基于不同维度纳谏材料构筑第三代电化学生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于氧化还原蛋白质直接电化学的研究在环境科学、生命科学、能源科学和分析化学等领域引起越来越多科学家的关注。直接电化学的研究对于研究生物系统中各种酶之间电子相互传递以及开发新型的第三代电化学生物传感器具有重要的意义。
     纳米技术的发展为蛋白质直接电化学的研究提供了新思路,纳米材料所具有的比表面积大,催化活性高、特殊的物理化学性质在促进蛋白质直接电化学以及提高生物传感器性能方面有广阔的应用前景。本论文设计合成了不同维度的纳米材料,固定氧化还原蛋白质构造生物传感器,研究蛋白质的直接电化学性质及其催化特性,探索纳米材料形貌结构和传感器性能之间的内在联系。具体内容如下:
     1.以一维纳米材料(MnO_2纳米棒)-阳离子纤维素(QY)纳米复合材料为固定化载体固定肌红蛋白(Mb),利用X-射线衍射(XRD)和扫描电镜(SEM)对纳米棒的结构形貌进行表征,傅立叶红外光谱(FTIR)结果表明Mb在复合薄膜中保持了原有的天然结构,并实现了直接电子转移,电子转移速率ks为7.81s~(-1)。相对于Mb-MnO_2/GC电极和Mb-QY/GC电极,Mb-MnO_2-QY/GC电极构建的H_2O_2传感器表现出更优良的性能,线性范围是0.5-120μmol·L~(-1),检测限为0.3μmol·L~(-1),同时制备电极具有良好的稳定性,抗干扰性和重现性。
     2.以二维纳米材料——无机纳米片为组装基元,采用带相反电荷的TiO_2纳米片和Mb层层组装,制备了(Mb/TiO_2)_n多层复合生物敏感膜。利用电化学交流阻抗(EIS)和紫外吸收光谱(UV-Vis)检测了层层组装的过程。扫描电镜照片(SEM)和原子力显微镜(AFM)考察了薄膜的微观形貌。Mb在薄膜中实现了快速直接电子转移,该薄膜修饰电极对底物H_2O_2催化表现出较高的灵敏度0.616A·mol~(-1)·L·cm~(-2)。在MnO_2纳米片和Mb的基础上,加入聚合物Nafion,依然可以通过静电吸引力成功实现层层组装,制备(Mb/Nafion/Mb/MnO_2)_n多层复合薄膜,Mb在该薄膜中仍然实现了快速有效的直接电子转移。
     3.采用二维纳米材料石墨纳米片KS6和Nafion复合固定血红蛋白(Hb)。FTIR和UV-Vis结果表明Hb在复合材料中保持了原有的天然结构,Hb在KS6-Nafion薄膜中实现了快速的电子转移,Hb-KS6-Nafion修饰玻碳(GC)电极制备的NaNO_2传感器表现出较宽的检测范围8~460μmol·L~(-1)和460~2300μmol·L~(-1),优良的稳定性和抗干扰性。
     4.采用水热-焙烧的方法设计合成了一种基于纳米片的核壳中空三维结构TiO_2微球。利用XRD、SEM和透射电镜(TEM)对微球形貌进行表征并推测微球生长机理。通过低温氮吸附法(BET)、UV-Vis和电化学测试证明基于纳米片的核壳中空结构TiO_2微球有利于固定生物分子辣根过氧化物酶(HRP),利用其固定HRP构造的H_2O_2传感器表现出优良的性能,在拥有较低检测限0.05μmol·L~(-1)的同时,拥有较宽的检测范围0.4~140μmol·L~(-1)。
     5.采用恒电流电沉积的方法一步合成了纳米片交叉的Co(OH)_2三维多孔薄膜,用于固定Hb修饰电极制备生物传感器。利用SEM表征了Co(OH)_2薄膜的形貌,通过UV-Vis光谱证明Hb在薄膜中保持了天然的结构,实现了快速的电子转移,电子转移速率Ks为8.34s~(-1)。基于Co(OH)_2三维多孔薄膜固定Hb制备的传感器对底物H_2O_2催化拥有的灵敏度为743.67μA mM~(-1)cm~(-2),检测范围从0.4到200μmol·L~(-1)。
Direct electrochemistry of redox proteins has attracted considerablerecent attention since it provides fundamental knowledge of redox behavior ofproteins or enzymes in a biological system and serves as a model system to aidin the understanding of electrontransfer mechanisms, and also provides afoundation for the construction of third-generation biosensors.
     Nanotechnology provides a new way to construct the third-generationbiosensor. Nanomaterials have unique optical, electrical and catalyticproperties and large surface area, good biocompatibility, which can greatlyenhance the direct electron transfer of proteins and promote the biosensorperformance. The object of this dissertation is to explore different dimernsionsnanomaterials for fabrication the third-generation biosensors. More details aresummarized below:
     1.1-D nanomaterial, MnO_2nanorods, was prepared and shown to be apromising matrix with biocompatible polyquaternium (QY) for Mb immobilization. The structure and morphology of the MnO_2nanorods werecharacterized by X-ray diffraction (XRD) and scanning electron microscopy(SEM). Fourier transform infrared (FTIR) spectra revealed that Mbimmobilized in the MnO_2-QY nanocomposite film retained its native structure.Compared with Mb-MnO_2/GC electrode, the prepared Mb-MnO_2-QY/GCelectrode displayed wider linear range0.5-120μmol·L~(-1), a lower detectionlimit of0.3μmol·L~(-1), better stability, interference immunity andreproducibility.
