小麦赤霉病菌甲硫氨酸代谢途径中关键基因的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦赤霉病菌是农业生产上极为重要的植物病原菌之一,由其引起的小麦赤霉病是小麦和大麦上的主要病害之一,不仅对麦类粮食生产造成巨大的损失,而且病麦粒中含有多种毒素直接威胁人畜生命安全。近年来,小麦赤霉病菌对常用杀菌剂的抗性逐年加重,因此,迫切需要开发新药剂用于赤霉病的化学防治。甲硫氨酸的代谢在真菌的生长和致病等方面起重要作用,而且人和动物体内没有甲硫氨酸合成途径,因此,研究小麦赤霉病菌甲硫氨酸代谢途径中的关键元件对开发新型杀菌剂具有重要的理论和现实意义。
     本课题利用原生质体转化和农杆菌介导的真菌转化系统,通过基因敲除和互补的方法研究了小麦赤霉病菌甲硫氨酸合成途径上4个关键元件(胱硫醚γ-合成酶FgCGS、丝氨酸乙酰转移酶FgSAT、高丝氨酸乙酰转移酶FgHAT和胱硫醚β-裂解酶FgCBL)和氧化还原过程中3个关键元件(甲硫氨酸亚砜还原酶FgMsrA、 FgMsrB和FgfMsr)的生物学功能,结果发现:
     1) FgCGS、FgSAT、FgHAT和FgCBL的缺失突变体在PDA培养基上表现菌落变黄或气生菌丝减少。在FGA培养基上,FgCGS、FgHAT和FgCBL的缺失突变体表现甲硫氨酸营养缺陷型,外源添加1mM甲硫氨酸或0.5mg/ml高半胱氨酸可恢复它们的生长,而FgSAT的缺失不会引起甲硫氨酸营养缺陷,但使菌体的气生菌丝明显减少。产孢量测定发现,FgCGS、FgSAT和FgCBL缺失突变体在绿豆培养液中的产孢量与野生菌株没有显著差异,而FgHAT缺失突变体的产孢与营养有关。孢子萌发分析结果显示,在2%蔗糖水溶液中,FgCGS缺失突变体的孢子萌发率显著低于野生菌株,而添加1mM甲硫氨酸或0.5mg/ml高半胱氨酸后使孢子萌发率恢复正常;FgSAT缺失突变体的孢子萌发率比野生菌株稍低,没有显著变化。致病力测定发现,FgCGS、FgHAT和FgCBL的缺失突变体对小麦穗和番茄的致病力显著下降,而FgSAT缺失突变体的致病力没有明显变化。对FgCGS、FgHAT和FgCBL缺失突变体在麦穗培养基上的生长测定发现,与野生菌株相比,这些突变体的气生菌丝明显减少。Real-time PCR分析表明,编码毒素脱氧雪腐镰刀菌烯醇(DON)合成的基因Tri5表达量显著下降。对FgCGS缺失突变体中毒素DON合成量的进一步测定发现,与野生菌株相比,该突变体中DON的合成量下降了约4倍。对药剂敏感性的测定发现,与野生菌株相比,FgCGS, FgSAT, FgHAT和FgCBL的缺失突变体对嘧霉胺的敏感性都没有显著变化,这表明,FgCGS、FgSAT、FgHAT和FgCBL不可能为嘧霉胺在小麦赤霉病菌中的作用靶标。FgCGS和FgHAT的缺失突变体对DMI类药剂的敏感性显著增加,并通过Real-time PCR进一步验证发现,FgCGS缺失突变体中DMI类药剂靶标基因CYP51A/B/C的表达量下降。胁迫压力敏感性测定发现,FgCGS、FgSAT、FgHAT和FgCBL的缺失突变体对渗透压、氧化压力、细胞壁(膜)压力的敏感性与野生菌株没有显著差异。这些结果表明,FgCGS、FgSAT、 FgHAT和FgCBL在小麦赤霉病菌的生长发育和致病过程中起关键作用。
     2)对FgMsrA、FgMsrB和FgfMsr缺失突变体生长表型的测定发现,与野生菌株相比,这些突变体在PDA和FGA培养基上的生长正常,在绿豆培养液中的产孢也正常。致病力测定发现,FgMsrA、FgMsrB和FgfMsr缺失突变体在小麦穗和番茄上的致病力与野生菌株没有明显差异。药剂敏感性测定发现,与野生菌株相比,FgMsrA、FgMsrB和FgfMsr缺失突变体对嘧霉胺、DMI类药剂和多菌灵的敏感性都没有明显变化,这表明,FgMsrA、FgMsrB和FgfMsr不可能为嘧霉胺的作用靶标。氧化压力敏感性测定发现,FgMsrA、FgMsrB和FgfMsr缺失突变体对氧化压力的敏感性也没有明显变化,但在氧化压力下,FgMsrA、FgMsrB和FgfMsr基因的表达量显著上升,这些结果表明,FgMsrA、FgMsrB和FgfMsr在小麦赤霉病菌的生长发育和致病力方面的作用不明显,但可能参与菌体对氧化压力的反应过程。
Fusarium graminearum Schw. is the primary causal agent of Fusarium head blight (FHB) on wheat and barley. Infection of cereal crops with F. graminearum may lead to huge yield loss in severe epidemic years. More importantly, the trichothecene mycotoxins in infected grains pose a serious threat to human and animal health. Currently, emerging fungicide resistance of F. graminearum makes it urgent to explore new compounds for FHB management. Methionine metabolism has important roles in fungal growth, pathogenicity and et al. Moreover, methionine biosynthesis pathway is absent in non-ruminant animals, research on key elements of methionine metabolism in F. graminearum shall contribute to novel fungicide development.
