高功率微波器件和电路的电磁兼容研究和设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术的迅速发展,微波器件在微波通信、微波导航、制导、遥测遥控、卫星通信以及军事电子对抗领域的需求不断增大。特别是由于无线电通信频率资源的日益紧张,分配到各类通信系统的频率间隔越来越密、应用频率越来越高、频带越来越宽,必然对微波设备的结构设计和实现提出了空前严酷的要求,例如,现代微波、毫米波收发机就对前端无源器件的性能指标提出了更高的降低衰减和抑制各种干扰信号影响的要求。
     现在,微波电路的小型化、轻型化、高功率化和电磁兼容研究及设计技术已经发展成为一个非常重要的研究方向。研制大功率、高性能、小体积的微波无源和有源器件,高标准地进行电磁兼容性设计,提高器件和系统的稳定性和可靠性是目前微波、毫米波通信领域迫切需要的关键技术之一
     论文重点研究了大功率微波器件微波功率模块和微波炉磁控管的电磁兼容性设计,带阻滤波器、微带天线微型化设计。论文首先基于电磁场与微波技术原理,深入地分析了微波功率模块的工作原理、结构和性能设计,然后对其稳定性提出了解决方案并进行了开关电源等主要部件的电磁兼容性设计和研究。对连续波磁控管内的电磁特性进行了静态和动态仿真研究,提出微波炉用磁控管谐波抑制方案。根据电磁场与微波技术中的天线理论和滤波器理论,研究设计了应用于宽带通信的微带缝隙天线,针对微波电路的电磁兼容要求,研究设计了抑制宽带通信中的二次谐波和三次谐波的带阻滤波器。
     本文的创新工作包括以下内容:
     1.深入分析了微波功率模块的电磁辐射产生的原因和微波功率模块用开关电源的工作原理和特性,在此基础上,对其开关电源电路进行了电磁兼容性研究,并提出了开关电源改进型的滤波电路和微波功率模块电磁兼容解决方案。
     2.基于微波炉欧洲标准,为解决当前微波炉用连续波磁控管所面临的EMI问题,采用大型电磁PIC模拟软件,通过模拟工作条件下磁控管中高频场与电子互作用过程,仿真研究了微波炉用2.45GHz连续波磁控管的输出功率、频谱等动态特性,并对改善磁控管EMI性能进行了初步尝试。
     3.根据缺陷接地结构(DGS)的带阻特性,结合微带线结构的特点,在研究设计哑铃型、螺旋型、T型DGS滤波器的基础上,重点研究和设计了一种新颖的、小体积的非对称T型DGS双频带阻滤波器,将多个单元级联,设计了一种阻带抑制深、尺寸小的带阻滤波器。制作了滤波器实物并进行了实验测试,测试结果与仿真结果吻合较好,该滤波器可以成功抑制蓝牙频段的二次和三次谐波,减少对系统及环境的干扰和辐射。
     4.研究设计了两款新颖的、结构紧凑的微带天线,优化了天线整体尺寸、缝隙的长度、宽度及天线馈电点,得到了工作在蓝牙频段、带宽较宽、阻抗匹配良好、辐射效率较高的两款微带蝶形缝隙天线,实测结果和仿真结果吻合很好。同时,研究结果表明,天线馈电点对天线中心频率的微调特性给天线的实际制作提供了较好的调试性能。
With the rapid development of microwave technology, the need for microwave devices in the areas of microwave communications, microwave navigation, guidance, remote control, satellite communications and military electronic warfare continues to grow. The more strained radio communication frequency resources, denser frequency intervals for various communication systems, higher communication frequencies and wider frequency band raise unprecedented rigorous requirements for the structure design and implementation of microwave devices, e.g., modern microwave and millimeter-wave transceivers raise higher requirements for front-end passive components in the aspects of reduction of attenuation and suppression of various interference signals.
     Now, miniature, light-duty and high power microwave circuits and their electromagnetic compatibility research and design has become quite an important research aspect. Developing high-power, high-performance, small-size microwave passive and active components, implementing high-standard electromagnetic compatibility design as well as improving the stability and reliability of the components and system is one of the key technologies that is urgently needed in the area of microwave and millimeter-wave communications.
     This paper focuses on two areas, one is the electromagnetic compatibility design for high-power microwave devices including microwave power module (MPM) and microwave oven magnetron, the other is the miniaturization for microstrip filters and antennas. Based on the principles of electromagnetic fields and microwave technology, this paper firstly analyzed the principle, structure and performance design of MPM in depth, and then proposed a solution to its stability and implemented electromagnetic compatibility research and design for its main components such as switching power supply. This paper also implemented simulation on electromagnetic properties of continuous-wave magnetron and provided a solution to suppress the harmonics in microwave oven magnetron. Besides these, based on the antenna and filter theories, this paper involved microstrip slot patch antennas design which are suitable for broadband communications and band elimination filter design that could suppress the second and third harmonics in broadband communications in accordance with the electromagnetic compatibility requirements for microwave circuits.
     The innovative work in this paper includes:
     1. This paper analyzed the causes of electromagnetic radiation of microwave power module as well as principles and properties of switching power supply used in MPM. Based these, this paper implemented electromagnetic compatibility research on the switching power supply circuits and proposed electromagnetic compatibility solution for MPM and filter circuit of amelioration for switching power supply of MPM.
     2. In order to solve the EMI problems met by continuous-wave magnetron that current microwave oven uses, according to the European microwave oven standards, this paper used a large-scale electromagnetic PIC simulation software to research the dynamic characteristics of continuous-wave magnetron such as output power and spectrum at 2.450GHz by simulating the interaction processes between its high-frequency fields and electron under working conditions, and then proposed improved anti-EMI measures for continuous-wave magnetron.
     3. According to the band-elimination characteristics of detected ground structure (DGS) and characteristics of microstrip structure, this paper researched and developed a novel, small-size and non-symmetrical T-type DGS dual-band band elimination filter on the basis of dumbbell-shaped, Spiral-shaped, T-shaped DGS filters. The novel filter cascaded multiple units and had the advantages of deep stop-band rejection and small size. This filter was produced and tested, and the measurement results agreed well with the simulation results. Furthermore, this filter could successfully suppress the second and third harmonics in the Bluetooth frequency band, and reduce the interference and radiation to the system and environment.
