多核羟基络铝固体柱撑剂和高效絮凝剂的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以合成多核羟基络铝盐酸盐用作“干法”制备柱撑粘土的固体柱撑剂和高效絮凝剂为目标,进行了大量合成方法和条件试验,采用Al+稀HCl法、Al+AlCl_3溶液法、AlCl_3溶液树脂吸附法和补水蒸馏AlCl_3溶液法,在国内首次合成出了一种纯度较高的13核羟基络铝盐酸盐。对比了各种合成方法的优缺点,通过化学分析、XRD、TG-DTA及Al-Ferron逐时络合比色分析,对其化学组成和结构进行了表征。结果表明其化学式为:5AlCl_3·8Al(OH)_3·37.5H_2O,该物质易溶于水和无水甲醇,几乎不溶于无水乙醇。合成条件容易控制,合成效率明显提高。
     合成产物的絮凝效果实验表明,除浊效果比AlCl_3、Al_2(SO_4)_3及PAC(聚合氯化铝)更好,可望成为一种新型高效的絮凝剂。
     用其作为固体柱撑剂,采用“干法”插入蒙脱石层间的初步试验表明,它是一种好的固体柱撑剂。
     合成目标产物的过程中还发现,AlCl_3·6H_2O和CuSO_4·5H_2O随结晶环境的改变,可以结晶出新的变种。
     用补水蒸馏法和树脂吸附法调节AlCl_3溶液的pH值,得到了AlCl_3·6H_2O的四种新的结晶变种,采用XRD、TG-DTA对它们进行了表征。其中一种培养了单晶,用四圆衍射仪测定了晶体和分子结构。结果表明,分子对称性下降,所属的空间点群由R3c变为R3c,为AlCl_3·6H_2O结晶形态家族增添了新成员,丰富了AlCl_3·6H_2O结晶化学的内容。
     用树脂吸附法改变CuSO_4溶液的pH值,得到了CuSO_4·5H_2O的一种新的结晶变种。XRD、TG-DTA、单晶四圆衍射等结果表明:此种结晶在晶胞参数、晶体密度和单位晶胞中的分子数等方面明显不同于文献报道,拓展了CuSO_4·5H_2O的结晶化学。
Aiming at the synthesis of polynuclear hydroxyl complex Al hydrochlorate-An agent of Solid pillarization for pillared interlayed clays prepared by dried methods and high efficiency flocculation by different means and in different conditions, amounts of experiments have been carried out.A high purification water well dissolved 13-nuclear hydroxyl complex Al hydrochlorate has been synthesized first by means of Al+HCl(aq),Al+AlCl3(solution),resin adsorption and distillation Aids solution accompanied by makeup water in China.Its chemical constituents and structure were identified by methods of chemical analysis,XRD,TG-DTA and Al-Ferron timed complex colorimetric , at the same time,the comparision of different methods has been carried out.The product,with chemical formula of 5AlCl3-8Al (OH) 3-37.5H2O showed by results,can be well dissolved in water and methanol but hardly in ethanol.Featured by well controlled conditions,all the four means show great improvement in efficiency
    A new type high efficiency flocculation agent is hopefully to be exploited supported by better removal turbidity than AlCl3,Al2(SO4)3 and PAC.
    A efficient solid pillarization can also be exploited supported by the results of experiments done on its insertion into Montmorillonite layers by dried means.
    Meanwhile,new types crystal of AlCl3- 6H20 and CuSO4-5H2O have been obtained from the different crystallization conditions.
    Four new types of crystal structures of AlCl3-6H2O have been produced through adjusting the solution pH by means of resin adsorption and distillation companied by makeup water,their structures have all been identified by XRD,and TG-DTA,signal crystal have been cultivated for one of the four kinds crystal followed by its structure identification by single-crystal X-ray
    diffraction, as the results showed, all the molecular structures have changed from R3c to R3c
    which are enriching the crystallogical of AlCU- 6H2O greatly.
    A new type of crystal structure of CuSO4-5H2O has been resulted through adjusting the pH of CuSO4-5H2O solution .As the XRD and TG-DTA and single-crystal X-ray diffraction indicated,there are great difference in crystal cell parameters,crystal density and number of molecular in per crystal cell between references showed.
