaped slot is proposed. By exciting the patch at an appropriate position using a single microstrip feed line, TM01and TM10modes are both excited, respectively, at the first and second resonant frequencies. By introducing two corner cuts, we can adjust the cross polarization levels with little influence on the resonant frequencies. The simulated and measured results show that the antenna unit has low cross polarization levels, a wider and easily adjusted frequency-ratio (FR) and a compact size, and it is readily used in array configurations.
     4.The high isolation diplexers are studied based on the dual behavior resonator (DBR) microstrip filter. The defected ground structure (DGS), spiral compact microstrip resonant cell (SCMRC), and dual-band stub (DBS) are introduced in, respectively, so the upper parasitic passbands are suppressed, and the rejection in the upper stopband could be improved without increasing the original size. The simulated and measured results of the three diplexers designed in this dissertation show that the isolations are better than65dB, and the losses are less than1.3dB.
     5. A folded stepped-impedance resonator (SIR) structure is proposed. By applying the proposed resonator, the compact band-pass filters (BPFs) of the diplexer are realized. With the adoption of SCMRC into the T-junction, the diplexer isolation is improved, and the size is reduced. The diplexer is very compact and occupies a small area of0.87λg×0.23λg, The simulated and measured results show that the isolations are better than65dB, and the losses are less than1.7dB.
     6. A Butler matrix-based multi-beam antenna is constructed using the broadband Butler matrix, the dual-frequency dual-polarization microstrip array and the diplexer. The beam switching network (SP4T) and the Rx/Tx are designed and fabricated. And an experiment was carried out to verify the idea.
引文
[1]孟明霞.平面天线的双频和双极化研究.电子科技大学博士论文,2009
    [2]陈鹏.平面集成圆极化天线和多波束天线的研究.东南大学博士学位论文,2009
    [3]Tarek Djerafi, Nelson J. G. Fonseca and Ke Wu. Broadband Substrate Integrated Waveguide 4×4 Nolen Matrix Based on Coupler Delay Compensation. IEEE Transactions on Microwave Theory and Techniques,2011,59(7):1740-1745
    [4]H. B. Abdullah. A prototype Q-band antenna for mobile communication systems.10th International Conference on Antennas and Propagation, April 1997:14-17
    [5]Ramesh Chandra Gupta, Shashank Saxena, Milind B. Mahajan, and Rajeev Jyoti. Design of dual-band multimode profiled smooth-walled horn antenna for satellite communication. IEEE antennas and wireless propagation letters,2010,9:338-341
    [6]Kwok Kee Chan and Sudhakar K. Rao. Design of high efficiency circular horn feeds for multibeam reflector applications. IEEE Transactions on Antennas and Propagation,2008, 56(1):253-258
    [7]Omid Sotoudeh, Per-Simon Kildal, Per Ingvarson, and Cyril Mangenot. Dual band hard horn for use in cluster-fed multi-beam antennas in Ka-band. Antennas and Propagation Society International Symposium, IEEE,2005,3A:379-382
    [8]Sudhakar Rao, Kwok Kee Chan and Minh Tang. Dual-band multiple beam antenna system for satellite communications. Antennas and Propagation Society International Symposium,2005,3A:359-362
    [9]Peter Koch, Christoph Heer, Mattias Viberg, Vant Klooster, C. G. M.. Dual-polarized feed-cluster for a reflector-based multi-beam SAR antenna. Microwave & Telecommunication Technology,17th International Crimean Conference,2007:815-817
    [10]Sorbello R.M., Karmel P.R., Gruner R.W.. Feed array and beam forming network design for a reconfigurable satellite antenna. Antennas and Propagation Society International Symposium,1980,18:78-81
    [11]Syed Azhar Hasan. Highly reliable & wideband digital multi beamforming horn array antenna with gain adjustment capabilities for space applications. Microwave Conference Proceedings (CJMW),2011 China-Japan Joint,2011:1-4
