采用神经网络与遗传算法对Mg/PTFE贫氧推进剂配方的优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为对Mg/PTFE贫氧推进剂的配方进一步优化,本文在研究分析传统配方优化方式及存在问题的基础上,采用人工神经网络和遗传算法相结合的配方设计优化方法确定出相对较优的设计配方,并进行了试验效果检验。文章首先依据神经网络和遗传算法基本原理,分析研究了反向传播算法(BP)、广义回归神经网络(GRNN)、支持向量机(SVM)等三种不同的数据网络模型的结构和算法;接着采用均匀设计法设计了试验配方,在对试验配方的燃烧热、燃烧温度和燃速测试的基础上获得了神经网络所必需的训练数据;然后分别用三种不同的神经网络模型对试验数据进行了建模和预测,结果显示,支持向量基(SVM)网络预测误差均在10%以内,精度较高。本文以推进剂的性能预测结果为优化目标,通过遗传算法的优化得出最佳的推进剂配方为:PTFE/Mg质量比为0.491,酚醛树脂含量为12.5%,镁粉粒度为26.90μm, PTFE粒度为111.331μm,并对该设计配方进行了试验验证,结果表明,该配方的燃烧热、燃烧温度和燃速都处于较高水平,并且具有较低的感度和良好的安定性,能够满足冲压发动机对其贫氧推进剂的性能要求。
     本文还使用GUIDE编程语言建立了配方优化系统的可视化用户界面,该系统具有一定的推广性,可以用于其它推进剂及复合体系烟火药的配方研究。
In order to the composition optimization of Mg/PTFE fuel rich propellant, this thesis presents a method of formula optimization by the neural networks combined with genetic algorithm after analyzing the traditional optimize methods and their shortcoming. Firstly, the algorithm and structure of three different network models——BP,GRNN and SVM were studid on the base of the basic principles of neural networks and genetic algorithm. secondly, the uniform design method was used to design the experimental formula of Mg/PTFE fuel rich propellant,and the combustion heat, combustion temperature and combustion rate were measured for the network trainning.After that,the three network models were used for the modeling and prediction of the experiment data respectively, the results showed that,the prediction error of SVM were less than10%. Then, the genetic algorithm was used to get the best formula with the propellant property predictions as optimization goal, the best formula is: the ratio of Mg to PTFE is0.491, the binder content is12.5%,the diameter of Mg is26.90μm, the diameter of PTFE is26.90μm.Next,the performance of the best formulas was tested, the results showed that their combustion heat, combustion temperature and combustion rate were all at a high level,and they also had low sensitivity and high stability which can meet the requirements of ramjet.
     This thesis also built a visible user interface of the prescription optimization system by GUI which can be used in the study on propellant and other composite pyrotechnic system.
引文
[1]张管飞.整体式固体火箭冲压发动机的理论探讨[J].湖北航天科技,1995(6):30-34.
    [2]王明鉴.整体式固体火箭冲压发动机的应用性能探讨[J].固体火箭技术,1995,18(1)
    [3]张家骅.整体式固体火箭冲压发动机研制[J].推进技术,1998(2)
    [4]鲍福廷,黄熙君,张振鹏等.固体火箭冲压组合发动机[M].北京:中国宇航出版社,2006.
    [5]王克强,莫红军.贫氧推进剂的研究发展方向[J].飞航导弹,2005(11):54-57.
    [6]潘功配,杨硕.烟火学[M].北京理工大学出版社,2004.
    [7]杜雪峰,万新国,赵欣颖,孙康波.Mg/PTFE贫氧烟火推进剂配方设计的理论研究[J].含能材料,2009(8):150.
    [8]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [9]Myers T D and Jensen G. Ramjets Experience Renewed Interest Worldwide. Aerospace America,1990,28(7):28.
    [10]Zarlingo F. Air breathing Propulsion Concerts for High Speed Tactical Missiles AIAA-88-3070
    [11]Biass E. H. and Richardson D. Ramjet, the Air-breathing Engine with no Serviceable Parts Inside. ARMADA International,1996(4):34.
    [12]Davenas A. History of the Development of the Solid Rocket Propellant in France [J].Propel Power,1995,11(2):287.
    [13]Doriath G. Energetic Insensitive Propellants for Solid and Ducted Rockets [J]. Propel Power,1995,4:872.
    [14]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24-27.
    [15]Davenas A, Jacob G, Longevialle Y. Energetic compounds for future space application [C]//Proc of 2nd Int Conference on Green Propellants for Space Propulsion. Sardinia: ESA,2004.
    [16]Dendage P S. Hydra zinium nitro formate(HNF)and HNF based propellants; a review[J]. Journal of Energetic Materials,2001,19(1):41-78.