     In this study, target gene disruption and complementary strategy were employed to investigate functions of four key methionine biosynthesis elements (cystathionine y-synthase FgCGS, serine acetyltransferase FgSAT, homoserine O-acetyltransferase FgHAT and cystathionine β-lyase FgCBL) and three key elements (methionine sulfoxide reductases, FgmsrA, FgmsrB and FgfMsr) involved in methionine oxidation and reduction in F. graminearum. Results of our study demonstrated that:
     1) Mycelial growth was tested in different conditions. On PDA, compared with wild-type parent, FgCGS, FgSAT, FgHAT and FgCBL deletion mutants showed yellowish or fewer aerial mycelia. On FGA, FgCGS, FgHAT and FgCBL deletion mutants could not grow without supplementation of ether methionine (1mM) or homocysteine (0.5mg/ml). FgSAT deletion mutant showed fewer aerial mycelia, though the radial growth was not distinct from that of wild-type parent. Conidiation assays indicated that FgCGS, FgSAT and FgCBL deletion mutants produced as many conidia as wild-type parent, while conidiation in FgHAT deletion mutant was determined by the nutrient of media. However, compared with wild-type parent, conidial germination rate of FgCGS deletion mutant in2%sucrose solution reduced significantly, but was rescued by supplementation of methionine (1mM) or homocysteine (0.5mg/ml). Conidial germination ability of FgSAT deletion mutant reduced a little. Inoculation tests showed that FgCGS, FgHAT and FgCBL deletion mutants exhibited decreased virulence significantly on wheat heads, while the virulence of FgSAT deletion mutant was comparable to wild-type parent. FgCGS, FgSAT, FgHAT and FgCBL deletion mutants showed fewer aerial mycelia in wheat ear culture, and expression of Tri5gene was decreased significantly, compared with wild-type parent. Deoxynivalenol (DON) production of FgCGS deletion mutant was4-fold less than wild-type parent. Fungicide evaluation assays revealed that sensitivity of FgCGS, FgSAT, FgHAT and FgCBL deletion mutants to anilinopyrimidine fungicide pyrimethanil was not altered, indicating that FgCGS, FgSAT, FgHAT and FgCBL are not likely to be the target of pyrimethanil in F. graminearum. FgCGS and FgHAT deletion mutants showed increased sensitivity to sterol demethylation inhibitors (DMI), which was consistent with a low level of CYP51A/B/C expression in FgCGS deletion mutant. Sensitivity to osmotic, oxidative and cell wall (membrane) stresses revealed that FgCGS, FgSAT, FgHAT and FgCBL deletion mutants did not show observable changes in mycelia growth compared to wild-type parent, which indicate FgCGS, FgSAT, FgHAT and FgCBL are not involved in these stress responses. These results indicate that FgCGS, FgSAT, FgHAT and FgCBL play important roles in the growth, conidiation and pathogenicity of F. graminearum.