     4. This paper researched and designed two novel and compact microstrip antennas, optimized the overall size, gap length, width and feed points. These two microstrip bow-tie slot antennas, which work in the Bluetooth frequency band, had the advantages of wide bandwidth, well-matching for impedance, high radiation efficiency. Measurement results and simulation results were in good agreement. Additionally, the results showed that the feed points could tune the antenna's center frequency subtly, which could provide good debugging performance in the antenna's actual production.
引文
[1]Smith C R. Power module technology for the 21st century, Proceeding of the IEEE 1995 National Aerospace and Electronics Conference,1995; (1):p106-113
    [2]A. Brees, G Dohler, et al., Microwave power module (MPM) development and results, in Tech. Dig. Int. Electron Devices Meeting,1993, pp145-148
    [3]C. Smith, C. Armstrong, J. Duthie, The Microwave Power Module:A Versatile Building Block for High-Power Transmitters, Proc. IEEE, v.87, March 1999, p717-737
    [4]A. Perle, et.al, A 1 kW Microwave Power Module for Pulsed Radar, Vacuum Electronics Conference,2006 held Jointly with 2006 IEEE International Vacuum Electron Sources., IEEE International,2006, p177-178
    [5]Carter M Armstrong, Advances in Microwave Power Modules, International Conference on Microwave and Millimeter Wave Technology Proceedings,2003, p5-1
    [6]V.O.Heinen,K.E.Kreischer, Vacuum Electronics Development at Northrop Grumman, International Conference on Microwave and Millimeter Wave Technology Proceedings,2004, p293-294
    [7]T.A.Hargreaves,C.M.Armstrong, Ku-Band MPM Booster Helix TWT Design and Validation, International Conference on Microwave and Millimeter Wave Technology Proceedings,2003, P5-1
    [8]Ramon duggal, Adrian Donald,Tom Schoemehl, Technological Evolution of the Microwave Power Module (MPM), Vacuum Electronics Conference,2009. IVEC'09. IEEE International, IEEE,2009, P353-354
    [9]C. Marchewka, C. Wan, J. Taylor,et al. Recent Results on a 26-40 GHz Ka-band MPM, Vacuum Electronics Conference,2007. IVEC'07. IEEE International,2007, P1-2
    [10]T. A. Hargreaves, C. M. Armstrong, R. B. True, R. et al., Ku-Band MPM Booster Helix TWT Design and Validation, Vacuum Electronics Conference,2004. IVEC 2004. Fifth IEEE International,2004, P29-294
    [11]Boone, Ph.; Fournier, J,et al., Advanced Flexible Ku Band MPM, Vacuum Electronics Conference,2009. IVEC'09. IEEE International,2009, P209-210
    [12]Sharma, R.K.; Sharma, S.M, et al., Design and Development of Electron Gun and PPM focusing for Vacuum Power Booster TWT of Broadband MPM, Vacuum Electronics Conference, 2006 held Jointly with 2006 IEEE International Vacuum Electron Sources.,2006, P155-156
    [13]Trani, P.; Antoine, P., MPM for Radar, Data link and ECM systems, Vacuum Electronics Conference,2007. IVEC'07. IEEE International,2007, p1-2
    [14]李建兵,师宇杰等,一种新型功率模块及其应用,电子技术应用,2005年第11期,p43-44
    [15]李文,陈银杏等,微波功率模块中高效率灯丝电源的设计,电子器件2006年第4期,p1085-1089
    [16]何鹏军等,高功率发射机的通用组合微波功率模块,航空电子技术,2005年第2期,p42-45
    [17]苏光杰,微波功率模块MPM的固态驱动模块技术研究,中国优秀硕士学位论文全文数据库,2004
    [18]俞泉,微波、毫米波功率模块固态放大驱动技术研究,中国优秀硕士学位论文全文数据库,2006
    [19]廖燕.MPM用小型化行波管的研究和设计,中国优秀硕士学位论文全文数据库,2005
    [20]陈高鹏,陈晓娟,刘新宇,李滨,Ku波段30W脉冲微波功率放大器模块,半导体学报,2008,29(11)p:2281-2285
    [21]赵夕彬,关富民,S波段30W微波脉冲功率放大器模块设计,半导体技术,32(10),2007,p875-877
    [22]王广州,基于LCC谐振倍压变换器的MPM高压电源技术研究,[硕士学位论文],信息工程大学,2006
    [23]俞泉,微波-毫米波功率模块固态放大驱动技术研究,成都,电子科技大学,2006
    [24]张耀,何鹏军,微波功率模块中脉冲调制器的设计,火控雷达技术,39(2),2008,P73-76
    25]水冰,混合型有源滤波器在开关电源中的应用,西安航空技术高等专科学校学报,27(3),2009,p9-20
    [26]陶陈彬,开关电源共模EMI抑制技术研究, [硕士学位论文],2008:天津,天津大学
    [27]王金霞,杨庆江,王金风,开关电源EMI滤波器的设计,煤炭技术,2009,28(5)p33-35
    [28]梁安平,开关电源抗电磁干扰的研究与分析,电气开关,2009,No.1,p13-15
    [29]袁义生,钱照明,功率变换器电磁干扰的建模:[博士学位论文],杭州;浙江大学,2002
    [30]DaiNing, Lee F C,Characterization and Analysis of Parasitic Parameters and Their Effects in Power Electronics Circuit.IEEE PESC,1996, p1370-1375
    [31]周宏,黄盛霖,王晓伟,开关电源的电磁兼容分析及改进,舰船电子对抗,28(2),2005
    [32]袁义生,钱照明,功率变换器动态节点电位平衡共模EMI抑制技术,浙江大学学报(工学版),2003,37(1),p108-111
    [33]Chung H,Hui S Y R,Tse K K.Reduction of power converter EMI emission using soft-switching technique, IEEE Trans.on EMC,1998,40(3),p282-288
    [34]Shao J,Lin R L,Lee F C,et al, Characterization of EMI performance for hard and soft-switched inverter, In:Proc.of IEEE APEC'00,2000,p1009-1014
    [35]钱照明,袁义生,开关电源EMC设计研究现状及发展(上).电子产品世界,(7),2003年4月:p51-53
    [36]钱照明,袁义生,开关电源EMC设计研究现状及发展(下).电子产品世界,(8),2003年4月,p69-71
    [37]超高频电子学引论,柯瓦连科著,吴鸿适译,1959年,科学出版社
    [38]谢文楷,王彬,高昕艳,百年电子学,真空电子技术,2004,第6期,p1-7