    [12]Sotoudeh O., Kildal P.S., Ingvarson P., Skobelev S.P.. Single-and dual-band multimode hard horn antennas with partly corrugated walls. IEEE Transactions on Antennas and Propagation,2006, Part:1,54(2):330-339
    [13]Rao S.K., Tang M.Q.. Stepped-reflector antenna for dual-band multiple beam Satellite communications payloads. IEEE Transactions on Antennas and Propagation,2006,54(3): 801-811
    [14]Frank A. Regier. The ACTS Multibeam Antenna. IEEE Transactions on Microwave Theory and Techniques,1992,40(6):1159-1164
    [15]Sotoudeh O., Kildal P.-S., Sipus Z., Mangenot C., Ingvarson P.. Theoretical study of the corrugated hard horn used as feed in multi-beam antennas for dual band operation at 20/30 GHz. Antennas and Propagation Society International Symposium, IEEE,2003,4: 506-509
    [16]Hoferer R.A.. Inflatable parabolic torus reflector antenna for space-borne applications: concept, design and analysis. IEEE Aerospace Conference Proceedings,1999,3:249-263
    [17]Hodges R.E., Zawadzki, M.. Design of a large dual polarized Ku band reflectarray for space borne radar altimeter. IEEE Antennas and Propagation Society International Symposium,2004,4:4356-4359
    [18]Encinar J.A., Zornoza J.A., Three-layer printed reflectarrays for contoured beam space applications. IEEE Transactions on Antennas and Propagation,2004,52(5):1138-1148
    [19]Romisch S., Popovic D., Shino N., Lee R., Popovic Z.. Multi-beam discrete lens arrays with amplitude-controlled steering. IEEE MTT-S International Microwave Symposium Digest,2003,3:1669-1672
    [20]Sebastien Rondineau, Stefania Romisch, Darko Popovic, Zoya Popovic. Multibeam spatially-fed antenna arrays with amplitude-controlled beam steering. Proceedings of the 2003 Antenna Applications Symposium[27th],2003,1:24-37
    [21]Sakakibara K., Kimura Y., Hirokawa J., Ando M., Goto N.. A two-beam slotted leaky waveguide array for mobile reception of dual-polarization DBS. IEEE Transactions on Vehicular Technology,1999,48(1):1-7
    [22]Schulwitz L., Mortazawi A.. A compact dual-polarized multibeam phased-array architecture for millimeter-wave radar. IEEE Transactions on Microwave Theory and Techniques,2005,53(11):3588-3594
    [23]A1-Zayed A., Schulwitz L., Mortazawi A.. A dual polarized millimetre-wave multibeam phased array. IEEE MTT-S International Microwave Symposium Digest,2004,1:87-90
    [24]Remez J., Zeierman E., Zohar R.. Dual-Polarized Tapered Slot-Line Antenna Array Fed by Rotman Lens Air-Filled Ridge-Port Design. IEEE Antennas and Wireless Propagation Letters,2009,8:847-851.
    [25]Mirzaie S., Faraji-Dana R.. Adaptive base-station antenna arrays. International Conference on Microwave and Millimeter Wave Technology,2008,1:450-453
    [26]Lindmark B., Lundgren S., Beckman C.. Dual polarized aperture coupled patch multibeam antenna. IEEE Antennas and Propagation Society International Symposium, 1998,1:328-331
    [27]Lindmark B., Lundgren S., Beckman, C.. Dual polarised multibeam antenna. Electronics Letters,1999,35(25):2158-2160
    [28]Gao S.-C., Li L.-W., Leong M.-S., Yeo, T.-S.. Integrated multibeam dual-polarised planar array. IEE Proceedings Microwaves, Antennas and Propagation,2001,148(3): 174-178
    [29]Tarek Djerafi, Nelson J. G. Fonseca, Ke Wu. Design and Implementation of a Planar 4×4 Butler Matrix in SIW Technology for Wideband Applications. Microwave Conference (EuMC), Paris, France,2010 European:910-913
    [30]S. Zheng, W. S. Chan, S.H. Leung and Q. Xue. Broadband Butler matrix with flat coupling. Electronics Letters, May 2007,43(10):576-577
    [31]Manish A. Hiranandani and Ahmed A. Kishk. Widening Butler Matrix Bandwidth Within The X-band. IEEE Antennas and Propagation Society International Symposium,2005, 4A:321-324
    [32]J. He, B.-Z. Wang, Q.-Q. He, Y.-X. Xing, andZ.-L. Yin. Wideband X-Band Microstrip Butler Matrix. Progress In Electromagnetics Research,2007,74:131-140