     2) Mycelial growth tests showed FgMsrA, FgMsrB and FgfMsr deletion mutants had normal growth on PDA and FGA, and produced as many conidia in MBL medium as wild-type parent. Inoculation tests showed that the virulence of FgMsrA、FgMsrB and FgfMsr deletion mutants was comparable to wild-type parent. Fungicide sensitivity assays revealed that FgMsrA、FgMsrB and FgfMsr deletion mutants did not change the sensitivity to pyrimethanil, DMIs and carbendazim, indicating that FgMsrA、FgMsrB and FgfMsr may not be the target of pyrimethanil in F. graminearum. Oxidative stress sensitivity tests revealed that FgMsr A、FgMsr B and FgfMsr deletion mutants did not show observable changes in mycelia growth compared to wild-type parent. However, relative expression of FgMsr A、FgMsrB and FgfMs was increased significantly under oxidative stress. These results suggest that FgMsrA、FgMsrB and FgfMsr may be involed in oxidative stress reaction process of F. graminearum, though their roles in the growth, conidiation and pathogenicity are not obvious.
引文
Abid-Essefi, S., Ouanes, Z., Hassen, W., Baudrimont, I., Creppy, E. and Bacha, H. (2004) Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol In Vitro,18,467-474.
    Bai, G. H., Desjardins, A. E. and Plattner, R. D. (2001) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia,153,91-98.
    Balhadere, P. V., Foster, A. J. and Talbot, N. J. (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. MPMI,12,129-142.
    Barbey, R., Baudouin-Cornu, P., Lee, T. A., Rouillon, A., Zarzov, P., Tyers, M., et al. (2005) Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBOJ,24,521-532.
    Bechtold, U., Murphy, D. J. and Mullineaux, P. M. (2004) Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell,16,908-919.
    Bily, A. C., Reid, L. M., Savard, M. E., Reddy, R., Blackwell, B. A., Campbell, C. M., et al. (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia,157,117-126.
    Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., et al. (2004) Lessons from the genome sequence of Neurospora crassa:tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev,68,1-108.
    Boschi-Muller, S., Azza, S., Sanglier-Cianferani, S., Talfournier, F., Van Dorsselear, A. and Branlant, G. (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem,275, 35908-35913.
    Brennan, J. M., Fagan, B., Van Maanen, A., Cooke, B. M. and Doohan, F. M. (2003) Studies on in vitro growth and pathogenicity of European Fusarium fungi. European Journal of Plant Pathology,109,577-587.
    Brosnan, J. T. and Brosnan, M. E. (2006) The sulfur-containing amino acids:an overview. JNutr,136, 1636S-1640S.
    Brown, D. W., Butchko, R. A. and Proctor, R. H. (2006) Fusarium genomic resources:tools to limit crop diseases and mycotoxin contamination. Mycopathologia,162,191-199.
    Brown, D. W., Cheung, F., Proctor, R. H., Butchko, R. A., Zheng, L., Lee, Y., et al. (2005) Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet Biol,42,848-861.
    Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H. and Desjardins, A. E. (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol,36,224-233.
    Brzywczy, J., Kacprzak, M. M. and Paszewski, A. (2011) Novel mutations reveal two important regions in Aspergillus nidulans transcriptional activator MetR. Fungal Genet Biol,48, 104-112.
    Brzywczy, J., Sienko, M., Kucharska, A. and Paszewski, A. (2002) Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi. Yeast,19,29-35.
    Cabreiro, F., Picot, C. R., Perichon, M., Friguet, B. and Petropoulos, I. (2009) Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress. Antioxid Redox Signal,11,215-225.