     2.2-D nanomaterial, TiO_2nanosheets, was applied to assemble(Mb/TiO_2)nfilms by layer-by-layer technology. Electrochemical impedancespectroscopy (EIS) and UV-Vis spectra were used to monitor thelayer-by-layer process. The morphology of films was characterized by SEMand Atomic force microscope (AFM). The thickness of film was much smallerthan the films assembled by other nanomaterials. The prepared electrodeexhibited high catalytic efficiency to H_2O_2. On the basis of MnO_2nanosheetsand Mb, Nafion was added to successfully assemble the(Mb/Nafion/Mb/MnO_2)nmultilayer films. The composite film not onlyprovided a favorable microenvironment for Mb but also kept the stability dueto the rigid structure of nanosheet.
     3.2-D nanomaterial, commercial conductive graphite nanosheet KS6,was designed for the immobilization of Hb to construct biosensors for thedetection of NaNO_2. The FTIR and UV-Vis spectra revealed that Hb retained its native secondary structure in the KS6-based composite film. TheHb-KS6-Nafion/GC electrode exhibited fast direct electron transfer andshowed a good electrocatalytic performance to NaNO_2with wide linear rangeof8-460μmol·L~(-1)and460-2300μmol·L~(-1), stability and interference immunity.
     4.3-D nanomaterial, nanosheet-based TiO_2microspheres with a hollowcore-shell structure, have been synthesized and employed to immobilize HRPin order to fabricate a mediator-free biosensor. The morphology and structureof the TiO_2microspheres were characterized by XRD, SEM and TEM. Apossible growth mechanism has been proposed. Spectroscopic andelectrochemical measurements revealed that the TiO_2microspheres are animmobilization support with biocompatibility for enzymes, affording goodenzyme stability and bioactivity. Due to the nanosheet-based hollow core-shellstructure of the TiO_2microspheres, the direct electron transfer of HRP isfacilitated and the resulting biosensor displayed good performance for thedetection of H_2O_2, with both a low detection limit of0.05μmol·L~(-1)and a widelinear range from0.4to140μmol·L~(-1).
     5.3-D nanomaterial, interlaced nanosheet-based Co(OH)_2porous film, havebeen successfully fabricated by one-step cathodic electrodeposition method.Hb was successfully immobilized on a GC electrode modified by interlacednanosheet-based3-D acroporous Co(OH)_2films. The nanosheet-likemorphologies of Co(OH)_2were observed by SEM. UV-Vis spectra reveal thatHb immobilized on the Co(OH)_2film almost retains its native structure. A fast direct electron transfer is achieved between Hb and underlying electrode withan average electron transfer rate of8.34s1. The resulting biosensor exhibitsgood performance for the detection of H_2O_2, with a wide linear range from0.4to200μM,low detection limit of0.2μM, high sensitivity of743.67μA mM-1cm-2, excellent stability and reproducibility.
引文
[1]司士辉.生物传感器[M].第一版.北京:化学工业出版社,2003.1
    [2] Hévenot D R, Toth K, Durst R A, Wilson G S. Electrochemical biosensors: recommendeddefinitions and classification [J]. Anal. Lett.,2001,34:635-658
    [3]张先恩.生物传感器[M].第一版.北京:化学工业出版社,2006.7
    [4]张玲.无机纳米材料、溶胶凝胶材料在电化学生物传感器中的研究[D].合肥:中国科学技术大学,2007
    [5] Clark L C Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascularsurgery [J]. Ann. NY Acad. Sci.,1962,102:29-45
    [6] Updike S J, Hicks J P. Enzyme electrode [J]. Nature1967,214,986-988
    [7] Guilbault G G, Montalvo J G. A Urea-Specific Enzyme Electrode [J]. J. Am. Chem. Soc.,1969,91:2164-2165
    [8]杨秀双.基于无机层状纳米材料的新型电化学生物传感器的研究[D].北京:北京化工大学,2008
    [9]陈旭.新型安培生物传感器的研制[D].长春:中国科学院长春应用化学研究所,2002
    [10]张亚辉.基于无机纳米片构筑第三代电化学生物传感器的研究[D].北京:北京化工大学,2008
    [11] Fan C H, Wagner G, Li G X. Effect of dimethyl sulfoxide on the electron transferreactivity of hemoglobin [J]. Bioelectrochemistry,2001,54:49-51
    [12] Hinnen C, Parsons R and Niki K. Electrochemical and spectroreflectance studies of theadsorbed horse heart cytochrome c3from D. Vulgaris, miyazaki strain, at gold electrode[J]. J. Electroanal. Chem.,1983,147:329-337
    [13] Brown K R, Fox A P, Natan M J. Morphology-Dependent electrochemistry of cytochromec at Au colloid-modified SnO2electrodes [J]. J. Am. Chem. Soc.,1996,118:1154-1157
    [14] Eddowes M J, Hill H A O, Novel method for the investigation of the electrochemistry ofmatallopoteins: cytochrome c [J]. J. Chem. Soc. Chem. Commun.,1977,21,771-772
    [15] Yeh P, Kuwana T. Reversible electrode reaction of cytochrome c [J]. Chem. Lett.,1977,6:1145-1148