引文
[1] G.W. Brindley, R.E. Semples, Preparation and properties of some hydroxyl-aluminum beidellitites, Clay Miner., 1977, 12: 229-237
    [2] Sister Traynor MF, et al. Ion exchange and interaction reactions of hectorite with trisbipyridly metal complexes. Clays and Clay Minerals, 1978, 26(5):702-706
    [3] Leoppert R H, et al. Synthesis and properties of heat stable expanded smectite and vermiculite. Clays and Clay Minersls, 1979, 27:201-208
    [4] S. Perathoner, A. Vaccari, Catalysts based on pillared interlay red clays for the selective catalytic reduction of NO, Clay Minerals, 1997:32
    [5] K. Bahranowski, M. Gasior, L. Kielski et al.,Physico-chemical characterization and catalytic properties of copper-doped aluminum-pillared montmorillonites, Clays and Clay Minerals, 1998, 46(1)
    [6] A. Benito, DelRiego et al., Toluence methylation on All3-and GAA112-pillared clay catalysts, Applied Catalysis: A, 1999: 180
    [7] Matthes Winnie, Madsen Fritz and Kahr Guenther, Sorption of heavy-metal cations by A1 and Zr-hydroxyintercalated and pillared bentonite, Clays and Clay Minerals, 1999,47(5)
    [8] Robert Mokaye, Willam Jones et al., Preparation of alumina-pillared acid- activated clays and their use as chlorophyll absorbents, J. Mater. Chem., 1993, 3(4)
    [9] D.T. Koramanis, X.A. Aslanoglou, An aluminum pillared montmorillonite with fast uptake of strontium and cesium and cesium from aqueous solutions, Clays and Clay Minerals, 1997, (45)
    [10] L. Storarda, M. Lenarda, et al. Microporous and Mesoporous Materials 1998, 20:317-331
    [11] Lahav N. et al., Clays and Clay Miner., 1978, 26(2):107
    [12] T.J. Pinnavaia, M. Tzou, S.D. Landau, J. Am. Chem. Soc. 1985, 107:4783-4785
    [13] 吴平霄,张惠芬,郭九皋等,柱撑蒙脱石制各与表征,矿物学报,1997,17(2),200—207
    [14] 吴平霄,张惠芬,郭九皋等,羟基铝柱撑蒙脱石Keggin结构的稳定性,矿物学报,1999,19(2),132-138
    [15] Waltr-Levy and Breuil, Compt. Rend., 1961, 262: 253
    [16] 赵东源,杨亚书,郭燮贤等,铁铝复合柱撑粘士的制备、柱结构和稳定性(Ⅰ)物理化学学报,1993,9(2),193-199
    [17] T.J. Pinnavaia, M. Tzou, et al. J. of Molecular Catalysis, 1984, 27:195-212
    [18] S. Yamanaka, G. W. Brindley, Am. Miner., 1979, 64: 830
    [19] E.M. Farfan-Torres, E. Sham and P. Grange, Catalysis Today. 1992, 15:515-526
    
    
    [20] G. J. J. Bradley, Catalysis today, 1988, 2: 233-241
    [21] S. Yamanaka, G. W. Brindley, High Surface Area Solids Obtained by Reaction of Montmorillonite with Zirconyl Chloride, Clays Clay Miner, 1979, 27: 119-124
    [22] D. E.W. Vaughan, Pillared clays—a historical perspective, Catal. Today, 1998, 2:187-198
    [23] M. R. Sunkou, S. Mendioroz, M.I. Guijarro, A thermal study of Zr-pillared montmorillonite, Thermochimica Acta, 1988, 323: 145-157
    [24] Shaobin Wang, H.Y. Zhu, G.Q. (Max) Lu, Preparation, Characterization, and Catalytic Properties of Clay-Based Nickel Catalysts for Methane Reforming, J. of Colloid and Interface Sci., 1998, 201: 128-134
