旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆冰严重威胁着输电线路的安全稳定运行,自上世纪五十年代以来,我国输电线路的覆冰事故时有发生。特别是2008年初,南方地区大面积发生了有气象记录以来的最严重冰灾,给电力系统造成了严重破坏,给国家电网及南方电网造成了极大的经济损失,给人民生产、生活带来极大的不便。造成我国输电线路覆冰事故频发的原因主要有:对输电线路覆冰问题认识不足,重视不够,从而导致针对线路覆冰规律的基础研究工作的缺乏;缺乏能及时掌握线路覆冰过程的有效手段;防冰、除冰应急措施研究不够。2008冰灾之后国家投入了大量的人力、物力和财力研究输电线路覆冰问题。
     研究不同环境条件下的覆冰增长规律和有效的线路覆冰过程预测方法,对线路覆冰后及时采取合理的处理措施避免重大冰害事故的发生有着非常重要的意义。覆冰参数是覆冰研究的基础,研究者提出的众多覆冰预测模型都是基于覆冰过程中的覆冰参数的,然而对于覆冰参数的测量是一直都没有得到很好解决的难题,因此研究覆冰过程中的覆冰参数预测有着较大的学术意义及工程应用价值,本论文的主要工作如下:
     基于流体力学原理,采用数值计算对覆冰过程中的过冷却水滴碰撞特性进行了研究,得到了水滴-气流二相流的运动轨迹、速度场、及覆冰圆柱体上水滴碰撞速度分布规律等;并深入分析研究了影响过冷却水滴碰撞率的因素及其影响规律。研究结果表明,水滴碰撞率是风速、水滴大小及圆柱直径的函数。根据大量数值计算结果提出了新的碰撞率解析计算公式,与现有公式相比精度得到了较大的提高;基于热平衡模型,研究了过冷却水滴在覆冰表面的冻结特性,经推导得到了冻结系数的计算公式,并通过仿真计算深入的分析研究了影响覆冰过程中冻结系数的影响因素及影响规律;以碰撞过程及冻结过程为基础提出了旋转圆柱体的覆冰增长模型。
     设计了用于覆冰参数预测用的旋转多圆柱积冰器,并在大型多功能人工气候室内通过改变覆冰时间、环境温度、风速等参数对旋转多圆柱积冰器进行了大量的人工覆冰试验,对旋转圆柱体覆冰增长模型进行了验证;同时采用仿真与试验研究相结合的方式,研究了覆冰参数对覆冰量的影响规律,结果表明根据模型仿真计算得到的覆冰参数对覆冰量的影响规律与试验结果基本一致。
     根据旋转圆柱覆冰增长模型建立了旋转多圆柱体上覆冰量与覆冰参数关系的非线性方程组;提出了基于旋转多圆柱体上覆冰量变化,利用建立的方程组来预测覆冰过程中的覆冰参数;基于自适应的思想对差分进化算法进行了改进,并利用改进的差分进化算法对方程组进行求解从而实现了覆冰参数的预测。采用这种方法对人工气候实验室内覆冰过程的覆冰参数进行了预测,利用激光粒度分析仪、风速仪、温度仪对覆冰参数(液态水含量、水滴中值体积直径、风速、温度)进行了验证,结果表明预测结果与实测结果基本吻合。
     在雪峰山自然覆冰站,根据旋转圆柱体上的覆冰量变化对某次覆冰过程的等效覆冰参数进行了预测,并根据预测得到的等效覆冰参数对覆冰试验导线的覆冰量进行了估算,总的来说还是能反映导线的覆冰增长过程。
Icing is a great threat to the secure and stable operation of transmission lines. The icing accidents on transmission lines have occurred frequently in China since the fiftieth of last century. Especially at the beginning of 2008, the most serious icing disaster in the meteorologic history occurred in large areas of south China. This distaster caused great economic losses to the Sate Grid Corporation and China Southern Power Grid Corporation by the heavy damage of power system which brought great inconvenience to people’s production and living. The main reasons of frequent icing accidents in our power system are as the follows: the icing problem in power systme did not get enough attention, which leads the lack of basic researches on the rule of icing; effective measures for monitoring the process of ice accretion on transmission lines is lack; the researches on emergency measures of anti-icing and de-cing is short. After the icing disaster in 2008, China has invested a great deal of manpower, material and financial resources to the researches on icing.