    [17]孟祥荣.国外低特征信号推进剂应用研究及发展趋势[J].飞航导弹,1999(8):41-43
    [18]Eisele S. About the burning behavior and other properties of smoke reduce composites based on AP/CL20/GAP[C]//32nd Int Ann Conf of ICT. Karlsruhe:ICT,2001.
    [19]张海燕,孟祥荣.从国外固体推进剂的发展看国内的差距[J].推进技术,1999,5:38-40.
    [20]毛成立.含硼贫氧推进剂燃烧研究[D].西安:西北工业大学,2001
    [21]Mayen. Mixing of Hydroxyl-Terminated Poly butadiene and Boron. Second International Symposium on Special Topics In Chemical Propulsion:Combustion of Boron-Based Solid Propellants and Solid Fuels, Lampold-Shausem, Germany,1991.
    [22]Michel. MAYEN, et al. Mixing of Hydroxyl-terminated poly butadiene and boron. In: K.K.Kuo. Combustion of Boron-Based Solid Propellants and Solid Fuels. Boca raton: CRC Press,1993.
    [23]Mahe B, Preut C. Boron Propellants For Ducted Rocket Application, Combustion of Boron-based Solid Fuels and Propellants in Propulsion System, edited by Kenneth. K. Kuo, CRC Press,1993:361-374
    [24]Limage, CR. Solid fuel ducted rockets for ramjet/scramjet missile application[R]. AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit,32nd, Lake Buena Vista, FL, July 1-3,1996
    [25]Abraham Cohen and Benveniste Natan. Experimental investigation of a supersonic combustion solid fuel ramjet[R]. AIAA 97-3119.
    [26]姚娜,何洪庆.含硼贫氧推进剂固体火箭冲压发动机性能[J].航空兵器,2002(2):6-9.
    [27]李葆萱,江兴宏等.催化剂及加入方法对HTPB复合推进剂燃烧性能的影响[J].推进技术,1991(6).
    [28]张炜,徐东来等.非壅塞固体火箭冲压发动机及其贫氧推进剂[J].国防科技大学学报,2002,24(4):9-11.
    [29]张炜.非壅塞固体火箭冲压发动机研究[D].长沙:国防科学技术大学,1999.
    [30]张炜,朱慧等.用于燃气流量可调固冲发动机的贫氧推进剂[J].推进技术,1999(5)
    [31]庞维强,胥会祥等.含镁铝富燃料推进剂低压燃速规律研究[J].计测技术,2008,29(6):16-19.
    [32]胥会祥.AP/HTPB复合推进剂的设计[J].推进技术,2008,4:56-60.
    [33]王天放.新型高能燃料叠氮缩水甘油聚醚/硼和铝/水基燃料的燃烧特性研究[D].中国科学技术大学博士学位论文,2008.
    [34]Yves Longevialle. Clean rocket propellants, an European cooperative program. Insensitive Munitions and Energetic Materials Technology Symposium,891-963.
    [35]Itabe J, Asai K, Ishizu M, Aruga T, Igarashi T. Appl. Opt.1989(28):931.
    [36]Edwards T, Waver D P, Campbell D H. Appl.Opt.,1987(26):3496.
    [37]N·Kubota, C·Serizawa倪其龄译.镁粉聚四氟乙烯烟火剂的燃烧历程[J].飞航导弹, 1994,20(10):20-24.
    [38]Greenhalgh D. A. In:Clark R. J. H., Hester R. E., Ed. Quantitative CARS Spectroscopy, Advances in Nonlinear Spectroscopy, New York:Wily,1988:193.
    [39]李春林.镁、聚四氟乙烯和氟橡胶组成的红外诱饵的燃烧过程数据和燃烧产物分析[J].光电对抗与无源干扰,1997(2):22-29.
    [40]陈明华,焦清介,温玉全.MTV烟火剂的燃烧性能计算[J].炸药学报,2002(3):75-78.
    [41]王永寿.镁/聚四氟乙烯高能混合物质的燃速[J].飞航导弹,1994(7):40-44.
    [42]潘功配,郝建春.烟火型底排剂减阻增程研究[J].火工品,1995,2:1-4.
    [43]孔文军.配方信息优化系统.武汉:华中科技大学,2003.
    [44]北京大学数学力学系统概率统计组编.正交设计法[M].北京:化学工业出版社,1979.
    [45]姬振豫.正交设计[M].天津:天津科技翻译出版公司,1994.
    [46]白厚义.回归设计及多元统计分析[M].南宁:广西科学技术出版社,2003.
    [47]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [48]白广梅,张续柱.均匀设计在推进剂配方优化中的应用[J].火炸药学报,1998(1):37-41.
    [49]张际先,宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社,1996.