    [16] Lu H Y, Hu N F. Salt-induced swelling and electrochemical property change of hyaluronicacid/myoglobin multilayer films [J]. J. Phys. Chem. B,2007,111:1984-1993
    [17] Kendrew J C, Dicherson R E, Strandberg B E, Hart R G, Davies D R, Phillips D C, ShoreV C. Structure of myoglobin: a three-dimensional fourier synthesis at2. Resolution [J].Nature,1960,185:422-427
    [18]董绍俊,车广礼,谢远武.化学修饰电极[M].修订版.北京:科学出版社,2003.456-463
    [19] Hu Y, Hu N, Zeng Y. Electrochemistry and electrocatalysis with myoglobin inbiomembrane-like surfactant-polymer2C12N+PA-composite films [J]. Talanta,2000,50:1183-1195
    [20] Wang L W, Hu N F. Electrochemistry and Electrocatalysis with Myoglobin inBiomembrane-Like DHP-PDDA Polyelectrolyte-Surfactant Complex Films [J]. J. ColloidInterface Sci.,2001,236:166-172
    [21] Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobinimmobilized on a hexagonal mesoporous silica matrix [J]. Anal. Biochem.,2004,332:23-31
    [22] Zhang L, Zhang Q, Li J H. Direct electrochemistry and electrocatalysis of hemoglobinimmobilized in bimodal mesoporous silica and chitosan inorganic-organic hybrid film [J].Electroehem.Commun.,2007,9:1530-1535
    [23] Weissbluth, M. Molecular Biology [M]. Springer-Verlag: New York,1974,15
    [24] Xu Y X, Wang F, Chen X X, Hu S S. Direct electrochemistry and electrocatalysis ofheme-protein based on N,N-dimethylformamide film electrode [J]. Talanta,2006,70:651-655
    [25] Lu Q, Xu J H, Hu S S. Studies on the direct electrochemistry of hemoglobin immobilizedby yeast cells. Chem. Commun.,2006,27:2680-2682
    [26] Han X, Cheng W, Zhang Z, Dong S, Wang E. Direct transfer between hemoglobin and aglassy carbon electrode facilitated by lipid-protected gold nanoparticles [J]. Biochim.Biophys. Acta,2002,1556:273-277
    [27] Ruzgas T, Csoregi E, Emneus J, Gorton L, Marko-Varga G. Peroxidase-modifiedelectrodes:Fundamentals and application [J]. Anal. Chim. Acta,1996,230:123-138
    [28] Welinder K G. Amino acid sequence studies of horseradish peroxidase. Amino andcarboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, andsome structural characteristics of horseradish peroxidase C [J]. Eur. J. Biochem.,1979,96:483-502
    [29] Liu Z M, Dubremetz J F, Richard V, Yang Q, Xu Z K, Seta P. Useful method for the spatiallocalization determination of enzyme (peroxidase) distribution on microfiltrationmembrane [J]. J. Membr. Sci.,2005,267:2-7
    [30] Chen X, Ruan C, Kong J, Deng J. Characterization of the direct electron transfer andbioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode[J]. Anal. Chim. Acta,2000,412:89-98
    [31] Shan D, Cosnier S, Mousty C. HRP wiring by redox active layered double hydroxides:application to the mediated H2O2dectection [J]. Anal. Letter.,2003,36:909-922
    [32] Shan D, Cosnier S, Mousty C. HRP/[Zn-Cr-ABTS] redox clay-based biosensor: designand optimization for cyanide detection [J]. Bisens. Bioelectron.,2004,20:390-396
    [33]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术,2002,21(11):61-64
    [34] Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I."Plugging into Enzymes": Nanowiringof redox enzymes by a gold nanoparticle [J]. Science,2003,299:1877-1881
    [35] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochromec at Au collide-modified SnO2electrodes [J]. J. Am. Chem. Soc.,1996,118:1154-1157
    [36] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradishperoxidase-labeled Au colloids immobilized on gold electrode surface by cysteaminemonolayer [J]. Anal. Chim. Acta.,1999,391:73-82
    [37] Xiao Y, Ju H Y, Chen H Y. Direct electrochemistry of horseradish peroxidase immobilizedon a colloid/cysteamine-modified gold electrode [J]. Anal. Biochem.,2000,278:22-28
    [38] Ju H X, Liu S Q, Ge B, Lisdat F, Scheller F W. Electrochemistry of cytochrome cimmobilized on colloid gold modified carbon paste electrodes and its electrocatalyticactivity [J]. Electroanal.,2002,14:141-147
    [39] Liu S Q, Ju H X. Rengentless Glucose biosensor based on direct electron transfer ofglucose oxidase immobilized colloidal gold modified carbon paste electrode [J]. Biosens.Bioelectron.,2003,19,177-183
    [40] Liu S Q, Ju H X. Renewable reagentless hydrogen peroxide sensor based on directelectron transfer of horseradish peroxidase immobilized on collodial gold-modifiedelectrode [J]. Anal. Biochem.,2002,307:110-116
    [41] Liu S Q, Ju H X. Nitrite reduction and detection at a carbon paste electrode containinghemoglobin and colloidal gold [J]. Analyst,2003,128:1420-1424