     Researches on the rule of ice accretion on transmission lines and on the effective measures for forecasting the ice accretion are of great significance for avoiding the grave icing accident by adopting reasonable measures in time. The icing parameters are the basis of the icing researcheas, but the measurement of icing parameters is a difficult problem which has not been solved yet. So the research on the forecast of icing parmaters is of important academic significance and engineering practical worthiness. The main work in this paper is as follows.
     Based on the principle of hydrodynamics, the paper researches the collision characteristics of supercooled droplets using the numerical calculation. The motion trails of droplets and air flow, velocity fiels of droplets and air flow, and the distribution of collision speed on icing cylinder are obtained. The paper also researches the influencing factors and their effect on collision efficiency, and research results show that the collision efficiency is a function of air speed, diameters of droplet and icing cylinder. Accord to the large number of numerical calculation results, the paper gives a new analytical formula for calculating collision efficiency, and this formula is more precise compared to others’formulas. Based on the heat balance model, the paper derives the formula for calculating freezing fraction. The paper also researches the influencing factors of freezing fraction and their influence on freezing fraction. Combining the processes of collision and freeze, the paper gives the ice accretion model for the rotating cylinder.
     The paper designs a rotating multi-cylinders ice collector used for forecasting icing perameters. And by changing the icing parameters such as icing duration, ambient temperature, air speed etc in multi-function artificial climate chamber, the paper conducts a good deal of experimental researches to verify the ice accretion model of roating cylinder. At the same time, the influence of icing parameters on ice amount is reasearched by simulation and experiments. The results show that the influence of icing parameters on ice amount obtained by model’s simulation agrees well with that obtained by experiments.
     The paper builds the non-linear equation set between ice amount on rotating multi-cylinders and the icing parameters according to the model of ice accretion on rotation cylinder. And the paper proposes that using the equation set to forecasting the icing parameters according to the ice amount change on rotating multi-cylinders. This paper also improves the differential evolution algorithm and uses this algorithm to solve the equation set. The icing parameters in artifical climate chamber are forecasted by this method, the forecasted results are verified by laser particle size analyzer, anemobiagraph and thermograph. And the results show that the forecasting values agree well with the experimental values.
     According to the ice amount on rotating multi-cylinders, the paper forecasted the equivalent icing parameters in an icing event at Natural Icing Station on Xuefeng Mountain. And using these icing paramters, the papar evaluated the ice amount on expeirmental conductors. The comparsion of the evaluated values and the measured values show that the evaluated ones are larger than the measured ones, but in general, the evaluated ice amount can reflect the ice accretion on conductors.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2002.
    [2]蒋兴良,输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D].重庆大学, 1997.
    [3]孙才新,大气环境与电气外绝缘[M],北京:中国电力出版社, 2002.
    [4] Ping Fu. Modelling and simulation of the ice accretion process on fixed or rotating cylindrical objects by the boundary element method[D]. Canada, UNIVERSITE DU QUEBEC. 2004.
    [5] MEMBERS OZARK BORDER ELECTRIC COMPANY JANUARY 27, 2009 ICE STORM[OL], 2009.
    [6] Engene L. Lecomte, Alan W. Pang and James W. Russell, "ICE STORM' 98", Institute for Catastrophic Loss Reduction, Canada, 1998.
    [7]孙才新.重视和加强防止复杂气候环境及输变电设备故障导致电网大面积事故的安全技术研究[J].中国电力, 2004, 37(6): 1-8.
    [8]胡超凡,陈刚,朱伟江. 2005年国家电网安全运行情况分析[J].中国电力, 2005, 39(5): 1-4.
    [9]胡毅.输电线路大范围病害事故分析及对策[J].高电压技术, 2005, 31(4):14-15.
    [10]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力,2005,38(11): 27-30.
    [11]周卫华,蒋兴良.输电线路绝缘子冰闪防治措施的研究[J].湖南电力, 2008, 1: 1-5.