    Cane, D. E. (1990) Enzymic formation of sesquiterpenes. Chem. Rev.,90,1089-1103.
    Chandler, E. A., Simpson, D. R., Thomsett, M. A. and Nicholson, P. (2003) Development of PCR assays to Tri7 and Tril3 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology,62,355-367.
    Chen, C, Wang, J., Luo, Q., Yuan, S. and Zhou, M. (2007) Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci,63, 1201-1207.
    Chen, C. J., Yu, J. J., Bi, C. W., Zhang, Y. N., Xu, J. Q., Wang, J. X., et al. (2009) Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology,99,1403-1411.
    Cherest, H. and Surdin-Kerjan, Y. (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae:updating of the sulfur metabolism pathway. Genetics,130,51-58.
    Cuomo, C. A., Guldener, U., Xu, J. R., Trail, F., Turgeon, B. G., Di Pietro, A., et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science,317,1400-1402.
    Czuj, T., Zuk, M., Starzycki, M., Amir, R. and Szopa, J. (2009) Engineering increases in sulfur amino acid contents in flax by overexpressing the yeast Met25 gene. Plant Science,177,584-592.
    Delye, C., Laigret, F. and Corio-Costet, M. F. (1997) A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol,63,2966-2970.
    Di Pietro, A., Garcia-Maceira, F. I., Meglecz, E. and Roncero, M. I. (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol,39,1140-1152.
    Ding, D., Sagher, D., Laugier, E., Rey, P., Weissbach, H. and Zhang, X. H. (2007) Studies on the reducing systems for plant and animal thioredoxin-independent methionine sulfoxide reductases B. Biochem Biophys Res Commun,361,629-633.
    Etienne, F., Spector, D., Brot, N. and Weissbach, H. (2003) A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem Biophys Res Commun,300,378-382.
    Frandsen, R. J., Albertsen, K. S., Stougaard, P., Sorensen, J. L., Nielsen, K. F., Olsson, S., et al. (2010) Methylenetetrahydrofolate reductase activity is involved in the plasma membrane redox system required for pigment biosynthesis in filamentous fungi. Eukaiyot Cell,9,1225-1235.
    Friguet, B. (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett, 580,2910-2916.
    Fritz, R., Lanen, C., Chapeland-Leclerc, F. and Leroux, P. (2003) Effect of the anilinopyrimidine fungicide pyrimethanil on the cystathionine β-lyase of Botiytis cinerea. Pesticide Biochemistiy and Physiology,77,54-65.
    Fu, Y. H., Paietta, J. V., Mannix, D. G. and Marzluf, G. A. (1989) cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol,9,1120-1127.
    Fujita, Y., Ukena, E., Iefuji, H., Giga-Hama, Y. and Takegawa, K. (2006) Homocysteine accumulation causes a defect in purine biosynthesis:further characterization of Schizosacchammyces pombe methionine auxotrophs. Microbiology,152,397-404.
    Fukushima, E., Shinka, Y., Fukui, T., Atomi, H. and Imanaka, T. (2007) Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J Bacteriol,189,7134-7144.
    Goswami, R. S. and Kistler, H. C. (2004) Heading for disaster:Fusarium graminearum on cereal crops. Mol Plant Pathol,5,515-525.
    Griffith, O. W. (1987) Mammalian sulfur amino acid metabolism:an overview. Methods Enzymol, 143,366-376.
    Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J., et al. (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem,276, 48915-48920.
    Grynberg, M., Topczewski, J., Godzik, A. and Paszewski, A. (2000) The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases. Microbiology,146 (Pt 10),2695-2703.
    Guenther, J. C., Hallen-Adams, H. E., Bucking, H., Shachar-Hill, Y. and Trail, F. (2009) Triacylglyceride metabolism by Fusarium graminearum during colonization and sexual development on wheat. Mol Plant Microbe Interact,22,1492-1503.
    Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C. and Visconti, A. (2005) Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and F. culmorum. Journal of Science in Food and Agriculture,85,191-198.
    Hallen, H. E., Huebner, M., Shiu, S. H., Guldener, U. and Trail, F. (2007) Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet Biol,44,1146-1156.