    [25] S. Yamanaka, G.W. Brindley, Clays and Clay Miner., 1978, 21: 26
    [26] S.M. Bradley, R.A. Kydd, J. Catal., 1993, 142: 448
    [27] 毛辉,金永漱,陈懿,[Mo_2O_4]~(2+)交联层柱粘土的制备及其结构和性能的研究,无机化学学报,1989,5(2),8—15
    [28] M. L. Occelli, in:L.G. Schultz, H. VanOlphen, F.A. Mumpton(Eds) Proceedings of the International Clay Conference, Denver, CO, 1985, Clay Minerals society, B1oominton, IN, 1987, P, 319
    [29] L.S. Cheng, R.T. Yang, N. Chen, lron Oxide and Chromia Supported on Titania-Pillared Clay for Selective Catalytic Reduction of Nitric Oxide with Ammonia Journal of Catalysis, 1996, 164: 71-80
    [30] H.L.D. Castillo, P. Grange, Appl. Cata1. A: General, 1993, 103: 23
    [31] Johan Sterte, Synthesis and properties of titanium oxide cross-linked montmorillonite, Clays and Clay Miner., 1986, 34(6): 658-664
    [32] 陈济美,氧化钛交联累脱石的制备与特性研究,矿物学报,1990,10(2):167-172
    [33] Liechti, Suida, Dingler's J., 1883, 251: 177
    [34] G. Jander and A. Winkel, Z. Anorg. Chem., 1931, 200:257
    [35] H.W. Kohlschutter, P. Hantelmann, K. Diener et. al., Z. Anorg. Allg. Chem., 1941, 248:319
    [36] C. Brosset, Acta Chem. Scand., 1952, 6:910
    [37] G. Johansson, On the crystal structures of some basic aluminum salts, Acta Chem. Scand., 1960, 14: 771-773
    [38] L. Water-Levy and H. Breuil, Sur Les Chlorides and Bromides Bisques D' Aluminum, Ann. Chim., 1965, 10, 467-493
    [39] R.W. Smith, J.D. Hem, U.S. Geol. Surv. Water Supply Paper, 1972:1827-D
    [40] P.M. Jardine, L.W. Zelazny, Soil Sci. Soc. Am.J., 1986, 51, 895
    [41] G. Furrer, C. Ludwig and P.W. Schindler, On the chemistry of the Keggin Al_(13) polymer Ⅰ. Acid-base properties, Journal of Colloid and Interface Science, 1992, 149(1): 59-67
    [42] 曲久辉,路光杰,汤鸿霄,电解制备高效聚合铝的溶液化学因素,环境化学,1997,16(6):522-526
    
    
    [43] 路光杰,曲久辉,汤鸿霄,高效聚合氯化铝的电化学合成研究,中国环境科学,1998,18(2):140-143
    [44] Lu G J, Qu J H and Tang H X, The electrochemical production of Highly effective polyaluminum chloride, Water Research, 1999, 33(3): 807-813
    [45] 刘会娟,李大鹏,曲久辉等,电解制备聚合铝过程中形态生成条件研究,环境科学学报,2001,21 (4):411-415
    [46] 刘会娟,曲久辉,张素娟等,(Al_(13)O_4(OH)_(12)(OH)_(12)(H_2O)_(24)]~(7+)的电化学合成及表征,中国科学(B辑),2002,32(5):445-449
    [47] 王东升,汤鸿霄,高琼等,Al_(13)形态分离纯化方法的初步研究,环境化学2000,19(5):389-394
    [48] 赵华章,栾兆坤,苏永渤等,Al_(13)形态的分离纯化与表征,高等学校化学学报,2002,23(5),751-755
    [49] 汤鸿霄,无机高分子絮凝剂的基础研究,环境化学,1990,9(3):1
    [50] N. Parthasarty, J. Buffle, Study of PAC Hydroxide Solutions for Application in Waste Water Treatment properties of the Polymer and Optimal Conditions of Preparation, Water Res.,1985,19(1):25
    [51] 沈水发,陈耐生,陈柽生等,利用高岭土制备聚合氯化铝净水剂,无机盐工业,1999,31(5):33-35
    [52] 曹明礼,用高岭土制备聚合AlCl_3的试验研究,金属矿山,1997,255(09):24-26
    [53] 宋恩玉,硬质高岭土生产聚合氯化铝和白炭黑.非金属矿,1999,22(3):28-30
    [54] 黄东根,优级聚合氯化铝净水剂的生产,净水技术,1999,67(1):25-27