    [12]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术, 2008, 34(2): 215-219.
    [13]李再华,白晓民,周子冠等.电网覆冰防治方法和研究进展[J].电网技术, 2008, 32(4): 7-14.
    [14]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化, 2008, 32(11): 16-19.
    [15]张文亮,于永清,宿志一,等.湖南电网2008年冰雪灾害调研分析[J].电网技术, 2008, 32(8): 1-5.
    [16]童军心,陈智.冰雪天气对江西电网造成的灾害分析及防治对策[J].江西电力, 2008, 32(增刊): 18-20.
    [17]黄绍培,余伯平. 220kV输电线路重冰区观冰综合分析[J].高电压技术, 1993,19(1): 54-57.
    [18]刘建西,刘渝,杨秀蓉等.三峡中低海拔地区导线覆冰云雾及气象条件的观测研究[C].中国气象学会2003年年会, 2003, 355-360.
    [19]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术, 2008, 32(9):33-36.
    [20]关志成,张增福,王国利等.我国特高压的特有技术问题[J].电力设备, 2006, 7(1):1-4.
    [21] Lenhard R.W. An Indirect Method for Estimating the Weight of Glaze on Wires[J]. Bull Amer Meteor Soc, 1955,36(3):1-5.
    [22] Chaine P M, Casfonguay G. New Approach to Radial Ice Thichness Concept Applied to Bundle-like Conductors[R]. Industial Metecrology studyⅥ, Enwironment Canada, Tnronto, 1974.
    [23] D. Kuroiwa. Icing and Snow Accretion on Electric Wires[R].U.S. Army Cold Regions Research and Engineering Laboratory, Research Report, pp.1-10,1965.
    [24] Imai. Studies on Ice Accretion[J]. Researches on Snow and Ice, 1953,3(1):35-34.
    [25] P. McComber and J. W. Covoni. An Analysis of Selected Iec Accretion Measurements on a Wire at Mount Washington[C]. Proceedings of the Forty-second Anunal Eastern Snow Conference, Montreal, Canada, 1985.
    [26]张怀孔.滇东及滇东北地区电线覆冰模型研究[J].电力勘测设计, 2007, (4): 40-42.
    [27]鲍尔格斯道夫、E.P.尼克夫洛夫和A.S.捷里特泰科(前苏联),架空输电线的冰荷重,第22届国际大电力电网会议报告,23#-05,1968.
    [28] E. J. Goodwin, J. D. Mozer, A. M. D. Gioia. Predicting Ice and Snow Loads for Transmission Line[R]. Proceedings of the First IWAIS, 1983.
    [29] Langmuir I, Blodgett K. A Mathematical Investigation of Water Droplet Trajectories[R]. Army Air Force Technical Report No. 5418, 1946.
    [30] Messinger B. L.. Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20:195-200.
    [31] List R.. General Heat and Mass Exchange of Spherical Hailstones[J]. Joural of Atmospheric Sciences, 1963, 20(3): 189-197.
    [32] List R.. Ice Accretions on Structures[J]. Journal of Glaciology, 1977, 19(8): 451-465.
    [33] Cansdale, J. T. and I. I. McAaughton. Calculation of Surface Temperature and Ice Accretion Rate in a Mixed WaterDroplet/Ice Crystal Cloud[R]. Royal Aircraft Establishment Technique Report, 1977.
    [34] Stallbrass, J. R.. Trawler Icing: A Complilation of Work Done at NRC[R]. NRC report. MD-56, NRC No.19372, 1980.
    [35] Fistad, K. J., Lozowski, E. P. and Gates, E. M.. A Computational Investigation of Water Droplet Trajectories[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5: 160-170.
    [36] Makkonen, L. Modeling of Ice Accretion on Wires[J]. Journal of Climate Applied Meteorology, 1984, 23(6):929–939.
    [37] Makkonen, L. Heat Ttransfer and Icing of a Rough Cylinder[J]. Cold Regions Science andTechnology, 1985,10:105–116.