    [39]廖复疆,面向21世纪的大功率微波电真空器件[C],真空器件技术发展战略研讨会,北京,2002:p1-4
    [40]Tomohiko Mitani, Naoki Shinohara, et al.,Noise-Reduction Effects of Oven Magnetron WithCathode Shield on High-Voltage Input Side, IEEE TRANSACTIONS ON ELECTRON DEVICES,53(8) 2006,p1929-1935
    [41]Jung-Il Kim, Jong-Hyo Won, Hyun-Jun Ha, Three-Dimensional Particle-in-Cell Simulation of 10-Vane Strapped Magnetron Oscillator, IEEE Transactions On Plasma Science,32(5),2004, p2099-2103
    [42]V. Bogdan Neculaes, Ronald M. Gilgenbach, et al., Low-Noise Microwave Oven Magnetrons With Fast Start-Oscillation by Azimuthally Varying Axial Magnetic Fields, IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL.32, NO.3, JUNE 2004, p1152-1158
    [43]B.M Hasanien, Khairy F.A. Sayed, Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply, IEEE, Power System Conference,2008. MEPCON 2008.12th International Middle-East,2008, P464-469
    [44]杨先玮,谢扩军,沈金亮,彭科,连续波磁控管天线帽打火研究,材料导报,2007,21(11A)p62-164
    [45]吴群,林志安,磁控管谐振系统计算机仿真研究,哈尔滨工业大学学报,2000,32(3),P33-36
    [46]高亚东,陈彦,雷文强,优化极靴的微波炉磁控管磁场分析,真空电子技术,2006年,第6期
    [47]杨金华,祝大军,刘盛纲,一款低成本、高效率微波炉磁控管的仿真和研制,真空电子技术,2005年,第6期
    [48]陈彦,杨中海,雷文强,径向非均匀磁场下的磁控管工作性能模拟,强激光与粒子束,2005,17(19),p1409-1412
    [49]谢敏,微波炉用磁控管鼠笼式阴极研究,[硕士学位论文],电子科技大学,成都,2008
    [50]王彩育,威特2M217磁控管低成本优化设计,[硕士学位论文],电子科技大学,成都,2006
    [51]J.I.Park,C.S.Kim,J.Kim,et al.Modeling of a photonic bandgap and its application for the low-pass filter design,in Asia-Pacific Microwave Conf., Singapore,1999,2:331-334
    [52]Dal A.,Park,J.S.,Kim,C.S.,et al.A design of the low-pass filter using the novel microstrip defected ground structure,IEEE Trans.on Microwave Theory and Tech.,2001,49(1):86-93
    [53]Chul-Soo Kim, Jun-Seok Park, Dal Ahn, et al. A novel 1-D periodic defected ground structure for planar circuits [J]. IEEE microwave and guided wave letters,2000,10(4):131~133
    [54]Ahn D., Park J.S., Kim C.S., et al. A design of the low-pass filter using the novel microstrip defected ground structure[J]. IEEE Transactions on Microwave Theory and Techniques, Jan., 2001,49(1):86-93
    [55]Lim Jong-Sik, Kim Chul-Soo, Lee Young-Taek, Ahn, et al. A New Type of Low Pass Filter With Defected Ground Structure[C].3-nd European Microwave Conference, Oct.,2002 pp.1~4
    [56]Jun-Seok Park, Jae-Ho Kim, Jong-Hun Lee, et al. A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter[C]. IEEE MTT-S International Microwave Symposium Digest, Vol.1, June, 2002, pp.417~420
    [57]Jong-Sik Lim, Chul-Soo Kim, Ahn D., et al. Design of Low-Pass Filters Using Defected Ground Structure[J]. IEEE Transactions on Microwave Theory and Techniques, Aug.,2005, 53(8):2539~2545
    [58]Xiao Yongxuan, Su Donglin, Liu Shen. A Novel Compact Defected Ground Structure with Cross-Finger Gap[C].International Symposium on Electromagnetic Compatibility, Oct.,2007, pp.358-360
    [59]Mandal M.K., Sanyal S. A novel defected ground structure for planar circuits[J]. Microwave and Wireless Components Letters, IEEE, Feb.,2006,16(2):93~95
    [60]Han-Jan Chen, Tsung-Hui Huang, Chin-Sheng Chang, et al. A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters[J]. IEEE microwave and wireless components letters, 2006,16(5):252~254
    [61]Chul-Soo Kim, Jong-Sik Lim, Sangwook Nam, et al. Equivalent circuit modelling of spiral defected ground structure for microstrip line[J]. Electronics Letters, Sep, 2002,38(19):1109~1110
    [62]Chul-Soo Kim, Jong-Sik Lim, Sangwook Nam, et al. The equivalent circuit modeling of defected ground structure with spiral shape [C].2002 IEEE MTT-S International Microwave Symposium Digest, Volume 3, June,2002, pp.2125~2128
    [63]Jia-Sheng Hong, Karyamapudi B.M. A general circuit model for defected ground structures in planar transmission lines[J]. Microwave and Wireless Components Letters, IEEE, Oct.,2005, 15(10):706~708
    [64]Jinping Yang, Wen Wu. Compact Elliptic-Function Low-Pass Filter Using Defected Ground Structure[J]. Microwave and Wireless Components Letters, IEEE, Sept.,2008,18(9):578~580
    [65]Duk-Jae Woo, Taek-Kyung Lee, Jae-Wook Lee, Novel U-Slot and V-Slot DGSs for Bandstop Filter With Improved Q Factor. IEEE Transactions On Microwave Theory And Techniques, 54(6), June 2006,P:2841-2846
    [66]李媛,应莹,丁荣林,一种新型缺陷接地结构及其滤波特性研究,电子测量与仪器学报,21(2),2007,p:44-48
    [67]J. D. Baena, J. Bonache,et al., "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," Ieee Transactions on Microwave Theory and Techniques, vol.53, pp.1451-1461, Apr 2005