    [42] Liu S Q, Ju H X. Electrocatalysis via direct electrochemistry of myoglobin immobilizedonon colloidal gold nanoparticals [J]. Electroanalysis,2003,15:1488-1493
    [43] Gan X, Liu T, Zhong J, Liu XJ, Li GX. Effect of silver nanoparticles on the electrontransfer reactivity and the catalytic activity of myoglobin[J]. Chem. Bio. Chem.,2004,5:1686-1691
    [44] Zhao S, Zhang K, Sun YY, Sun CQ. Hemoglobin/colloidal silver nanoparticlesimmobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry andelectrocatalysis [J]. Bioelechem.,2006,69:10-15
    [45] Xu YX, Hu CG, Hu SS. A hydrogen peroxide biosensor based on direct electrochemistryof hemoglobin in Hb-Ag films [J]. Sens. Actuators B: Chem.,2008,130:816-822
    [46] Salimi A, Hallaj R, Soltanian S. Immobilization of hemoglobin on electrodepositedcabalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity[J]. Biophys.Chem.,2007,130:122-131
    [47] Shi M, Xu J, Zhang S, Liu B, Kong J. A mediator-free screen-printedamperometric biosensor for screening of organophosphorus pestieides withflow-injection anlalysis (FIA) system [J]. Talanta,2006,68:1089-1095
    [48] Viticoli M, Curulli A, Cusma A, Kaciulis S, Nunziante S, Pandolfi L, Valentini F, PadelettiG. Third-generation biosensors based on TiO2nanostructured films[J]. Mater. Sci. Eng. C,2006,26:947-951
    [49] Topoglidis E, Campbell CJ, Cass AEG, Durrant JR. Nitric oxide biosensors based on theimmobilization of hemoglobin on mesoporous titania electrodes[J]. Electroanal.,2006,18:882-887
    [50] Luque G L, Rodriguez M C, Rivas G A. Glucose biosensors based on theimmobilization of copper oxide and glucose oxidase within: a earbon pastematrix [J]. Talanta,2005,66:467-471
    [51] Zhao G, Xu J J, Chen H Y. Fabrication,characterization of Fe3O4multilayerfilm and its application in promoting direct electron transfer of hemoglobin [J].Electrochem Commun.,2006,8:148-154
    [52] Zhu XL, Yuri I, Gan X, Suzuki I, Li GX. Electrochemical study of the effect of nano-zincoxide on microperoxidase and its application to more sensitive hydrogen peroxidebiosensor preparation[J]. Biosens. Bioelectron.,2007,22:1600-1604
    [53] Yang H, Zhu Y. A high performance glucose biosensor enhanced via nanosizedSiO2[J]. Anal Chim.Acta.,2005,554:92-97
    [54] Lvov Y, Munge B, Giraldo O, Ichinose I, Suib SL, Rusling JF. Films of manganese oxidenanoparticles with polycations or myoglobin from alternate-layer adsorption[J]. Langmuir,2000,16:8850-8857
    [55] Xu J J, Luo X L, Du Y, Chen H Y. Application of MnO2nanoparticles as an eliminator ofascorbate interence to amperometric glucose biosensor [J]. Eleetrochem.Commun.,2004,6:1169一1173
    [56] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Direct voltammetry and electrocatalyticproperties of hemoglobin immobilized on a glassy carbon electrode modified with nickeloxide nanoparticles [J]. Electrochem. Commun.,2006,8:1499-1508
    [57] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Direct electrochemistry andelectrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islandsof nickel oxide [J]. Biophys. Chem.,2007,125:540-548
    [58] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Immobilization of glucose oxidase onelectrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalyticactivity [J]. Biosens. Bioelectron.,2007,22:3146-3153
    [59] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobinadsorbed onto electrodeposited mesoporous tungsten oxide [J]. Electrochem. Commun.,2006,8:77-82
    [60] Zhao G, Feng J J, Xu J J, Chen H Y. Direct electrochemistry and electrocatalysis of hemeproteins immobilized on self-assembled ZrO2film [J]. Electrochem. Commun.,2005,7:724-729
    [61] Zong S Z, Cao Y, Zhou Y M, Ju H X. Zirconia nanoparticles enhanced grafted collagentri-helix scaffold for unmediated biosensing of hydrogen peroxide [J]. Langmuir,2006,22:8915-8919
    [62] Zong S Z, Cao Y, Zhou Y M, Ju H X. Reagentless biosensor for hydrogen peroxide basedon immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix[J]. Biosens. Bioelectron.,2007,22:1776-1782
    [63] Michalet X, Pinaud F, Lacoste T D. Properties of fluorescent semiconductornanocrystals and their application to biological labeling [J]. Single Molecules,2001,261-276
    [64] Ozkan M Quantum dots and other nanoparticles: what can they offer to drugdiscovery [J]. Drug Discov. Today,2004,9:1065-1071
    [65]张谦.基于纳米材料和氧化还原蛋白质的生物复合材料的组装和应用[D].合肥:中国科学技术大学,2007
    [66] Klostranec J M, Chan W C W. Quantum dots in biological and biomedical research: recentprogress and present challenges [J]. Adv. Mater.,2006,18:1953-1964