    [38] Lozowski E. P., Stallabrass J. R., and Hearty, P. F.. The Icing of an Unheated, Non-rotating Cylinder, Part I: A Simulation Model[J]. Journal of Climate and Appled Meterology, 1983, 22(12):2053-2062.
    [39] Gent, R. W. and Cansdale, J. T.. Development of Mathematical Modelling Techqiques for Hehlicoptor Icing[C]. AIAA 23rd Aerospace Sciences Meeting, Reno, 1985.
    [40] Jones, K. F.. Asimple Model for Freezing Rain Ice Loads[C]. Proceedings of the 7th IWAIS, Chicoutimi, QC, Canada, 1996, 412-416。
    [41] Wright, W. B.. Advancement in the LEWICE Ice Accretion Model[R]. AIAA Paper 9.-0171, 1993.
    [42] Gent, R. W.. TRAJICE2– A Combined Water Droplet Trajectory and Ice Accretion Prediction Program for Aerofoil[R]. DRA Technical Report TR90054, 1990.
    [43] Hedde, T. and Guffond, D.. Improvement of the ONERA 3D Icing Code, Comparsion with 3DExperimental Shapes[R]. AIAA Paper 93-0169, 1993.
    [44] Paraschivoiu, I., Gouttebroze, S. and Saeed, F.. CANICE-Capabilities and Current Status[R]. NATO/RTO Workshop, Assessment of Icing Code Prediction Capabilities, at CIRA In Capua, Italy, 200.
    [45] Ping Fu, Masoud Farzaneh and Gilles Bouchard. Two-dimensional modeling of the ice acrrection process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146.
    [46] Makkonen, L. The growth of icicles[R]. In the Proceedings of the Fourth IWAIS, 1988: 236–242.
    [47] Makkonen, L. A Model of Icicle Growth[J]. Journal of Glaciology, 1988,34(116): 64–70.
    [48] Makkonen, L. Fujii, Y. Spacing of Icicles[J]. Cold Regions Science and Technology, 1993,21: 317–322.
    [49] Makkonen, L. Modeling Power Line Icing in Freezing Precipitation[C]. 7th International Workshop on Atmospheric Icing of Structures, Canada, 1998: 195-200.
    [50] Makkonen, L.. Models for The Growth of Rime, Glaze, Icicles and Wet Snow on Structures[J]. American Meteorological Society, 2000, 358: 2913-2939.
    [51]廖玉芳,段丽洁.湖南电线覆冰厚度估算模型研究[J].大气科学学报, 2010, 33(4): 395-400.
    [52]汤文斌,刘和云,李会杰,等.模拟大气环境下电气化铁路接触网覆冰实验研究[J].华东电力, 2009, 37(2):250-252.
    [53] B.L.mesinger. Equilibrium Temperature of an Unheated Icing Surface as a Function of the AirSpeed[J]. J. Aero. Sci., 1953, 20: 29~41.
    [54]谭冠日.电线积冰若干小气候特征的探讨[J].气象学报, 1982, 40(1): 13-23.
    [55]藤中林,电线结冰厚度随高度的变化,天气月报,1959.
    [56]黄新波,孙钦东,王建国等.基于GSM SMS的输电线路覆冰在线监测系统[J].电力自动化设备, 2008, 28(5):71-76.
    [57]黄新波,孙钦东,程荣贵等.导线覆冰力学分析与覆冰在线监测系统[J].电力系统自动化, 2007, 31(14): 98-101.
    [58]邢毅,曾奕,盛戈皞,等.基于力学测量的架空输电线路覆冰监测系统[J].电力系统自动化, 2008,32(23):081-085.
    [59]吴娅,张峰,冯钦.基于力学测量的架空输电线路覆冰监测系统[J].广东电力, 2009,22(5):012-015
    [60]邵瑰玮,胡毅,王力农,等.输电线路覆冰监测系统应用现状及效果[J].电力设备, 2008,9(6):013-015.
    [61]徐焜耀,况军,吴彬.重庆输电线路覆冰的实时监测方案[J].中国电力教育, 2008年研究综述与技术论坛专刊:619-621.
    [62]曹翊军.董兴辉.曹年红,等.基于图像采集与识别的输电线路覆冰监测系统[J].电力系统, 2010, (8): 51-53.