    [33]De-Jing Ma, Hong-Li Peng, Wen-Yan Yin, and Jun-Fa Mao. The Realization of High Isolation and Wide Band 4×4 Microstrip Butler Matrix. Microwave Technology and Computational Electromagnetics,2009:88-91
    [34]Mourad Nedil, Tayeb A. Denidni, and Larbi Talbi. Novel Butler Matrix Using CPW Multilayer Technology. IEEE Transactions on Microwave Theory and Techniques,2006, 54(1):499-507
    [35]Slawomir Gruszczynski, and Krzysztof Wincza. Broadband 4×4 Butler Matrices as a Connection of Symmetrical Multisection Coupled-Line 3-dB Directional Couplers and Phase Correction Networks. IEEE Transactions on Microwave Theory and Techniques, 2009,57(1):1-9
    [36]George Tudosie, Ruediger Vahldieck, Albert Lu. A novel modularized folded highly compact LTCC Butler Matrix. IEEE MTT-S International Microwave Symposium Digest, 2008:691-694
    [37]Alonso Corona, Member, and M. J. Lancaster. A High-Temperature Superconducting Butler Matrix. IEEE Transactions on Applied Superconductivity,2003,13(4):3867-3872
    [38]Berke Cetinoneri, Yusuf A. Atesal, and Gabriel M. Rebeiz. An 8x8 Butler Matrix in 0.13-um CMOS for 5-6-GHz Multibeam Applications. IEEE Transactions on Microwave Theory and Techniques,2011,59(2):295-301
    [39]M. Bona, L. Manholm, J. P. Starski, Senior Member, IEEE, and B. Svensson, Member, IEEE. Low-Loss Compact Butler Matrix for a Microstrip Antenna. IEEE Transactions on Microwave Theory and Techniques,2002,50(9):2069-2075
    [40]Don-Yen Lai, Fu-Chiarng Chen. A compact dual-band dual-polarized patch antenna for 1800/5800MHz cellular/WLAN systems. Microwave and optical technology letters, February 2007,49(2):345-349
    [41]Abdelnasser A.Eldek, Atef Z.Elsherbeni, Charles E.Smith. Dual-polarized dual-band square slot antenna with a U-shaped printed tuning stub for wireless communications. Microwave Opt. Technol. Letters. March 2004,21:451-454
    [42]潘雪明,王泽美,焦永昌.一种槽耦合的双频双极化微带天线.雷达科学与技术,2005年8月,4(3):253-256
    [43]康雪姣,张金生.一种双频双极化3G天线的研究.微计算机信息(嵌入式与SOC)2008年,24(11-2):284-286
    [44]Wong K.L., and Yang, K.P.. Small dual-frequency microstrip antenna with cross slot. Electron. Lett,1997,33 (23):1916-1917
    [45]Wong, K.L., and Yang, K.P.. Compact dual-frequency microstrip antenna with a pair of bent slots. Electron. Lett.,1998,34 (3):225-226
    [46]Yang, K.P.. Studies of compact dual-frequency microstrip antennas. Ph.D. dissertation, Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan,1999
    [47]Chen W.S.. Single-feed dual-frequency rectangular microstrip antenna with square slot. Electron. Lett.,1998,34 (5):231-232
    [48]Chen H.D.. A dual-frequency rectangular microstrip antenna with a circular slot. Microw. Opt. Technol. Lett.,1998,18 (5):130-132
    [49]Binoy G.S., Aanandan C.K., Mohanan P., Vasudenan K., and Nair K.G.. Single-feed dual-frequency dual-polarized slotted square microstip antenna. Microw. Opt. Technol. Lett.,2000,25 (6):395-397
    [50]Manju Paulson, Sona O Kundukulam, C.K.Aanandan. Compact arrow shaped antenna with embedded rectangular slot for dual frequency dual polarization operation. Microwave Opt.Technol.Letters,2006,28:56-59
    [51]S.O.Kundukulam, Manju Paulson, C.K.Aanandan, P.Mohanan, K.Vasudevan. Dual-band dual-polarized compact microstrip antenna. Microwave and optical technology letters, June 52000,25:328-330
    [52]王利强,张厚,王剑,杨国伟.一种双频双极化微带天线的设计.弹箭与制导学报,2008年2月,1(28):238-240
    [53]Alireza Marandi, Farzaneh Afshinmanesh, Mahmoud Shahabadi, Fariba Bahrami.Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna.2006 IEEE congress on Evolutionary Computation, July 2006:3212-3218
    [54]Zhang, A., He, D., Yin, Q.. Design of diplexer based on microstrip tapped-hairpin filter with frequency in S-band. Modern Electronics Technique,2007,19:11-13