    [67] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018
    [68] Nann T. Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranchedpolyethylenimine [J]. Chem. Commun.,2005,13:1735-1736
    [69] Lakowicz J R, Grycznski I, Gryczynski Z, Nowaczyk K, Murphy C J. Time-resolvedspectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effectsof DNA oligomer binding [J]. Anal. Biochem.,2000,280:128-136
    [70] Huang Y X, Zhang W J, Xiao H, Li G X. An electrochemical investigation of glucoseoxidase at a CdS nanoparticles modified electrode [J]. Biosens. Bioelectron.,2005,21:817-821
    [71] Shi C G, Xu J J, Chen H Y. Electrogenerated chemiluminescence and electrochemicalbi-functional sensors for H2O2based on CdS nanocrystals/hemoglobin multilayers [J]. J.Electroanal. Chem.,2007,610:186-192
    [72] Xu Y X, Liang J G, Hu C G, Wang F, Hu S S, He Z K. A hydrogen peroxide biosensorbased on the direct electrochemistry of hemoglobin modified with quantum dots [J]. J.Biol. Inorg. Chem.,2007,12:421-427
    [73] Du D, Chen S Z, Song D D, Li H B, Chen X. Development of acetylcholinesterasebiosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheresinterface [J]. Biosens. Bioelectron.,2008,24:475-479
    [74] Liu M C, Shi G Y, Zhang L, Cheng Y X, Jin L T. Quantum dots modified eleetrode and itsapplication in electroanalysis of hemoglobin [J]. Electrochem. Commun.,2006,8:305-310
    [75] Lu Q, Hu S S, Pang D W, He Z K. Direct electrochemistry and electrocatalysis withhemoglobin in water-soluble quantum dots film on glassy carbon electrode[J]. Chem.Commun.,2005,20:2584-2585
    [76] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,345:56-58
    [77] Musameh M, Wang J, Merkoci A, Lin Y. Low-potential stable NADH detection atcarbon-nanotube-modified glassy carbon electrodes[J]. Electrochem. Commun.,2002,4:743-746
    [78] Zhao Q, Gan Z H, Zhuang Q K. Electrochemical sensors based on carbon nanotubes [J].Electroanalysis,2002,14:1609-1613
    [79] Gooding J J, Wibowo R, Liu J Q; Yang W, Losic D, Orbons S, Mearns F J, Shapter J G,Hibbert D B. Protein electrochemistry using aligned carbon nanotube arrays [J]. J. Am.Chem. Soc.,2003,125,9006-9007
    [80] Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling J F. Peroxidaseactivity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes.Electrochem. Commun.,2003,5:408-411
    [81] Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes bySWCNT connectors. Angew. Chem. Int. Edition,2004,43:2113-2117
    [82] Guiseppi-Elie A, Lei C, Baughman R H. Direct electron transfer of glucose oxidase oncarbon nanotubes. Nanotechnology,2002,13:559-564
    [83] Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L. Bioelectrochemically functionalnanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes:Facilitated electron transfer of assembled proteins with enhanced faradic response.Langmuir,2005,21:6560-6566
    [84] Li Y M, Zhang Q, Li J H. Direct electrochemistry of hemoglobin immobilized in CuOnanowire bundles.[J]. Talanta,2010,83:162-166
    [85] Liu A H, Wei M D, Honma I, Zhou H S. Direct electrochemistry of myoglobinimmobilized in titanate nanotube film. Anal. Chem.,2005,77:8068-8074
    [86]迟宝珠.纳米材料的制备及其在电化学生物传感器中的应用[D].长沙:湖南大学,2009.
    [87] Mu C, Zhao Q, Xu D S, Zhuang Q K, Shao Y H. Silicon nanotube array/gold electrode fordirect electrochemistry of cytochrome c [J]. J. Phys. Chem.,2007,111:1491-1495
    [88] Lu Y H, Yang M H, Qu F L, Shen G L. Enzyme-functionalized gold nanowires for thefabrication of biosensors [J]. Bioelectrochemistry,2007,71:211-216
    [89] Yang M H, Qu F L, Lu Y H, He Y, Shen G L, Yu R Q. Platinum nanowire nanoelectrodearray for the fabrication of biosensors [J]. Biomaterials,2006,27:5944-5950
    [90] Kumar C V, Chaudhari A. Efficient renaturation of immobilized met-hemoglobin at thegalleries of α-zirconium phosphonate [J]. Chem. Mater.,2001,13:238-240
    [91] Zhang L, Zhang Q, Lu X H, Li J H. Direct electrochemistry and electrocatalysis based onfilm of horseradish peroxidase intercalated into layered titanate nano-sheets [J]. Biosens.Bioelectron.,2007,23:102-106
    [92] Zhang L, Zhang Q, Li J H. Layered titanate nanosheets intercalated with myoglobin fordirect electrochemistry [J]. Adv. Funct. Mater.,2007,17:1958-1965
    [93] Chen X, Fu C L, Wang Y, Yang W S, Evans D G. Direct electrochemistry andelectroatalysis based on film of horseradish peroxidase intercalated into Ni-Al layereddouble hydroxide nanosheets [J]. Biosens. Bioelectron.,2008,24:356-361