    Han, Y. K., Lee, T., Han, K. H., Yun, S. H. and Lee, Y. W. (2004) Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr Genet,46,205-212.
    Hansen, J. and Johannesen, P. F. (2000) Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet,263,535-542.
    Hollomon, D. W., Butters, J. A., Barker, H. and Hall, L. (1998) Fungal beta-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides. Antimicrob Agents Chemother,42,2171-2173.
    Jennings, P., Coates, M. E., Walsh, K., Turner, J. A. and Nicholson, P. (2004) Determination of deoxynivalenol-and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology,53,643-652.
    Jiang, J., Yun, Y, Fu, J., Shim, W. B. and Ma, Z. (2011) Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol Plant Pathol,12,425-436.
    Kanetis, L., Forster, H., Jones, C. A., Borkovich, K. A. and Adaskaveg, J. E. (2008) Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology,98,205-214.
    Kantorow, M., Hawse, J. R., Cowell, T. L., Benhamed, S., Pizarro, G. O., Reddy, V. N., et al. (2004) Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci U S A,101,9654-9659.
    Kaya, A., Koc, A., Lee, B. C., Fomenko, D. E., Rederstorff, M., Krol, A., et al. (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry,49,8618-8625.
    Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals:characterization of methionine-R-sulfoxide reductases. Mol Biol Cell,15,1055-1064.
    Kimura, M., Takahashi-Ando, N., Nishiuchi, T., Ohsato, S., Tokai, T., Ochiai, N., et al. (2006) Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination Pesticide Biochemistry and Physiology,86,117-123.
    Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S. and Fujimura, M. (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis:pathways, genes, and evolution. Biosci Biotechnol Biochem,71,2105-2123.
    Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and-independent components of aging. Proc Natl Acad Sci USA,101,7999-8004.
    Kuschel, L., Hansel, A., Schonherr, R., Weissbach, H., Brot, N., Hoshi, T., et al. (1999) Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). FEBS Lett,456,17-21.
    Le, D. T., Lee, B. C., Marino, S. M., Zhang, Y., Fomenko, D. E., Kaya, A., et al. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem,284,4354-4364.
    Lee, S. H., Kim, Y. K., Yun, S. H. and Lee, Y. W. (2008) Identification of differentially expressed proteins in a matl-2-deleted strain of Gibberella zeae, using a comparative proteomics analysis. Curr Genet,53,175-184.
    Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. (2002) Tril3 and Tri7 determine deoxynivalenol-and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol,68,2148-2154.
    Lee, T. A., Jorgensen, P., Bognar, A. L., Peyraud, C., Thomas, D. and Tyers, M. (2010) Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell,21,456-469.
    Leroux, P., Albertini, C., Gautier, A., Gredt, M. and Walker, A. S. (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci,63,688-698.
    Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., et al. (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci,58,876-888.
    Lin, Z., Johnson, L. C., Weissbach, H., Brot, N., Lively, M. O. and Lowther, W. T. (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A,104,9597-9602.
    Liu, X., Yu, F., Schnabel, G., Wu, J., Wang, Z. and Ma, Z. (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol,48,113-123.
    Liu, X. H., Lu, J. P., Zhang, L., Dong, B., Min, H. and Lin, F. C. (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell,6,997-1005.
    Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,25,402-408.
    Lo, S. C., Hamer, L. and Hamer, J. E. (2002) Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea. Eukaryot Cell,1,311-314.
    Luo, C. X. and Schnabel, G. (2008) The cytochrome P450 lanosterol 14alpha-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl Environ Microbiol,74,359-366.
    Ma, Z., Proffer, T. J., Jacobs, J. L. and Sundin, G. W. (2006) Overexpression of the 14alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol,72,2581-2585.
    Matityahu, I., Kachan, L., Bar Ilan, I. and Amir, R. (2006) Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress. Amino Acids,30,185-194.
    McDonald, T., Brown, D., Keller, N. P. and Hammond, T. M. (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact,18,539-545.
    Menant, A., Baudouin-Cornu, P., Peyraud, C., Tyers, M. and Thomas, D. (2006) Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. J Biol Chem,281, 11744-11754.