    [55]Huang C. Y., Weng M. H., Ye C. S. and Xu Y. X.. A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators. Progress In Electromagnetics Research, PIER 100,2010:299-308
    [56]Yang R. Y., Hsiung C. M., Hung C. Y. and Lin C. C.. Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonators. Progress In Electromagnetics Research, PIER 107,2010:101-114
    [57]Sarayut S., Sumongkol P., Ravee P., Sawat B., Sompol K. and Mitchal C..High isolation and compact size microstrip hairpin diplexer. Microw. Wirel. Comp. Lett.,2005,15(2): 101-103
    [58]Chen Y. C., Cheng H. F., Lei C. M. and Lin I. N.. Chebyshev-type diplexers designed using coupling matrix method. Mater. Chem. Phys.,2003,79 (2-3):116-118
    [59]Han S., Wang X. L., Fan Y., Yang Z. and He Z.. The generalized Chebyshev substrate integrated waveguide diplexer. Progress In Electromagnetics Research, PIER 73,2007: 29-38
    [60]Yang T., Chi, P. L. and Itoh, T.. High isolation and compact diplexer using the hybrid resonators. Microwave Wirel. Comp. Lett.,2010,20(10):551-553
    [61]Chun Y. H. and Hong J. S.. Compact wide-band branch-line hybrids. IEEE Trans. Microw. Theory Tech.,2006,54 (2):704-709
    [62]Chun Y. H. and Hong J. S.. Design of a compact broad-band branchline hybrid. IEEE MTT-S Int. Microw. Symp. Dig., Long Beach, CA,2005:997-1000
    [63]Muracuchi M., Yukitake T. and Naito Y.. Optimum design of 3-dB branch-line couplers using microstrip lines. IEEE Trans. Microw. Theory Tech.,1983, MTT-31(8):674-678
    [64]Schiffman B. M.. A new class of broad-band microwave 90-degree phase shifters. IRE Trans. Microw. Theory Tech.,1958:232-237
    [65]Quirartc J. L. R. and Starski J. P.. Synthesis of Schiffman phase shifters. IEEE Trans. Microw. Theory Tech.,1991,39 (11):1885-1889
    [66]Jafari E., Hodjatkashani F. and Rezaiesarlak R.. A broadband quadrature hybrid using improved wideband Schiffman phase shifter. Progress In Electromagnetics Research C, 2009,11:229-236
    [67]Zhang Z., Jiao Y. C., Cao S. F., Wang X. M. and Zhang F. S.. Modified broadband Schiffman phase shifter Using dentate microstrip and patterned ground plane. Progress In Electromagnetics Research Letters,2011,24:9-16
    [68]Prakash Bhartia, Protap Pumanick. Computer-Aided Design Models for broadside-Coupled Striplines and Millimeter-Wave Suspended Substrate Microstrip Lines. IEEE Transaction on Microwave Theory and Techniques,1988,36(11): 1476-1481
    [69]C. V. Maciel, F. M. Argollo, and H. Abdalla, Jr. Broadside suspended 3-dB couplers. Proc. SBMO Int. Microwave Conf., Sao Palo, Brazil,1993,1:117-122
    [70]Daniel F. M. Argollo, Humberto Abdalla Jr. and Antonio J. M. Soares. Method of Lines Applied to Broadside Suspended Stripline Coupler Design. IEEE Transactions on Magnetics,1995,31(3):634-1637
    [71]I. J. Bahl, Prakash Bhartia.Characteristics of Inhomogeneous Broadside-Coupled Striplines. IEEE Transaction on Microwave Theory and Techniques,1980, MTT-28(6): 529-535
    [72]K. Sachse. The scattering parameters and directional coupler analysis of characteristically terminated asymmetric coupled transmission lines in an inhomogeneous medium. IEEE Trans Microwave Theory Tech,1990,38:417-425
    [73]S. Al-Taei, P. Lane, and G. Passiopoulos, Design of high directivity directional couplers in multilayer ceramic technologies, IEEE MTT-S Int Microwave Symp Dig, Phoenix, AZ, 2001:51-54
    [74]Krzysztof Wincza and Slawomir Gruszczynski. Method for The Design of Lowloss Suspended Stripline Directional Couplers with Equalized Inductive and Capacitive Coupling Coefficients. Microwave and Optical Technology Letters,2009,51(2):315-319
    [75]Yukihiro Tahara, Hideyuki Oh-Hashi, Kazuyuki Totani, Moriyasu Miyazaki, Sei-ichi Saito, and Osami Ishida. A Low-Loss Serial Power Combiner Using Novel Suspended Stripline Couplers. IEICE Ttans. Electron.,2005, E88-C(1):15-19
    [76]Warren L.Stutzman and Gary A. Thiele.天线理论与设计.人民邮电出版社,2006.