    [94] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Graphene Based Electrochemicalsensors and Biosensors: A Review [J]. Electroanalysis,2010,22:1027-1036
    [95] Novoselov K, Geim, A, Morozov S, Jiang, D, Zhang Y, Dubonos S, Grigorieva I, FirsovA. Electric field effect in atomically thin carbon films [J]. Science,2004,306:666-669
    [96] Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsicstrength of monolayer grapheme [J].Science,2008,321:385-388
    [97]褚颖,刘娟,方庆.碳材料石墨烯及在电化学电容器中的应用[J].电池,2009,39:220-221
    [98]代波,邵晓萍,马拥.新型碳材料--石墨烯的研究进展[J].材料导报:综述篇,2010,24:17-21
    [99]陈志华,葛玉卿,金庆辉,柳建设,赵建龙.石墨烯复合修饰电极的电化学应用[J].化学传感器,2010,30:9-13
    [100] Emtsev K V, Speck F, Seyller Th, Ley L. Interaction, growth, and ordering of epitaxialgraphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study [J].Phys. Rev. B,2008,77:155303-155312
    [101] Pumera M. Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage[J].The Chemical Record,2009,9:211-223
    [102]黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学编辑:化学,2009,39:887-896
    [103]杜庆来,张立逢,郑明波.功能型单层石墨烯的热剥离法制备及其超电容性能[J].化学研究,2010,21:18-23
    [104] Park S J, Ruoff R S. Chemical methods for the production of graphenes [J]. NatureNanotechnology,2009,4:217-224
    [105] Lin W J, Liao C S, Jhang J H, Tsai Y C. Graphene modified basal and edge plane pyrolyticgraphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamideadenine dinucleotide [J]. Electrochem. Commun.,2009,11:2153-2156
    [106] Shan C, Yang H, Song J, Han D, Ivaska A, Niu L. Direct electrochemistry of glucoseoxidase and biosensing for glucose based on graphene [J]. Anal. Chem.,2009,81:2378-2382
    [107] Lu Q, Dong X C, Li L J, Hu X. Direct electrochemistry-based hydrogen peroxidebiosensor formed from single-layer graphene nanoplatelet–enzyme composite film [J].Talanta,2010,82:1344-1348
    [108] Lei C H, Lisdat F, Wollenberger U and Scheller F W. Cytochrome c clay-modifiedelectrode [J]. Electroanal.,1999,11:274-276
    [109] Fan C H, Zhang Y, Li G X, Zhu J Q, Zhu D X. Direct electrochemistry and enhancedcatalytic activity for hemoglobin in a sodium montmorillonite film [J]. Electroanalysis2000,12:1156-1158
    [110] Ikeda O, Ohtani M, Yamaguchi T and Komura T. Direct electrochemistry of cytochrome cat a glassy carbon electrode covered with a microporous alumina membrane [J].Electrochim. Acta,1998,43:833-839
    [111] Liu B, Hu R, Deng J. Characterization of immobilization of an enzyme in a modified Yzeolite matrix and its application to an amperometric glucose biosensor [J]. Anal.Chem.,1997,69:2343-2348
    [112] Dai Z, Liu S, Ju H. Direct electron transfer of cytochrome c immobilized on a NaY zeolitematrix and its application in biosensing [J]. Electrochim. Acta,2004,49:2139-2144
    [113] Roli D R. Zeolite-modified electrodes and electrode-modified zeolites [J]. Chem. Rev.1990,90:867-878
    [114]鞠熀先.电分析化学与生物传感技术[M].第一版.北京:科学出版社,2006.275-276
    [115] Kotte H, Grundig B, Vorlop K D, Strehlitz B, Stottmeister U.Methylphenazonium-modified enzyme sensor based on polymer thick films forsubnanomolar detection of Phenols [J]. Anal. Chem.,1995,67:65-70
    [116] Dai Z H, Liu S Q, Ju H X. Direct electron transfer of cytochrome c immobilized on a NaYzeolite matrix and its application in biosensing [J]. Electrochim. Acta.,2004,49:2139-2144
    [117] Dai Z H, Chen H Y, Ju H X. Mesoporous materials promoting direct electrochemistry andelectrocatalysis of horseradish peroxidase [J]. Electroanal.,2005,17:862-868
    [118] Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobinimmobilized on a hexagonal mesoporous silica matrix [J]. Anal. Biochem.,2004,332:23-31
    [119] Dai Z H, Liu S Q, Ju H X, Chen H Y. Direct electron transfer and enzymatic activity ofhemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens. Bioelectron.,2004,19:861-867
    [120] Dai Z H, Xu X X, Wu L N, Ju H X. Detection of trace phenol based on mesoporous silicaderived tyrosinase-peroxidase biosensor [J]. Electroanal.,2005,17:1571-1577
    [121] Zhu A, Tian Y, Liu H Q, Luo Y Q. Nanoporous gold film encapsulating cytochrome c forthe fabrication of a H2O2biosensor [J]. Biomaterials,2009,30:3183-3188
    [122] Ben-Ali S, Cook D A, Evans S A G, Thienpont A, Bartlett P N, Kuhn A. Electrocatalysiswith monolayer modified highly organized macroporous electrodes [J]. Electrochem.Commun.,2003,5:747-751
    [123] Ben-Ali S, Cook D A, Bartlett P N, Kuhn A. Bioelectrocatalysis with modified highlyordered macroporous electrodes [J]. J. Electroanal. Chem.,2005,579:181-187