    Moskovitz, J., Berlett, B. S., Poston, J. M. and Stadtman, E. R. (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A,94, 9585-9589.
    Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. and Stadtman, E. R. (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A,95,14071-14075.
    Moskovitz, J., Poston, J. M., Berlett, B. S., Nosworthy, N. J., Szczepanowski, R. and Stadtman, E. R. (2000) Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem,275, 14167-14172.
    Moskovitz, J., Weissbach, H. and Brot, N. (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc Natl Acad Sci U S A,93,2095-2099.
    Natorff, R., Sienko, M., Brzywczy, J. and Paszewski, A. (2003) The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol,49,1081-1094.
    Naula, N., Walther, C., Baumann, D. and Schweingruber, M. E. (2002) Two non-complementing genes encoding enzymatically active methylenetetrahydrofolate reductases control methionine requirement in fission yeast Schizosaccharomyces pombe. Yeast,19,841-848.
    Nazi, I., Scott, A., Sham, A., Rossi, L., Williamson, P. R., Kronstad, J. W., et al. (2007) Role of homoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemother,51,1731-1736.
    Neiers, F., Kriznik, A., Boschi-Muller, S. and Branlant, G. (2004) Evidence for a new sub-class of methionine sulfoxide reductases B with an alternative thioredoxin recognition signature. J Biol Chem,279,42462-42468.
    O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H. and Aoki, T. (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol,41,600-623.
    Oien, D. and Moskovitz, J. (2007) Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids,32, 603-606.
    Oien, D. B., Osterhaus, G. L., Latif, S. A., Pinkston, J. W., Fulks, J., Johnson, M., et al. (2008) MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels. Free Radic Biol Med,45,193-200.
    Okubara, P. A., Blechl, A. E., McCormick, S. P., Alexander, N. J., Dill-Macky, R. and Hohn, T. M. (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet,106,74-83.
    Olry, A., Boschi-Muller, S., Yu, H., Burnel, D. and Branlant, G. (2005) Insights into the role of the metal binding site in methionine-R-sulfoxide reductases B. Protein Sci,14,2828-2837.
    Paietta, J. V. (2008) DNA-binding specificity of the CYS3 transcription factor of Neurospora crassa defined by binding-site selection. Fungal Genet Biol,45,1166-1171.
    Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuomo, C. A. and Walton, J. D. (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics,7,3171-3183.
    Parry, D. W., Jenkinson, P. and Mcleod, L. (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathology,44,207-238.
    Pascon, R. C., Ganous, T. M., Kingsbury, J. M., Cox, G. M. and McCusker, J. H. (2004) Cryptococcus neoformans methionine synthase:expression analysis and requirement for virulence. Microbiology,150,3013-3023.
    Paszewski, A., Natorff, R., Piotrowska, M., Brzywczy, J., Sienko, M., Grynberg, M., et al. (2000) Regulation of sulfur amino acid biosynthesis in Aspergillus nidulans:physiological and genetical aspects. In:Brunold C et al (eds) Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt Publishers, Bern,93-105.
    Pestka, J. J. and Smolinski, A. T. (2005) Deoxynivalenol:toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev,8,39-69.
    Picot, C. R., Moreau, M., Juan, M., Noblesse, E., Nizard, C., Petropoulos,I., et al. (2007) Impairment of methionine sulfoxide reductase during UV irradiation and photoagtng. Exp Gerontol,42, 859-863.
    Picot, C. R., Perichon, M., Cintrat, J. C., Friguet, B. and Petropoulos, I. (2004) The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett,558,74-78.
    Pirgozliev, S. R., Edwards, S. G., Hare, M. C. and Jenkinson, P. (2002) Effect of dose rate of azoxystrobin and metconazole on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in wheat grain. European Journal of Plant Pathology,108,469-478.
    Prentice, H. M., Moench, I. A., Rickaway, Z. T., Dougherty, C. J., Webster, K. A. and Weissbach, H. (2008) MsrA protects cardiac myocytes against hypoxia/reoxygenation induced cell death. Biochem Biophys Res Commun,366,775-778.