    [68]Duk-Jae Woo, Taek-Kyung Lee, "Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS," Microwave Theory and Techniques, IEEE Transactions on Volume 53, Issue 6, Part 2, June 2005 Page(s):2139-2144
    [69]Caloz, T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propag., vol.52, no.5, pp.1159-1166, May 2004
    [70]M. Caiazzo, S. Maci, and N. Engheta, "A metamaterial surface for compact cavity resonators," IEEE Antennas and Wireless Propagation Letters, vol.3, pp.261-264,2004
    [71]宋海,华光,洪伟,一种基于DGS的宽带双极化三角元微带天线,微波学报,21(4),p27-29
    [72]Han-Jan Chen, Tsung-Hui Huang, Chin-Sheng Chang, et al. A compact bandpass filter with enhanced stopband characteristics by an asymmetric cross-shape defected ground structure[J]. IEEE Transactions on Ferroelectrics and Frequency Control, November,2006, 53(11):2183-2187
    [73]Wen-Hua Tu, Kai Chang. Microstrip Elliptic-Function Low-Pass Filters Using Distributed Elements or Slotted Ground Structure[J]. IEEE Transactions on Microwave Theory and Techniques, Oct.,2006,54(10):3786~3792
    [74]Xiao-Hua Wang, Bing-Zhong Wang, Hualiang Zhang, et al. A Tunable Bandstop Resonator Based on a Compact Slotted Ground Structure[J]. IEEE Transactions on Microwave Theory and Techniques, Sept.2007,55(9):191~1918
    [75]王雷,丁荣林,王安国等, 组合式非周期缺陷地结构低通滤波器的分析[J],微波学报,2004,20(3):39~42
    [76]刘海文,李征帆,孙晓玮等,一种新颖的蝴蝶结形缺陷接地结构微带线[J],红外与毫米波学报,2004,23(6):431~435
    [77]曹锐,孙振鹏,DGS结构特性分析及其改善微波放大器谐波[J].合肥工业大学学报.2006年11月,29(11):1380~1383
    [78]杨瑾屏,吴文,新型DGS准椭圆低通滤波器的研究[J],电子学报,2008年2月,36(2):235~238
    [79]杨瑾屏,吴文,SP-DGS等效电路模型及其在微波电路中的应用[J],西安电子科技大学学报,2007年12月,34(6):1007~1010
    [80]陈俊,缺陷地面结构滤波器和薄膜声体波谐振器滤波器研究,[硕士论文],西安电子科技大学,2008
    [81]毛曹珏,缺陷接地结构特性分析及在微波电路中的研究,硕士论文,北京邮电大学,2008
    [82]翁丽鸿,郭玉春,史小卫,缺陷地面结构最新研究进展,微波学报,24(增刊),2008,p226-232
    [83]G.A. Deschamps, Microstrip microwave antennas, paper presented at the third USAF symposium on antennas,1953
    [84]Richards, W.; Yuen Lo; Harrison, D, An improved theory for microstrip antennas and applications, Antennas and Propagation, IEEE Transactions on,29(1),1981 P:38-46
    [87]Richards, W.F.; Lo, Y.T.; Harrison; D.D.; Improved theory for microstrip antennas, Electronics Letters,15(1) 1979, P:42-44
    [86]Bahl, I.J.; Bhartia, P., Design Considerations in Microstrip Antenna Fabrication, European Microwave Conference,1980, P:122-126
    [87]Lo, Y.; Solomon, D.; Richards, W., Theory and experiment on microstrip antennas, Antennas and Propagation, IEEE Transactions on,27(2),1979,P:137-145
    [88]H. G. Booker, "Slot aerials and their relation to complementary wire aerials," in Proc. Inst. Elect. Eng., Apr.1946, vol.90-4, pp.620-629
    [89]Y. Yoshimura, "A microstrip line slot antenna," IEEE Trans. Microwave Theory Tech. MTT-20(11),760-762 (1972)
    [90]丛国进,微带缝隙天线的发展现状,技术在线,18(2009)p114-115
    [91]吕英华,计算电磁学的数值方法,清华大学出版社,2006
    [92]Rakluea P,Anatrasirichai N.A dual Band Right Angle Microstrip Slot Antenna [2]Latif S I,Shafai L.Wideband and Reduced Size Microstrip Slot Antennas for Wireless Application[J]. IEEE,2004:1959-1962
    [93]Latif S I,Shafai L.Wideband and Reduced Size Microstrip Slot Antennas for Wireless Application[J].,IEEE,2004:1959-1962
    [94]Kim S,Wang Y E.A Compact Microstrip Slot Antenna Array for Digital Beam forming and MIMO Application[J],IEEE,2004:423-426
    [95]汪伟,钟顺时,梁仙灵,X形微带缝隙天线[J],上海大学学报,自然科学版,2005(11)
    [96]Lui W J,Cheng C H,Cheng Y,Zhu H.Frequency notched Ultra-wideband microstrip slot antenna with fractal tuning stub[J].Electronics Letters,2005,41(6)
    [97]顾长青,韩国栋,Hilbert缝隙天线的频率可重构设计[J],南京航空航天大学学报,2006(12)
    [98]吕文俊,程勇,程文虎,朱洪波,一种新型多频缝隙微带天线的设计[J],电波科学学 报,2006,21(2)
    [99]高向军,王光明,张晨新,一种宽带圆形缝隙天线的设计[J].空军工程大学学报,自然科学版,2005,6(6)
    [100]张俊文,钟顺时,V形微带缝隙天线[J],微波学报,2007,23(2)
    [101]韩宇南,吕英华,周磊,张金玲,用于人体中心无线网络的平面倒F天线仿真,滨州学院学报,第22卷,,第6期,2006年12月,p26-29
    [102]韩宇南,吕英华,张金玲,张洪欣,蓝牙平面倒F天线辐射对人体比吸收率仿真[J],电波科学学报,第23卷,第2期,2008年4月,p360-364
    [103]付光,郑会利,一种用于移动卫星通信的新型多功能微带天线[J],西安电子科技大学学报,1997,24(3):p438-441
    [104]王新新,小型宽带微带天线的应用与设计[J],科技信息,2007,(6),p68-69
    [105]Hassan Ghannoum, "Small-size UWB planar antenna and its behaviour in wban/wpan applications",20-20 April 2006, p 221-225
    [106]X. Guo, M.Y.W. Chia, and Z.N. Chen, Miniature built-in multiband antennas for mobile handsets, IEEE Trans Antennas Propag 52 (2004), p1936-1944
    [107]P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, Design of an internal quad-band antenna for mobile phones, IEEE Microwave Wireless Compon Lett 14 (2004), p148-150
    [108]HUANG BiaoYAN Guo-zhengLI Qian-ru, Investigation of a Novel Compact Microstrip Antenna for Radiotelemetry Capsules Based on FDTD, JOURNAL OF DONGHUA UNIVERSITY,200724(4)