    [50]桂现才.BP神经网络在MATLAB上的实现与应用[J].湛江师范学院学报,2004,25(3):79-83.
    [51]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [52]Sang Hyun sohn. Prediction of Ozone Formation Based on Neural Networks[J]. Envir.Engrg.,ASCE,2000(8):688-696.
    [53]Radhakrishnan V.R, Mohamed A.R. Neural networks for indentification and control of blastfurnace hot metal quality[J]. Journal of process control,2000(10):509-524.
    [54]崔庆忠,焦清介.用人工神经网络预测黑火药燃烧性能[J].北京理工大学学报,2007,27(6):541-545.
    [55]邓鹏图,田德余,庄逢辰.复合固体推进剂燃烧性能模拟计算的神经网络方法[J].推进技术,1995(4):72-76.
    [56]王晔,段志信.基于Matlab和BP神经网络的固体火箭发动机比冲性能的预测[J].内蒙古科技与经济,2007(8):73-74.
    [57]张培新,张奇志,吴黎明.用神经网络—遗传算法优化MgO-B2O-SiO2渣系组成[J].金属学报,1995,31(6):284-288.
    [58]路文江,汤富领,刘树群.用神经网络—遗传算法优化Ni基喷涂材料[J].甘肃工业大学学报,1998,24(1):11-15.
    [59]董敏.人工神经网络与材料工艺的优化[J].辽宁师专学报.2000,2(3):100-103.
    [60]Lisoba P.G.L. Neural network-current application[M]. London:Chapman&Hall,1992.
    [61]Boozarjomejirg.P.B., Svrcek.W.Y. Automatic design of neural network structures[J], Computers and Chemical Engineering, Vol:25, Issue:07-08, August 15.2001.
    [62]加卢什金,阎平凡.神经网络理论[M].北京:清华大学出版社,2002.
    [63]郭亚楠.基于神经网络的软岩巷道变形预测研究.西安:西安工程大学硕士学位论文,2007.
    [64]吴昌友.神经网络的研究及应用.哈尔滨:东北农业大学硕士学位论文,2007.
    [65]郝鑫.广义回归神经网络和遗传算法研究及其在化工过程建模中的应用.杭州:浙江大学硕士学位论文,2007.
    [66]王国昌,吕学菊.用广义回归神经网络和遗传算法分析产量递减[J].新疆石油地质,2006(27):90-93.
    [67]Sprecht D F. A gerneral regression neural network. IEEE Trans Neural Network, 1991(2):568-576.
    [68]闻新,周露Matlab神经网络应用设计[M].北京:科学出版社,2000.
    [69]宋贤民.基于SVM的污水处理过程软测量建模研究.南昌:南昌大学硕士学位论文,2007.
    [70]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [71]邵华平,覃征.SVM算法及其应用研究[J].兰州交通大学学报,2006(2):104-106.
    [72]Vapnik V N. Statistical learning theory[M]. New York,1998.
    [73]张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [74]K.R. Muller, S.Mika, GRatsch et al. An Introduction to Kernel-based Learning Algorithms[J], IEEE Transactions on Neural Networks,2001,12(2):181-201.
    [75]David E.G. Genetic algorithms in search,optimtzation,and machine learning[M]. Msssachusettes:Addisonwesley Publishing Company,1989.
    [76]雷英杰,张善文,李续武.MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,2005.
    [77]董会丽.基于RBF神经网络和遗传算法的复合材料层合板、壳载荷识别.南京:南京航空航天大学学报.2007.
    [78]方开泰.均匀设计与均匀设计表[M].科学出版社,1994.
    [79]张立明.人工神经网络的模型及其应用[M].复旦大学出版社,1992.
    [80]李晓波.烟火推进剂的设计及其产物的环境特性研究.南京:南京理工大学,2008.
    [81]李葆萱.固体推进剂性能[M].西北工业大学出版社,1990.
    [82]陈俊杰,谢春萍,郝海涛.人工神经网络纱线质量预报模型的实用化[J].天津纺织科技,2005(4):9-12.
    [83]王克秀,李葆萱.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983.
    [84]K.K.郭,M.萨默菲尔德.固体推进剂燃烧基础[M].朱荣贵,于广经等译. 北京:宇航出版社,1997.
    [85]T. Kuwahala, T. Ochiachi. Burning rate of Mg/TF pyrolants[C].18th International Pyrotechnics Seminar,1992:359-365.
    [86]Eckert, E. R. G, Drake, R. M.. Analysis of heat and mass Transfer[M]. McGraw-Hill Book Co.,1972.
    [87]Thomas Wildlund. An attempt to calculate the burning rates of pyrotechnical compositions [C]. Proceedings of 15th International Pyrotechnics Seminar, 1990:543-557.