    Rahman, M. A., Moskovitz, J., Strassman, J., Weissbach, H. and Brot, N. (1994) Physical map location of the peptide methionine sulfoxide reductase gene on the Escherichia coli chromosome. J Bacteriol,176,1548-1549.
    Rahman, M. A., Nelson, H., Weissbach, H. and Brot, N. (1992) Cloning, sequencing, and expression of the Escherichia coli peptide methionine sulfoxide reductase gene. J Biol Chem,267, 15549-15551.
    Ramamoorthy, V., Zhao, X., Snyder, A. K., Xu, J. R. and Shah, D. M. (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol,9,1491-1506.
    Ravanel, S., Gakiere, B., Job, D. and Douce, R. (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A,95,7805-7812.
    Raymond, R. K., Kastanos, E. K. and Appling, D. R. (1999) Saccharomyces cerevisiae expresses two genes encoding isozymes of methylenetetrahydrofolate reductase. Arch Biochem Biophys, 372,300-308.
    Reimann, S. and Deising, H. B. (2005) Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4'-hydroxyflavone and enhancement of fungicide activity. Appl Environ Microbiol,71,3269-3275.
    Roje, S. (2006) S-Adenosyl-L-methionine:beyond the universal methyl group donor. Phytochemistry, 67,1686-1698.
    Rosen, H., Klebanoff, S. J., Wang, Y., Brot, N., Heinecke, J. W. and Fu, X. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci USA,106,18686-18691.
    Rouhier, N., Kauffmann, B., Tete-Favier, F., Palladino, P., Gans, P., Branlant, G., et al. (2007) Functional and structural aspects of poplar cytosolic and plastidial type a methionine sulfoxide reductases. J Biol Chem,282,3367-3378.
    Santos, C. V. D., Laugier, E., Tarrago, L., Massot, V., Bourguet, E., Rouhier, N., et al. (2007) Specicity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B. FEBS Lett,581,4371-4376.
    Sarver, B. A., Ward, T. J., Gale, L. R., Broz, K., Kistler, H. C., Aoki, T., et al. (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol,48,1096-1107.
    Schallreuter, K. U., Rubsam, K., Chavan, B., Zothner, C., Gillbro, J. M., Spencer, J. D., et al. (2006) Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus. Biochem Biophys Res Commun,342,145-152.
    Sekowska, A., Kung, H. F. and Danchin, A. (2000) Sulfur metabolism in Escherichia coli and related bacteria:facts and fiction. J Mol Microbiol Biotechnol,2,145-177.
    Seong, K., Hou, Z., Tracy, M., Kistler, H. C. and Xu, J. R. (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology,95,744-750.
    Seong, K. Y., Zhao, X., Xu, J. R., Guldener, U. and Kistler, H. C. (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol,45,389-399.
    Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H. and Lee, Y. W. (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact,19,725-733.
    Sienko, M., Natorff, R., Owczarek, S., Olewiecki, I. and Paszewski, A. (2009) Aspergillus nidulans genes encoding reverse transsulfuration enzymes belong to homocysteine regulon. Curr Genet,55,561-570.
    Sienko, M., Natorff, R., Zielinski, Z., Hejduk, A. and Paszewski, A. (2007) Two Aspergillus nidulans genes encoding methyl enetetrahydrofolate reductases are up-regulated by homocysteine. Fungal Genet Biol,44,691-700.
    Sizemore, S. T. and Paietta, J. V. (2002) Cloning and characterization of scon-3+, a new member of the Neurospora crassa sulfur regulatory system. Eukaryot Cell,1,875-883.
    Soriani, F. M., Kress, M. R., Fagundes de Gouvea, P., Malavazi, I., Savoldi, M., Gallmetzer, A., et al. (2009) Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and msrB). Fungal Genet Biol,46,410-417.
    St John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., et al. (2001) Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci U S A,98,9901-9906.
    Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., et al. (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol,44,1191-1204.