    [109]唐侃,杨正君,移动通信新技术[J],现代通信,2001,(12):127-1301,p6
    [1]廖复疆,大功率微波真空电子学技术进展,《电子学报》,2006年第3期,P513-516
    [2]A. Perle, et.al, A 1 kW Microwave Power Module for Pulsed Radar, Vacuum Electronics Conference,2006 held Jointly with 2006 IEEE International Vacuum Electron Sources., IEEE I nternational,P177-178
    [3]Stolz, R. et al, Advances in manufacturing of helix traveling wave tubes, Vacuum Electronics Conference,2000
    [4]P. C. Ballagh, Microwave power modules:now and in the future, Vacuum Electronics Conference, 2000
    [5]Ji Han Joo, Jin Joo Choi,Characterization of a low-noise linearized microwave power amplifier module, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.52, NO.5, MAY 2005
    [6]Carter M Armstrong, Advances in Microwave Power Modules, International Conference on Microwave and Millimeter Wave Technology Proceedings(2003),P.5-1
    [7]V.O.Heinen,K.E.Kreischer, Vacuum Electronics Development at Northrop Grumman, International Conference on Microwave and Millimeter Wave Technology Proceedings(2004),P.293-p.294
    [8]T.A.Hargreaves,C.M.Armstrong, Ku-Band MPM Booster Helix TWT Design and Validation, International Conference on Microwave and Millimeter Wave Technology Proceedings(2003),P.5-1
    [9]李建兵,师宇杰等,一种新型功率模块及其应用,电子技术应用,2005年第11期
    [10]李文,陈银杏等,微波功率模块中高效率灯丝电源的设计,电子器件2006年第4期
    [11]何鹏军等,高功率发射机的通用组合微波功率模块,航空电子技术,2005年第2期
    [12]苏光杰,微波功率模块MPM的固态驱动模块技术研究,中国优秀硕士学位论文全文数据库,2004
    [13]俞泉,微波、毫米波功率模块固态放大驱动技术研究,中国优秀硕士学位论文全文数据库,2006
    [14]廖燕, MPM用小型化行波管的研究和设计,中国优秀硕士学位论文全文数据库,2005
    [15]Kye Yak See, et al, Measurement of Noise Source Impedance of SMPS Using a Two Probes Approach, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.19, NO.3, MAY 2004
    [16]Shuo Wang et al,, Developing Parasitic Cancellation Technologies toImprove EMI Filter Performance for Switching Mode Power Supplies, IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL.47, NO.4, NOVEMBER 2005
    [17]茹东生等,开关电源传导性电磁干扰共模噪声的研究,微电子学与计算机,2006年第11期
    [18]杨光,高频开关电源的EMI建模与仿真研究,硕士学位论文,北京邮电大学,2008年
    [19]张金玲等,MPM热设计与电磁兼容设计,中国电子学会真空电子学分会第十五届学术年会暨军用微波管研讨会论文集。2005年9月,昆明,P.517-520
    [20]张金玲,杨金生,微波功率模块电磁兼容性设计关键问题分析,真空电子技术,2006年第3期
    [21]张金玲,吕英华等,微波功率模块可靠性设计全国电磁兼容学术会议论文集2006
    [22]zhang jin-ling, LU Ying-hua et al, Electromagnetic Capability Design of the High-Voltage Switch Electronic Power Conditioner in the Microwave Power Module, proceedings of Asia-Pscific Conference on Environmental electromagnetics. Dalian, China,(2006) 816-819
    [23]杨任基,师宇杰,周东方, 基于微波功率模块EPC系统的EMC研究,信息工程大学学报2005年第2期
    [24]ZHANG Jin ling, Lv Ying Hua, YANG Biao, etal., Stability Design of the Microwave Power Module,2008 Asia-Pacific Sympsoium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility,19-22 May 2008, Singapore, p776-769
    [25]Zhang, Jinling Lu Yinghua, Yang Biao etal., Thermal Design and Electromagnetic Capability Design of the Microwave Power Module,Progress In Electromagnetics Research Symposium, Cambridge, USA, July 2-6,2008
    [26]钱照明,袁义生,开关电源EMC设计研究现状及发展.电子产品世界,2003年4月,P.51-58
    [27]吴昕,钱照明,庞敏熙,开关电源印刷电路板电磁兼容问题的研究.电子与信息学报.2001年2月,第2期,P.181-186
    [28]孟进,马伟明等,开关电源变换器传导干扰分析及建模方法,中国电机工程学报,2005年第5期,P.49-54
    [29]E.Laboure, et al, "Accurate Simulation of Conducted Interference in Isolated DC to DC Converters Regarding to EMI Standards", Proc. of IEEE PESC'96,1996, pp.1973-1978
    [30]Philip F.Okyere, et al, "Computer Aided Analysis and Reduction of Conducted EMI in Switched Mode Power Converter", Proc. of IEEE APEC'98,1998, p.924-928
    [31]W.Zhang, et al, "Conducted EMI Analysis of a Boost PFC Circuit", Proc. of IEEE APEC'97,1997, p.223-239
    [32]路宏敏,傅君眉等,互连设备的高频传导干扰分析,西安交通大学学报,2000年12月,P11-14
    [33]区键昌,林守霖,吕英华,电子设备的电磁兼容性设计,北京:电子工业出版社,2003
    [34]刘洪利,S波段固态功率放大器的研究[学位论文],电子科技大学,2006
    [35]N.J.Diorme, Hamonic generation in octave bandwidth traveling-wavetubes. IEE Trans.ED., Vol.17, No.4,1970, P365-372
    [36]A.J.Sangster, Traveling-wave interaction in struectures with nonzero impedance at Harmonics of the drive frequency MOGA, Sept 1996:125-130
    [37]朱兆君,MPM用小型行波管CAD研究,[学位论文],电子科技大学,2007
    [38]唐康淞,赵刚,李实,阴和俊,螺旋线行波管非线性失真分析,真空科学与技术学报,第29卷第2期,2009,p204-208
    [39]殷瑞剑,刘濮鲲,杜朝海,Ka波段二次谐波损耗波导回旋行波管非线性分析,强激光与粒子束,Vol.21,No.3,2009,p391-394
    [40]陈亚非,一种应用于雷达系统的高压大功率电源的研制与PSPICE仿真,[学位论文],山东济南,山东大学,2006
    [41]李鹏,何文忠,开关电源电磁干扰滤波器设计,激光与红外,第37卷第1期,2007,1:79-81
    [42]张逸成,韦华,朱学军等,开关电源输入滤波器的阻抗匹配,低压电源.2006.12
    [43]周志敏,开关电源实用技术.人民邮电出版社.2003
    [44]原田耕介,开关电源手册,第2版,机械工业出版社,2004
    [45]Ron Lenk,王正仕等译,Practical Design of Power Supplies,人民邮电出版社,2005