    [63]黄新波.孙钦东.王小敬,等.输电线路危险点远程图像监控系统[J].高电压技术, 2007, 33(8:): 192-197.
    [64]全金涛.用于输电线路覆冰测量的光纤光栅传感器研究[D].华北电力大学, 2010.
    [65]田晓.应用于输电线路覆冰监测的光纤光栅测量系统的研究[D].华北电力大学, 2009.
    [66]孟晨平.基于光纤光栅传感器的输电线路覆冰监测算法的研究[D].华北电力大学, 2010.
    [67]阳林,郝艳捧,黎卫国,等.架空输电线路在线监测覆冰力学计算模型[J].中国电机工程学报, 2010, 30(19): 100-105.
    [68]沈卫康,马亮,沈曙明,等.基于ZigBee技术的高压线覆冰监测系统设计[J].南京工程学院学报(自然科学版), 2010, 8(1): 48-52.
    [69]周灿梅.陆佳政.向永嘉,等.基于线搜索算法的输电线路覆冰厚度监测[J].仪表技术与传感器, 2010, (8): 44-46.
    [70]王小朋.应用图像法在线监测输电线路覆冰厚度的研究[D].重庆大学, 2009.
    [71] Finstad, K. J., Lozowzki, E. P. and Makkonen, L.. On the Median Volume Diameter Approximation for Droplet Collision Efficiency[J]. Journal of the Atmospheric Sciences, 1988, 45: 4008– 4012.
    [72]廖炜.卫苗苗.黄煜煜.采用滤纸色斑法对雨滴直径的研究[J].武汉理工大学(交通科学与工程版), 2008, 32(6): 1165-1168.
    [73]王波雷,马孝义,郝晶晶,等.基于Adobe软件的喷头水滴直径测量试验研究[J].灌溉排水学报. 2008, 27(4): 0018-0021.
    [74]李红,任志远,汤跃,等.喷头喷洒雨滴粒径测试的改进研究[J].农业机械学报, 2005, 36 (10) : 0050-0053.
    [75]黄竹青,杨继明,孙春生,等.激光散射理论在汽轮机蒸汽湿度及水滴直径测量中的应用[J].动力工程, 2006,26(2): 0241-0244.
    [76]王乃宁.用光学探针测量汽轮机内的蒸汽湿度和水滴直径[J].工程热物理学报, 1985, 6(1): 0099-0103.
    [77]王峰,黄竹青.激光散射法测量汽轮机中蒸汽湿度和水滴直径研究[J].热力发电, 2008, 37(6): 0020-0023.
    [78] Dye, J.E. and Baumgardner, D. Evaluation of the Forward Scattering Spectrometer Probe 1: Electronic and Optical Studies[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1:329–344.
    [79] Hovenac, E.A.. Droplet Sizing Instrumentation Used for Icing Research: Operation, Calibration and Accuracy[R]. NASA CR–182293, 1989.
    [80]李久生.喷洒水滴直径测试方法的研究[J].排灌机械. 1993, (02): 45:47.
    [81] Brun, R. J., W. Lewis, P. J. Perkins, et al. impingement of cloud droplets and a cylinder and procedure for measuring liquid-water content and droplet sizes in supercooled clouds by rotating multicylinder method[R]. Lewis Flight Propulsion Laboratory, 1955, Report No. 1215.
    [82] John, B. H.. Rotating multicylinder method for the measurement of cloud liquid-water content and droplet size[R]. Cold Regions Research & Engneering Laboratory, 1991, Crrel report, AD-A234 780.
    [83] Howell, W. E.. Comparison of three multicylinder icing meters and critique of the multicylinder method. National Advisory Committee for Aeronautics Technical Note 2708, 1952.
    [84]朱春玲,李宇钦,张泉.基于旋转多圆柱的冰风洞水滴参数分析方法[J].航空动力学报, 2007, 22(2): 180-186.