    [124] Wei N N, Xin X, Du J Y, Li J L. A novel hydrogen peroxide biosensor based on theimmobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM)gold-nanoparticle-doped titanium dioxide (GTD) film [J]. Biosens. Bioelectron.,2011,26:3602-3607
    [125] Cao H, Zhu Y, Tang L, Yang X, Li C. A glucose biosensor based on immobilization ofglucose oxidase into3D macroporous TiO2[J]. Electroanal.,2008,20:2223-2228
    [126] Qiu J D, Peng H Z, Liang R P, Xiong M. Preparation of three‐dimensional orderedmacroporous prussian blue film electrode for glucose biosensor application [J].Electroanal.,2007,19:1201-1206
    [127] Zhu Y H, Cao H M, Tang L H, Yang X L, Li C Z. Immobilization of horseradishperoxidase in three-dimensional macroporous TiO2matrices for biosensor application [J].Electrochim. Acta,2009,54:2823–2827
    [128] Li J L, Han T, Wei N N, Du J Y, Zhao X W. Three-dimensionally ordered macroporous(3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modifiedelectrodes for hydrogen peroxide biosensor [J]. Biosens. Bioelectron.,2009,25:773-777
    [129] Qian W P, Gu Z Z, Fujishima A, Sato O. Three-dimensionally ordered macroporouspolymer materials: an approach for biosensor applications [J]. Langmuir,2002,18:4526-4529
    [130] Chen H H, Suzuki, Sato O, Gu Z Z. Biosensing capability ofgold-nanoparticle-immobilized three-dimensionally ordered macroporous film [J]. Appl.Phys. A,2005,81:1127–1130
    [131] Lu X B, Zhang H J, Ni Y W, Zhang Q, Chen J P. Porous nanosheet-based ZnOmicrospheres for the construction of direct electrochemical biosensors [J]. Biosens.Bioelectron.,2008,24:93-98
    [132] Dai Z H, Shao G J, Hong J M, Bao J C, Shen J. Immobilization and directelectrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnOnanostructure for a glucose biosensor [J]. Biosens. Bioelectron.,2009,24:1286-1291
    [133] Yang Z, Zong X L, Ye Z Z, Zhao B H, Wang Q L, Wang P. The application of complexmultiple forklike ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxidebiosensors [J]. Biomaterials,2010,31:7534-7541
    [134] Sattarahmady N, Heli H, Moosavi-Movahedi A A. An electrochemical acetylcholinebiosensor based on nanoshells of hollow nickel microspherescarbon microparticles-Nafionnanocomposite [J]. Biosens. Bioelectron.,2010,25:2329-2335
    [135] Chen S, Yuan R, Chai Y, Yin B, Li W, Min L. Amperometric hydrogen peroxide biosensorbased on the immobilization of horseradish peroxidase on core–shellorganosilica@chitosan nanospheres and multiwall carbon nanotubes composite [J].Electrochim. Acta,2009,54:3039-3046
    [136] Peng H P, Liang R P, Zhang L, Qiu J D. Sonochemical synthesis of magnetic core–shellFe3O4@ZrO2nanoparticles and their application to the highly effective immobilization ofmyoglobin for direct electrochemistry [J]. Electrochim. Acta,2011,56:4231-4236
    [137] Qiu J D, Peng H P, Liang R P, Xia X H. Facile preparation of magnetic core–shellFe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J]. Biosens.Bioelectron.,2010,25:1447-1453
    [138] Laviron E. General expression of the linear potential sweep voltammogram in the case ofdiffusionless electrochemical systems [J]. J. Electroanal. Chem.,1979,101:19-28
    [139] Liu H H, Tian Z Q, Lua Z X, Zhang Z L, Zhang M, Pang D W. Direct electrochemistryand electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosens.Bioelectron.,2004,20:294-304
    [140] Nassar, A E F, Zhang Z, Hu N, Rusling J F. Proton-Coupled Electron Transfer fromElectrodes to Myoglobin in Ordered Biomembrane-Like Films [J]. J. Phys. Chem. B,1997,101:2224-2231
    [141] Lu HY, Hu NF. Loading behavior of {chitosan/hyaluronic acid}nlayer-by-layer assemblyfilms toward myoglobin: an electrochemical study [J]. J. Phys. Chem. B,2006,110:23710-23718
    [142] Wang GX, Lu HY, Hu NF. Electrochemically and catalytically active layer-by-layer filmsof myoglobin with zirconia formed by vapor-surface sol-gel deposition[J]. J. Electroanal.Chem.,2007,599:91-99
    [143] Lu HY, Yang J, Rusling JF, Hu NF. Vapor-surface sol-gel deposition of titania alternatedwith protein adsorption for assembly of electroactive, enzyme-active films[J].Electroanalysis,2006,18:379-390
    [144] Zhou YL, Li Z, Hu NF, Zeng YH, Rusling JF. Layer-by-layer assembly of ultrathin filmsof hemoglobin and clay nanoparticles with electrochemistry and catalytic activity[J].Langmuir,2002,18:8573-8579
    [145] He PL, Hu NF. Electrocatalytic properties of heme proteins in layer-by-layer filmsassembled with SiO2nanoparticles[J]. Electroanalysis,2004,16:1122-1131