    [46]曲学基,王增福,曲敬铠等,新编高频开关稳压电源.电子工业出版社.2005:140-418
    [1]磁控管设计手册编写小组.磁控管设计手册.北京:国防工业出版社,1979
    [2]Hatfieldm C,Bakej C,Brown W C.Use of magnetron as a high gain,Phase locked amplifier in an electronically phased array for wireless power transmission.Proceedings of the 1998 IEEE International, Vol.l:132-138
    [3]Saloomj A.Past,present,and future of crossed field devices.A personal view.Proceedings of the First International Workshop on Crossed Field Devices Michigan State University,1995,42(2):8-16
    [4]吴群.磁控管谐振系统计算机仿真研究.哈尔滨:哈尔滨工业大学报,2000,97(53):33-36
    [5]Feng J,Cater R,Liao F.Simulation of a long anode magnetron resonant system using MAFIA.Proceedings of the 1998 International Conference on Microwave and Millimeter Wave Technology, Vol.2:24-30
    [6]Dombrowski G E.Recent advances in simulation of magnetrons and crossed field amplifiers.Proceedings of the First International Workshop on Crossed Field Devices.Ann Arbor:Michigan State University,1995,65-73
    [7]Dwivedi H K,Venkateswarlu D S.Thermal design considerations for fast warm up cathodes in MM wave magnetrons.IEEE Transactions on Electronics Devices,1996,43-54
    [8]D. L. McDowell. Magnetron Simulations Using a Moving Wavelength Computer Code. IEEE Trans. Plasma Sci. vol.26,1998
    [9]超高频电子学引论,柯瓦连科著,吴鸿适译,1959年,科学出版社
    [10]磁控管设计手册,电子管设计手册编辑委员会编,1979年,国防工业出版社
    [1]P. Maagt, R. Gonzalo,Y.Vardaxoglou, et al., Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications, IEEE Trans. on Antennas and Propagation, 2003,51(10):2667-2677
    [2]T.Itoh and F.J.Hsu, Distributed bragg reflector gunn oscillators for dielectric millimeter wave integrated circuits, IEEE Trans. on Microwave Theory and Techniques,1979,27(5):514-518
    [3]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physics Review.Lett.,1987,58(20):2059-2062
    [4]S. John, Strong localization of photo in certain disordered dielectric super lattices, Physics Review.Lett.1987,58(23):2486-2489
    [5]A. Oliner, Periodic structures and photonic band-gap terminology:historical perspectives, in Proc.29th European. Microwave Conf., Munich, Germany,1999,3:295-298
    [6]施晓琼,章文勋,郑龙根,二维介质PBG结构的工程设计[J],电波科学学报,2002,17(5):467-472
    [7]Kim T., Seo C. A Novel Photonic Bandgap Structure for lowpass filter of wide stopband [J]. IEEE Microwave and Guided Wave Letters,2000,10 (1):13-15
    [8]J.I.Park,C.S.Kim,J.Kim,et al. Modeling of a photonic bandgap and its application for the low-pass filter design.in Asia-Pacific Microwave Conf., Singapore,1999,2:331-334
    [9]Dal A.,Park,J.S.,Kim, C.S.,et al. A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans.on Microwave Theory and Tech.,2001,49(1):86-93
    [10]Rubin, B.J.; Bertoni, H.L, Waves Guided by Conductive Strips Above a Periodically Perforated Ground Plane, IEEE TRANSACTIONS ON MfCROWAVE THEORY AND TECHNfQURS, VOL. MTT-31, NO.7, JULY 1983 Jul.1983 Page(s):541-549
    [11]Radisic V, Qian Y, Coccioli R and Itoh T. Novel 2-D photonic bandgap structure for microstrip lines. IEEE Microwave Guide Wave Lett.,Vol.8,1998:69~71
    [12]Ellis T J and Rebeiz GM. M Radisic, microwave tapered slot antennas on micromachined photonic bandgap dielectrics. IEEE MTT-SInt. Microwave Symp. Dig., June 1996:1157~1160
    [13]Sigalas M M, Biswas R and Ho K M, Theoretical study of dipole antennas on photonic-crystal substrate. Microwave Opt. Technol. Lett., Vol.13,1996:205~209
    [14]Kesler M P, Maloney J G and Shirley B L. Antennas design with the use of photonic bandgap material as all dielectric planar reflectors. Microwave Opt. Technol. Lett., Vol.11, No.4,1996: 169~174
    [15]Yablonovitch E. Photonic band-gap structure. J. Op tical. Soc. Amer. B, Opt. Phys., Vol.10.1993: 283~295
    [16]Qian Y, Yang F R and Itoh T., Characteristics of microstrip lines on a uniplanar compact PBG ground p lane. Asia-Pacific Microwave Conf. Dig, Dec.1998:589-592
    [17]Qian Y and Itoh T. Planar periodic structure for microwave and millimeter wave circuit app lications. IEEE MTT-S Int. Microwave Symp. Dig., June 1999:1533-1536
    [18]Qian Y, Radisic V and Itoh T., Simulation and experiment of photonic bandgap structures for microstrip circuits. Pro. APMC1997:585-588
    [19]Radisic V, Qian Y and Itoh T., Broadband power amplifier using dielectric photonic bandgap structure. IEEE Microwave GuideWave Lett., Vol.8,1998:13-14
    [20]Radisic V,Qian Yongxi and Itoh T., Broadband power amplifiter integrated with slot antenna and novel harmonic tuning structure. in IEEE MTT-S Int. Microwave Symp. Dig., June 1998: 1895-1898