    [55] 石宝友,汤鸿霄,聚合氯化铝与有机高分子复合絮凝剂的电荷特性及其絮凝作用,环境化学,1999,18(4):303-308
    [56] Tang Hongxiao, Luan Zhaokun. In: Hahn H Het al. (eds).Chemical water and waster treatment Ⅳ. Springer-Verlag, 1996: 83-93
    [57] Dentel S K. Application of the precipitation-charge neutralization model of caagulation. Environ Sci Technol, 1988, 22: 825
    [58] Tang H X, Luan Z K, Wang D S et al., Composite Inorganic Polymer Flocculants. Chemical Water and Wastewater Treatment V, Procceding of the 8th Gothenburg Symposium, 1998: 25-34
    [59] 冯利,栾兆坤,汤鸿霄,铝的水解聚合形态分析方法研究,环境化学,1993,12(5):373-379
    [60] 汤鸿霄,栾兆坤,聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异,环境化学,1997,18(6):497-504
    [61] 高宝玉,岳钦艳,王艳,等,Al-Ferron逐时络合比色法研究PACS中铝的水解聚合形态,环境化学,1996,15(3):234-238
    [62] 天津化工研究院等编,《无机盐工业手册》上册,化学工业出版社,1979年10月第一版
    [63] 天津化工研究院等编,《无机盐工业手册》下册,化学工业出版社,1981年1月第二版
    [64] 栾兆坤,汤鸿霄,聚合铝形态分布特征及转化规律,环境科学学报,1988,8(2):146
    [65] Akill J W, et al. Aluminum(27)nuclear magnetics resonance studies of the hydrolysis Aluminum(Ⅲ), Part 2-5, Gelpermeation Chromatography. J.C.S. Dalton., 1981: 1606-1624
    [66] 武汉大学主编,《分析化学实验》,高等教育出版社,1994年5月第三版
    
    
    [67] R.W. Smith, Nonequilibrium Systems in Natural Water Chimistry, ACS, Adv. in Chem. Ser., 1971, 106: 250
    [68] S. C. Hodges, Aluminum speciation: Comparison offive methods, Soil Sci. Soc. Am. J., 1987: 51: 57-64
    [69] P. M. Jardine, L.W. Zelazny, Mononuclear and polynuclear aluminum speciation through differential kinetic reactions with ferron, Soil Sci. Soc. Am. J., 1986, 50:895-901
    [70] 王东升,汤鸿霄,栾兆坤,颗粒物悬浮体系中聚合铝凝聚絮凝形态表征(Ⅰ):Al-Ferron法的应用研究,环境科学,1999,20(5):1-5
    [71] 陈蕴智,方碧波,谢来苏,纸和造纸,1999,4:54-55
    [72] S.J. Duffy, G.W. Vanloon, Characterization of Al Hydroxide by the ferron method, Envrion. Sci. Technol., 1994, 28: 950-956
    [73] Wang Wei-Zi, Hsu Pa Ho, Clays and Clay Minerals, 1994, 42(3):356-368
    [74] GAO Bao-Yu(高宝玉), YUE Qin-Yan(岳钦艳), WANG Zhan-Sheng(王占生)et al., Evironmetal Chemistry(环境化学)2000, 19(1): 14-17
    [75] D.R. Parker, P.M. Bertsch, Eviron. Sci. Technol., 1992, 26(5): 914-921
    [76] P. H. Hsu, D.D. Cao, Effects of acidity and hydroxylamine on the determination of aluminum with Ferron, Soil Sci., 1991, 152(3): 210
    [77] 汤鸿霄,浑浊水铝矾絮凝机理的胶体化学观,土木工程学报,1965,1:45-55
    [78] Swanson et al., Nath. Bur. Std. Cercular., 1957, 3(7): 539
    [79] D.R. Buchanan and P.M. Harris, A neutron and X-ray diffraction investingation of aluminum chloride hexahydrate, Acta Cryst., 1968, B24: 954-960
    [80] G.E. Bacon and N.A. Curry, The water molecules in CuSO_4·H_2O, Proc. Roy. Soc. Lond., 1962, A266: 95-108
    [81] 谢有畅,邵美成编,《结构化学》,人民教育出版社,1979年10月第一版
    [82] 周公度,段连运编,《结构化学》,北京大学出版社,1995年9月第二版
    [83] JCPDS编,《粉末衍射卡片集》(PDF),卡片15-108
    [84] JCPDS编,《粉末衍射卡片集》(PDF),卡片8-453
    [85] JCPDS编,《粉末衍射卡片集》(PDF),卡片11-646

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700