    [85] Knezevici1 D., Kind R.J., Oleskiw M.M. Determination of Median Volume Diameter (MVD) and Liquid Water Content (LWC) by Multiple Rotating Cylinders[R]. America: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
    [86] Makkonen, L.. Analysis of Rotating Multicylinder Data in Measuring Cloud-Droplet Size and Liquid Water Content[J]. Journal of atompheric and oceanic technology, 1992, 9: 258-263.
    [87]陈晶霞.旋转多圆柱测量仪冰风洞试验研究[D].南京航空航天大学, 2008.
    [88]程刚.恒温热线测量云中液态水含量的原理和方法[J].气象科技, 1979,1:001-002.
    [89] I.P.Mazin, A.V.Korolev, A.Heymsfield, et al. Thermodynamics of Icing Cylinder for Measurements of Liquid Water Content in Supercooled Clouds[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18:543-558.
    [90]雷恒池,魏重,沈志来,等.机载微波辐射计测云中液态水含量(Ⅰ):仪器和标定[J].高原气象, 2003,22(6):551-557.
    [91]江芳,魏重,雷恒池,等.机载微波辐射计测云中液态水含量(II):反演方法[J].高原气象, 2004,23(1):033-039.
    [92]胡成达,朱元竞,杜金林,等.遥感大气中气态水和液态水含量的实验研究[J].北京大学学报, 1995,31(5):614-620.
    [93]王新月.气体动力学基础[M].西安:西北工业大学出版社, 2006.
    [94]乔宝明.偏微分方程及数值解[M].西安:西北工业大学出版社, 2009.
    [95] D. Knezevici, R. J. Kind, and M. M. Oleskiw. Determination of Median Volume Diameter (MVD) and Liquid Water Content (LWC) by Multiple Rotating Cylinder[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005.
    [96]郭方中.低温传热学[M].华中理工大学出版社, 1989.
    [97]蒋兴良,申强,舒立春等.利用旋转多圆柱导体覆冰质量预测湿增长过程覆冰参数[J].高电压技术, 2009, 35(12): 3071-3076.
    [98]范松海.输电线路短路电流融冰过程与模型研究[D].重庆大学, 2010.
    [99] Macklin W. C.. The density and structure of ice formed by accretion[J]. Qqarterly Journal of the Royal Meteorological Society, 1962, 88:30-50.
    [100] Bain, M. and Gayet, J. F.. Contribution to the modeling of the ice accretion process[C]. Proceedings of the 1st IWAIS, 1983,
    [101] Personne, P. and Gayet, J. F.. Ice Accretion on Wires and Anti-Icing Induced by Joule Effect[J]. Journal of Applied Meteorology, 1988, 27: 1.1-105.
    [102] Pflaum J. C. and Pruppache, H. R.. A wind tunnel investigation of the growth of graupel initiated from frozen drops[J]. Journal of Atmosphere Science, 1979, 36: 680-689.
    [103] Jones, K. F.. The density of natural ice accretions related to nondimensional icing parameters[J]. Qqarterly Journal of the Royal Meteorological Society, 1962, 116(492):477-496.
    [104] Mccomber, C. and Touzot, G. Calculation of the impingement of cloud droplets in a cylinder by the Finite-element method[J]. Journal of the Atmospheric Sciences, 1981, 38(5): 1027-1036.
    [105]赵先德.输电线路基础[M].北京:中国电力出版社, 2006.
    [106]周振山.高压架空送电线路机械计算[M],北京:水利电力出版社, 1984.
    [107]王少华.输电线路覆冰导线舞动及其对塔线体系力学特性影响的研究[D].重庆大学, 2008.
    [108]温作铭.基于流体力学的覆冰地区用复合绝缘子伞裙结构研究[D].重庆大学, 2007.
    [109]宁桂英,周永权.基于双种群的小生境差分进化算法[J].计算机应用与软件, 2009, 26(3): 29-31.
    [110] Rainer Storn, Kenneth Price. Differential Evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Global Optimization, 1997, (11): 341-359.
    [111]吴亮红.差分进化算法及应用研究[D].湖南大学, 2007.
    [112]夏澍.基于差分进化算法的含风电场电力系统动态经济调度[D].华北电力大学, 2010.
    [113]余兵.进化差分算法及应用[D].西安工程大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700