    [21]Yang F R,Qian Y, Coccioli R and Itoh T.,A novel low loss slow-wave microstrip structure. IEEE Microstrip Guide Wave, Lett., Vol.8,1998:372-374
    [22]C.S.Kim, J.S.Park, A. Ahn,et al., A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave and Guided Wave Lett.,2000,10(4):131-133
    [23]Jun-Sik Yun,Geun-Young Kim,Jun-Seok Park,et al.,A design of the novel coupled line bandpass filter using defected ground structure, IEEE MTT Symp.,2000,:327-330
    [24]Jong-Silk Lim,Chul-Soo Kim,Jun-Seok Park,et al., Design of lOdB 90 branch line coupler using microstrip line with defected ground structure, Electronics Lett.,2000,36(12):1784-1785
    [25]Jong-Sik Lim; Chul-Soo Kim;et al., Young-Taek Lee; Dal Ahn; Sangwook Nam, Design of lowpass filters using defected ground structure and compensated microstrip line, Electronics Letters, Volume 38(24),2002, P:1357-1358
    [26]J.S Park, J.Yun,and Dal Ahn, A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,IEEE Trans.on Microwave Theory and Techniques,2002,50(9):2037-2043
    [27]Petr Vagner; Miroslav Kasal, Design of Novel Microstrip Low-Pass Filter Using Defected Ground Structure, Microwave and Optical Technology Letters,2008,50(1)
    [28]A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, "Compact bandpass filters using defected ground structure (DGS) coupled resonators," IEEE MTT-S Int. Dig.,2005, pp.1479-1482
    [29]Han-Jan Chen, Tsung-Hui Huang, Chin-Sheng Chang,etal. A Compact Bandpass Filter with Enhanced Stopband Characteristics by an Asymmetric Cross-Shape Defected Ground Structure, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.53(11), november 2006:2183-2187
    [30]Ahmed Boutejdar, Adel Elsherbini* and A. S. Omar, A Compact Microstrip Multi-Layer Lowpass Filter Using Triangle Slots Etched in the Ground Plane, Proceedings of the 36th European Microwave Conference, September 2006, Manchester UK:271-274
    [31]No Jin-Won, Hwang Hee-Yong, A Design of Cascaded CPW Low-PassFilter With Broad Stopband, IEEE Microwave And Wireless Components Letters, Vol.17, No.6, June 2007:427-429
    [32 A. Boutejdar, A. Elsherbini and A. Omar, A New Cross-Head Defected Ground Structure (CDGS) for a Compact Low-pass Filter with a Wide Stop-band Proceedings of the 37th European Microwave Conference
    [33 Wang Xiaoqian, Feng Enxin, A Novel High-Q Band Rejection Filter by Using VSIot Defected Ground Structure, GSMM2008 Proceeding,2008
    [34 Chon Chio Leong, Sio Weng Ting and Kam Weng Tam,,Multi-Spurious Suppression for Microstrip Dual-Mode Bandpass Filter Using Triple U-Shaped Defected Ground Structure,地点 2008 IEEE.:90-92
    [35]C.C. Wong and C.E. Free, DGS pattern with enhanced effective capacitance, ELECTRONICS LETTERS 13th April 2006,Vol.42 No.8
    [36]Sio-Weng Ting, Kam-Weng Tam, R. P. Martins, Senior, Miniaturized Microstrip Lowpass Filter With Wide Stopband Using Double Equilateral U-Shaped Defected Ground Structure, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL.16, NO.5, MAY 2006:240-242
    [37]J-S. Lim, C-S. Kim, Y.-T. Lee, D. Ahn and S. Nam, Vertically periodic defected ground tructure for planar transmission lines Electronics Lecters 18th Julv 2002 Vol.38 No.75:803-804
    [38]Lim, S.Lee,C.Kim,et al.,A 4:1 unequal Wilkinson power divider, IEEE Microwave and Wireless Comp.Lett.,2001,11(3):124-126
    [39]Yuan Yao, and Zhenghe Feng, A Band-Notched Ultra-Wideband 1 to 4 Wilkinson Power Divider Using Symmetric Defected Ground Structure,20071557-1560
    [40]Duk-Jae Woo and Taek-Kyung Lee Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS, IEEE Transactions on Microwave Theory And Techniques, Vol.53, No.6, June 2005:2139-2144
    [41]J.S.Lim,J.S.Park,YT Lee,et al., Application of defected ground structure in reducing the size of amplifiers.IEEE Microwave and Guided Wave Lett.,2002,12(7):261-263
    [42]Jong-Sik Lim,Young-Taek Lee,Jae-Hee Han,et al., A technique for reducing the Size of amplifiers using defected ground structure.IEEE MTT Symp.,2002,2:1153-1156
    [43]Jong-Sik Lim,Young-TaekLee,Chul-Soo Kim,et al.,A method to shorten the size of amplifiers using vertically periodic defected ground structure,32nd European Microwave Conf.,2002:766-769
    [44]Duk-Jae Woo, Jae-Wook Lee, Taek-Kyung Lee, Multi-band Rejection DGS with Improved Slowwave Effect, Proceedings of the 38th European Microwave Conference:Amsterdam, The Netherlands,2008:1342-1345
    [45]Masoud Dahmardeh, Ayaz Ghorbani, Abdolali Abdipour, Active Integrated Antenna Using Photonic Bandgap and Defected Ground Structure:3824-3826