    [146] Guo W, Lu HY, Hu NF. Comparetive bioelectrochemical study of two types of myoglobinlayer-by-layer films with alumina: vapor-surface sol-gel deposited Al2O3films versusAl2O3nanoparticles films[J]. Electrochim. Acta,2006,52:123-132
    [147] Sun H, Hu NF. Electroactive layer-by-layer films of heme protein-coated polystyrene latexbeads with poly(styrene sulfonate)[J]. Analyst,2005,130:76-84
    [148] Zhang Y, Chen X, Yang W. Direct electrochemistry and electrocatalysis of myoglobinimmobilized in zirconium phosphate nanosheets film [J]. Sensors Actuators B,2008,130:682-688
    [149]沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394
    [150] C.X. Cai, J. Chen. Direct electron transfer and bioelectrocatalysis of hemoglobin at acarbon nanotube electrode [J]. Anal. Biochem.,2004,325:285-292
    [151] Lu X B, Zhou J H, Lu W, Liu Q, Li J H. Carbon nanofiber-based composites for theconstruction of mediator-free biosensors [J]. Biosens. Bioelectron.,2008,23:1236-1243
    [152] Lu Q, Zhou T, Hu S S. Direct electrochemistry of hemoglobin in PHEA and its catalysisto H2O2[J]. Biosens. Bioelectron.,2007,22:899-904
    [153] Yu J, Ma J, Zhao F, Zeng B. Direct electron-transfer and electrochemical catalysis ofhemoglobin immobilized on mesoporous Al2O3[J]. Electrochim. Acta,2007,53:1995-2001
    [154] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. Mesoporous titaniaspheres with tunable chamber structure and enhanced photocatalytic activity [J]. J AmChem Soc2007;129:8406–8407
    [155] Cui Y M, Liu L, Li B, Zhou X F, Xu N P. Fabrication of tunable core-shell structrued TiO2mesoporous microspheres using linear polymer polyethylene glycol as templates [J]. J.Phys. Chem. C,2010,114:2434–2439
    [156] Tang Y F, Yang L, Fang S H, Qiu Z. Li4Ti5O12hollow microspheres assembled bynanosheets as an anode material for high-rate lithium ion batteries [J]. Electrochim. Acta,2009,54:6244–6249
    [157] Xiao X L, Luan Q F, Yao X, Zhou K B. Single-crystal CeO2nanocubes used for the directelectron transfer and electrocatalysis of horseradish peroxidase [J]. Biosens. Bioelectron.,2009,24:2447–2451
    [158] Wu F H, Xu J J, Tian Y, Hu Z C, Wang L W, Xian Y Z, Jin L T. Direct electrochemistry ofhorseradish peroxidase on TiO2nanotube arrays via seeded-growth synthesis [J]. Biosens.Bioelectron.,2008,24:198–203
    [159] Wang Y, Ma X L, Wen Y, Xing Y Y, Zhang Z R, Yang H F. Direct electrochemistry andbioelectrocatalysis of horseradish perxidase based on gold nano-seeds dotted TiO2nanocomposite [J]. Biosens. Bioelectron.,2010,25:2442–2446
    [160] Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2nanoparticle filmson pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [J].Electrochim. Acta,2004,49:1981–1988
    [161] Yu J H, Ju H X. Preparation of porous titania sol-gel matrix for immobilization ofhorseradish peroxidase by a vapor deposition method [J]. Anal. Chem.,2002,74:3579-3583.
    [162] Kafi A K M, Wu G S, Chen A C. A novel hydrogen peroxide biosensor based on theimmobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotubearrays[J]. Biosens. Bioelectron.,2008,24:566–571
    [163] Zhou W J, Zhang J, Xue T, Zhao D D, Li H L. Electrodeposition of ordered mesoporouscobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J]. J. Mater.Chem.,2008,18:905-910
    [164] Zhang H, Xu J J, Chen H Y, Electrochemically deposited2D nanowalls of calciumphosphate-PDDA on a glassy carbon electrode and their applications in biosensing [J]. J.Phys. Chem. C,2007,111:16564–16570
    [165] Zheng N, Zhou X, Yang W, Li X, Yuan Z. Direct electrochemistry and electrocatalysis ofhemoglobin immobilized in a magnetic nanoparticles-chitosan film [J]. Talanta,2009,79:780–786
    [166] Wang Y, Chen X, Zhu J J. Fabrication of a novel hydrogen peroxide biosensor based onthe AuNPs–C@SiO2composite [J]. Electrochem. Commun.,2009,11:323–326
    [167] Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coatedmultiwalled carbon nanotubes and Nafion composite matrix [J]. Bioelectrochem.,2010,78:106–112
    [168] Zheng W, Zheng Y F, Jin K W, Wang N. Direct electrochemistry and electrocatalysis ofhemoglobin immobilized in TiO2nanotube films [J].Talanta,2008,74:1414–1419
    [169] Wei N, Xin X, Du J, Li J. A novel hydrogen peroxide biosensor based on theimmobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM)gold-nanoparticle-doped titanium dioxide (GTD) film [J]. Biosens. Bioelectron.,2011,26:3602–3607

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700