    [88]E. L. Cussler. Diffusion:Mass transfer in fluid systems[M]. Press Syndicate of the University of Cambridge,1984.
    [89][法]A.达维纳.固体火箭推进技术[M].张德雄等译.北京:宇航出版社,1997.
    [90]张炜,朱慧,方丁酉等.低压下贫氧推进剂燃烧性能测试方法研究[J].含能材料,1999,7(3):118-121.
    [91]崔雨,李鸿飞.红外测温仪的原理与实际应用指南[J].自动化与仪器仪表,2009,6:103-107
    [92]杜锡娟,彭松,张昊.高能固体推进剂化学安定性研究[J].化学推进剂与高分子材料,2007,3(5):37-44.
    [93]孙小巧,范晓薇等.推进剂组分相容性研究方法[J].化学推进剂与高分子材料,2007,4(5):30-36.
    [94]S.M. Pourmortazavi, S.S. Hajimirsadeghi. et al. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel[J]. Fuel.2008, 87:244-251.
    [95]朱正福,李长福等.火炸药综合感度评估方法研究[J].含能材料,2009,17(5):612-615.
    [96]廖宁放.神经网络用于函数逼近的最佳隐层结构[J].北京理工大学学报,1998(18) 467-480.
    [97]向国全,董道珍.BP模型中的激励函数和改进的网络训练法[J].计算研究与发展,1997,34(2):113-117.
    [98]孟维伟.基于神经网络的交通量预测技术研究.南京:南京理工大学.2006.
    [99]陈杨,王茹,林辉.MATLAB6.0版本中神经网络工具箱训练算法的使用与比较[J].电脑与信息技术,2003(3):1-6.
    [100]李杰,王科,王航.基于广义回归神经网络的公路货运量预测方法研究[J].交通与计算机,2007,25(3):131-133.
    [101]Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameteras and noise estimation for SVM regression[J]. Neural Networks,2004(17):113-126.
    [102]Jinbo Bi, Kristin P. Bennett. A geomeetric approach to support vector regressin[J]. Neuro computing,2003(55):79-108.
    [103]张海燕.基于SVM的采空区围岩稳定性预测研究.西安:西安科技大学,2007.
    [104]Dieterle Frank, Kieser Birgit, Gaulitz Gunter. Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance[J]. chemometrics and Intelligent Laboratory Systems,2003,65(1):67-81.
    [105]K.K.郭,M.萨默菲尔德.固体推进剂燃烧基础[M].朱荣贵,于广经等译.北京:宇航出版社,1997.
    [106]T. Kuwahala, T. Ochiachi. Burning rate of Mg/TF pyrolants[C].18th International Pyrotechnics Seminar,1992:359-365.
    [107]Eckert, E. R. G, Drake, R. M.. Analysis of heat and mass Transfer[M]. McGraw-Hill Book Co.,1972.
    [108]Thomas Wildlund. An attempt to calculate the burning rates of pyrotechnical compositions[C]. Proceedings of 15th International Pyrotechnics Seminar, 1990:543-557.
    [109]E. L. Cussler. Diffusion:Mass transfer in fluid systems[M]. Press Syndicate of the University of Cambridge,1984.
    [110][法]A.达维纳.固体火箭推进技术[M].张德雄等译.北京:宇航出版社,1997.
    [111]张炜,朱慧,方丁酉等.低压下贫氧推进剂燃烧性能测试方法研究[J].含能材料,1999,7(3):118-121.
    [112]崔雨,李鸿飞.红外测温仪的原理与实际应用指南[J].自动化与仪器仪表,2009,6:103-107
    [113]杜锡娟,彭松,张昊.高能固体推进剂化学安定性研究[J].化学推进剂与高分子 材料,2007,3(5):37-44.
    [114]孙小巧,范晓薇等.推进剂组分相容性研究方法[J].化学推进剂与高分子材料,2007,4(5):30-36.
    [115]S.M. Pourmortazavi, S.S. Hajimirsadeghi. et al. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel[J]. Fuel.2008,87:244-251.
    [116]朱正福,李长福等.火炸药综合感度评估方法研究[J].含能材料,2009,17(5):612-615.
    [117]刘玉松.竹纤维粉体模压成型工艺特性及有限元研究[D].广州:华南理工大学,2003.
    [118]李凤生,杨毅.纳米P微米复合技术及应用[M].北京:国防工业出版社,2002:111-113
    [119]赵小平.浇注型聚氨酯弹性体复合材料的制备及性能研究[D].哈尔滨:哈尔滨工程大学,2008.
    [120]刘国华,包宏.用MATLAB实现遗传算法程序[J].计算机应用研究,2001,18(8):80-82.
    [121]梁吉业.遗传算法应用中的一些共性问题研究[J].计算机应用研究,1999,16(7):20-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700