    [77]Manchec A., Bairavasubramanian R., Quendo C., Pinel S., Rius E., Person C., Favennec J.F., Papapolymerou J., Laskar J.. High rejection planar diplexer on liquid crystal polymer substrates using oversizing techniques. European Microwave Conference, 2005,1:101-104
    [78]Manchec A., Rius E., Quendo C., Person C., Favennec J.F., Moroni P., Cayrou J.C. and Cazaux J.L.. Ku-band microstrip diplexer based on dual behavior resonator filter. IEEE MTT-S International Microwave Symposium Digest,2005:525-528
    [79]Singh K., Ngachenchaiah K., Bhatnagar D., Pal S.. Notch implemented dual behavior resonator filter and diplexer at Ku-band. Microwave Journal, Euro-Global Edition,2010, 53:206-216
    [80]Quendo C., Rius E. and Person C.. Narrow bandpass filters using dual-behavior resonators. IEEE Trans. Microw. Theory Tech.,2003,51 (3):734-743
    [81]Quendo C., Rius E. and Person C.. Narrow bandpass filters using dual-behavior resonators based on stepped-impedance stubs and different-length stubs. IEEE Trans. Microw. Theory Tech.,2004,52 (3):1034-1044
    [82]Jong-Sik Lim, Chul-Soo Kim, and Dal Ahn,. Design of Low-Pass Filters Using Defected Ground Structure. IEEE Transactions on Microwave Theory and Techniques.2005: 2539-2545
    [83]杨瑾屏,吴文.新型DGS准椭圆低通滤波器的研究.电子学报,2008,36(2):235-238
    [84]Q. Xue, Y. F. Liu, K. M. Shum, and C. H. Chan. A Study of compact microstrip resonant cells with applications in active circuits. Microwave and optical technology letters.2003: 158-162
    [85]Yum T.Y., Xue Q. and Chan C. H.. Novel subharmonically pumped mixer incorporating dual-band stub and in-line SCMRC. IEEE Trans. Microw. Theory Tech.,2003,51: 2538-2547
    [86]H.W. Liu and W.M. Li. Miniaturised microstrip bandpass filter using octagonal hairpin resonators with side-coupled technique. Electronics Letters,2008,44(24):1410-1411
    [87]K. Ma, K.S. Yeo, J. Ma, et al.. An ultra-compact hairpin band pass filter with additional zero points. IEEE Microwave and Wireless Components Letters,2007,17(4):262-264
    [88]Q.X. Chu and H. Wang. A compact open-loop filter with mixed electric and magnetic coupling. IEEE Transactions on Microwave Theory and Techniques,2008,56(2): 431-439
    [89]J.L. Li, J.X. Chen, W. Shao, et al.. Miniaturised microstrip bandpass filter using stepped impedance ring resonators. Electronics Letters,2004,40(22):1420-1421
    [90]C.H. Liang, C.H. Chen, and C.Y. Chang. Fabrication-tolerant microstrip quarter-wave stepped-impedance resonator filter. IEEE Transactions on Microwave Theory and Techniques,2009,57(5):1163-1172
    [91]S.C. Lin, Y.S. Lin, and C.H. Chen. Miniaturized microstrip interlocked-coupled bandpass filters using folded quarter-wavelength resonators. Proceedings of Asia-Pacific Microwave Conference, Yokohama, Japan, Dec.2006:1427-1430
    [92]C.H. Liang, W.S. Chang, and C.Y. Chang. Compact microstrip bandpass filters using miniaturized quarter-wavelength resonators. Proceedings of Asia-Pacific Microwave Conference, Yokohama, Japan, Dec.2010:263-266
    [93]T. Yang, R. Xu, L. Xia, and Y. Guo. A novel compact microstrip bandpass filter using folded stepped impedance resonators. Microwave and Optical Technology Letters,2008, 50(7):1864-1867
    [94]M. Makimoto and S. Yamashita. Microwave Resonator and Filters for Wireless Communication:Theory, Design, and Application. Kawasaki 214, Japan, Matsushita Research Institute Tokyo, Inc.,2000:11-16
    [95]J. S. Hong and M.J. Lancaster. Microstrip Filter for RF/Microwave Applications. New York, John Wiley & Sons, Inc.,2001:235-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700