    Su, N. Y., Ouni,I., Papagiannis, C. V. and Kaiser, P. (2008) A dominant suppressor mutation of the met30 cell cycle defect suggests regulation of the Saccharomyces cerevisiae Met4-Cbf1 transcription complex by Met32. J Biol Chem,283,11615-11624.
    Suliman, H. S., Appling, D. R. and Robertus, J. D. (2007) The gene for cobalamin-independent methionine synthase is essential in Candida albicans:a potential antifungal target. Arch Biochem Biophys,467,218-226.
    Takagaki, M., Miura, I. and Nagayama, K. (2004) A method for monitoring the sensitivity of Botiytis cinerea to mepanipyrim. Journal of Pesticide Science,29,369-371.
    Takagi, H., Yoshioka, K., Awano, N., Nakamori, S. and Ono, B. (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett,218, 291-297.
    Thomas, D., Jacquemin, I. and Surdin-Kerjan, Y. (1992) MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol,12,1719-1727.
    Thomas, D. and Surdin-Kerjan, Y. (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev,61,503-532.
    Tokai, T., Koshino, H., Takahashi-Ando, N., Sato, M., Fujimura, M. and Kimura, M. (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun,353, 412-417.
    Trail, F. (2009) For blighted waves of grain:Fusarium graminearum in the postgenomics era. Plant Physiol,149,103-110.
    Vattanaviboon, P., Seeanukun, C., Whangsuk, W., Utamapongchai, S. and Mongkolsuk, S. (2005) Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J Bacteriol,187,5831-5836.
    Voigt, C. A., Schafer, W. and Salomon, S. (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J,42,364-375.
    Wassef, R., Haenold, R., Hansel, A., Brot, N., Heinemann, S. H. and Hoshi, T. (2007) Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms. JNeurosci,27,12808-12816.
    Weissbach, H., Resnick, L. and Brot, N. (2005) Methionine sulfoxide reductases:history and cellular role in protecting against oxidative damage. Biochim Biophys Acta,1703,203-212.
    Wirtz, M. and Droux, M. (2005) Synthesis of the sulfur amino acids:cysteine and methionine. Photosynth Res,86,345-362.
    Wrobel, M., Lewandowska, I., Bronowicka-Adamska, P. and Paszewski, A. (2009) The level of sulfane sulfur in the fungus Aspergillus nidulans wild type and mutant strains. Amino Acids, 37,565-571.
    Yang, L., van der Lee, T., Yang, X., Yu, D. and Waalwijk, C. (2008) Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology,98,719-727.
    Yin, Y., Liu, X., Li, B. and Ma, Z. (2009) Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology,99,487-497.
    Yu, H. Y., Seo, J. A., Kim, J. E., Han, K. H., Shim, W. B., Yun, S. H., et al. (2008) Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae. Microbiology, 154,392-401.
    Zhang, H., Van der Lee, T., Waalwijk, C., Chen, W., Xu, J., Zhang, Y., et al. (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One,7, e31722.
    Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C. S., et al. (2007) Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol Res,111, 967-975.
    陈利锋,徐敬友(2007)农业植物病理学(南方本).北京:中国农业出版社,2.
    韩宗强,崔宗杰(2010)信号蛋白中甲硫氨酸残基的可逆性氧化和甲硫氨酸亚砜还原酶.生物物理学26,861-879.
    马传春,王乃奇(2011)小麦赤霉病发生特点及防治对策.农技服务,28,464,566.
    史文琦,杨立军,冯洁,张旭,曾凡松,向礼波,汪华,喻大昭(2011)小麦赤霉病流行区镰刀菌致病种及毒素化学型分析.植物病理学报,41,486-494.
    姚红燕,陈利锋,孙枫,陈官菊,俞刚(2005)禾谷镰孢Tril2基因敲除突变体的致病力.南京农业大学学报,28,32-36.
    于钦亮,马莉,刘林,杨静,苏源,王云月,朱有勇,李成云(2008)禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析.生物技术通报,1,160-165.
    张大军,邱德文,蒋伶活(2009)禾谷镰刀菌基因组学研究进展.安徽农业科学,7892-7894.
    浙江农业大学(1978)《农业植物病理学》(上、下册).上海科学技术出版社,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700