    [46]Y. J. Sung, M. Kim, and Y.-S. Kim, Harmonics Reduction With Defected Ground Structure for a Microstrip Patch Antenna, IEEE Antennas And Wireless Propagation Letters, Vol.2,2003: 111-113
    [47]Jia-Sheng Hong, Bindu M Karyamapudi,A General Circuit Model for Defected Ground Structures in Planar Transmission Lines, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL.15, NO.10, OCTOBER 2005:706-708
    [48]Jong-Uk Kim, Kwi-Soo Kim, Sin-Jae Lee, etal., A New Defected Ground Structure with Islands and Equivalent Circuit Model, APMC2005, Proceedings
    [49]A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, "Compact bandpass filters using defected ground structure (DGS) coupled resonators," IEEE MTT-S Int. Dig.,2005, pp.1479-1482
    [50]J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," Ieee Transactions on Microwave Theory and Techniques, vol.53,2005, p1451-1461
    [51]杨瑾屏,吴文, 新型DGS准椭圆低通滤波器的研究, 电子学报,Vol.36,No.2:235-238
    [52]刘海文,孙晓玮,李征,孙玲玲,周期性缺陷接地结构的微带线,电波科学学报,22(4):675-679
    [53]J. S. Lim, C. S. Kim, J. S. Park, D. Ahn, and S. Nam, "Design of 10 dB 90 branch line coupler using microstrip line with defected ground structure," Electron. Lett.,36 (21),2000, p1784-1785
    [54]L. Zhu, H. Bu, and K. Wu, "Broadband and compact multi-pole microstrip bandpass filters using ground plane aperture technique," Proc.Inst. Elect. Eng., vol.149,2002., p71-77
    [55]Duk-Jae Woo, Taek-Kyung Lee, "Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS," Microwave Theory and Techniques, IEEE Transactions on Volume 53, Issue 6, Part 2, June 2005, P:2139-2144
    [56]Caloz, T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propag.,52(5), 2004:p1159-1166
    [57]M. Caiazzo, S. Maci, and N. Engheta, "A metamaterial surface for compact cavity resonators," IEEE Antennas and Wireless Propagation Letters, vol.3,2004, p261-264
    [58]Yong-Chae Jeong, Si-Gyun Jeong, Jong Sik Lim, S. Nam, "A new method to suppress harmonics using λ/4 bias line combined by defected ground structure in power amplifiers," IEEE Microw. Wireless Compon. Lett.,13(12),2003., p538-540
    [59]Jong-Sik Lim, Ho-Sup Kim; Jun-Seek Park, Dal Ahn; Sangwook Nam, "A power amplifier with efficiency improved using defected ground structure," Microwave and Wireless Components Letters, IEEE, Volume 11, Issue 4, April 2001, P:170-172
    [60]Chung Y, J eon S, Kim S, et al.. Multifunctional microstrip t transmission lines integrated with defected ground st ructure for RF f ront2end application [J].IEEE Trans. on Microwave Theory and Tech.,2004,52 (5):1425-1432
    [61]Park J, Yun J, Ahn D., A design of the novel coupled line bandpass filter using defected ground structure with wide stopband performance [J]. IEEE Trans. on Microwave Theory and Tech.,50(9),2002:2037-2043
    [62]Cyril Chepe, Cedrie Serier, Mare Thevenot, et al. An Electromagnetic Bandgap Resonator Antenna [J]. IEEE Transactions on Antennas and propagation,50(9),2002
    [63]J S Lim,C S Kim,A D, Y C Jeong,S W Nam. Design of lowpass filters using defected ground structure[J]. IEEE Trans Microwave Theory and Techniques,2005,53 (8):2539-2545
    [64]刘海文,李征帆,孙晓玮,一种新颖的蝴蝶结形缺陷接地结构微带线[J],红外与毫米波学报,2004,23(6):431-435
    [65]朱海,华光,洪伟,一种基于DGS的宽带双极化三角元微带天线[J],微波学报,2005,21(4):27-30
    [66]王雷,丁荣林,王安国,组合式非周期缺陷接地结构低通滤波器的分析[J],微波学报,2004,20(3):39-42
    [67]毛曹珏,缺陷接地结构特性分析及在微波电路中的研究硕士论文,北京邮电大学,2008
    [68]杨瑾屏,吴文,SP-DGS等效电路模型及其在微波电路中的应用,西安电子科技大学学报(自然科学版),2007,34(6):1007-1010
    [69]D J Woo, T K Lee,J W Lee, C S Pyo,W K Choi. Novel U-slot and V-slot DGSs for bandstop filter With improved Q factor[J]. IEEE Trans Microwave Theory and Techniques.2006,54 (6):2840-2847
    [1]Patricia McDermott-Wells, What is Bluetooth, [C]Potentials IEEE,Dec 2004-Jan 2005-23(5):33~35
    [2]章文勋,天线,电子工业出版社,2005年
    [3]周希朗,电磁场理论与微波技术基础,东南大学出版社,2005年
    [4]盛振华,电磁场微波技术与天线,西安电子科技大学出版社,1995年
    [5]闫润卿,李英惠,微波技术基础,北京理工大学出版社,2003年
    [6]朱晓维,何晓晓,用于W—CDMA移动终端的开槽微带双频贴片天线设计,《无线电工程》,2002第十二期
    [7]HanYunan Lu yinghua,Zhang jinling Zhu Xiaolu The Inereaction Between PIFA for Bluetooth Applications and a High-fidelity Human Body Model proceedings of Asia-Pscific Conference on Environmental electromagnetics. Dalian, China,(2006)
    [8]Cyril Chepe, Cedrie Serier, Mare Thevenot, et al. An Electromagnetic Bandgap Resonator Antenna [J]. IEEE Transactions on Antennas and propagation.50(9),2002
    [9]Keyoor Gosalia, Gianluca Lazzi and Mark Humayun, "Investigation of a Microwave Data Telemetry Link for a Retinal Prosthesis" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.52, NO.8, AUGUST 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700