高原电气化铁路电缆牵引供电方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高原地区幅员辽阔,但由于多年冻土、高寒缺氧、生态脆弱等较为恶劣的自然环境,使得高原地区经济发展缓慢。为促进高原地区经济、社会发展,减小我国东西部经济发展不平衡度,建立东西部便利的交通运输通道,在高原地区修建电气化铁路势在必行。电缆牵引供电方式有着牵引网阻抗小、供电距离长、对外部电源适应性强、钢轨电位小等优异特点,可以为高原电气化铁路所选择使用。
     本文分析了电缆牵引供电方式牵引网结构,推导了牵引网等值电路模型。利用等值模型计算了单复线牵引网短路阻抗、电压损失理论公式。
     文中进一步对牵引网进行研究,推导了牵引网电流分布、电缆电流分配系数、牵引网单位阻抗、钢轨电位和电流等电气参数,初步建立电缆牵引供电方式的系统理论。
     本文运用平行多导体原理,利用MATLAB/SIMULINK软件建立了电缆牵引供电方式牵引网仿真模型。通过仿真模型验证了等值电路推导的正确性,并对电缆分配系数、牵引网空负载电压分布、钢轨电位和电流等电气参数进行了仿真研究。
     本文还分别对带回流线直接供电方式、AT供电方式及电缆牵引供电方式进行了比较分析。参考电缆牵引供电方式牵引网建模方法,建立了AT供电方式和带回流线直接供电方式仿真模型,从牵引网短路阻抗、电压损失、钢轨电位、供电质量、外部电源适应性、工程建设投资及运营维护成本等角度进行了技术经济性比较,分析各供电方式的优缺点。最后,本文对电缆牵引供电方式在高原地区应用于电气化铁路的可行性进行了分析。
China's plateau is a vast territory, but there is permafrost, alpine hypoxia, ecologically fragile harsh natural environment.So the economic of plateau develops slowly. In order to improve the economic development of plateau region, reduce the imbalance degree of economic development between eastern and western China, set up the convenient transport channel between eastern and western China, it is very necessary to build electrified railway. Cable traction power supply has excellent characteristics that, network impedance is small, the distance of power supply is long, power supply adaptability is external, rail voltage is low and so on. So that it could be selected to use in the electrified railway of plateau region.
     The paper analyzes the network structure of cable traction power supply, derived the equivalent circuit model of the traction network. Calculate the theoretical formula of single and double-track traction network short-circuit impedance and voltage loss.
     The paper researchs the traction network further more, derived the electrical parameters of current distribution of network, distribution coefficient of cable's current, rail voltage and current, establish the system theory of cable traction power supply preliminarily.
     The paper establishes the simulation model of cable traction power supply using the principle of parallel multi-conductor transmission line and MATLAB/SIMULINK software.Using the simulation model to verify the correctness of the derivation of equivation circuit, and simulation study on the electrical parameters of distribution coefficient of cable's current, voltage distribution of no-load and load of traction network, rail voltage and current.
     The paper also comparative analysises the direct power supply with return line, AT power supply and cable traction power supply. Reference the way of establishing simulation model of cable traction power supply, establish the simulation of AT power supply and direct power supply with return line, and conducts a technical and economic comparison such as network short-circuit impedance, voltage loss, rail voltage, quality of power supply, adaptability of external power supply, construction investment, operation and maintenace costs.Finally, analyzes the feasibility of cable traction power supply using the electrified railway in plateau region.
引文
[1]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
    [2]李群湛,年级三,高仕斌.高速铁路电气化工程[M].成都:西南交通大学出版社,2006.
    [3]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993.
    [4]李群湛,易东,贺建闽.交流电气化铁路牵引电缆供电系统分析[J].西南交通大学学报,2011,8.
    [5]刑晓乾.带加强线的全并联直接供电技术的研究[D].西南交通大学硕士论文,2011.
    [6]李群湛.我国高速铁路牵引供电系统发展若干问题关键技术[J].铁道学报,2010,32(4)
    [7]中华人民共和国铁道部.中长期铁路网规划(2008年调整),2008.
    [8]Pilo.E, Roueo.L, Fernandez.A. A simulation tool for the design of the electrical supply system of High-Speed railway line[J]. IEEE Power Engineering Society Summer Meeting, 2000, 2:1053-1058.
    [9]T.K.Ho, YL.CHI, J.Wang. Probabilistic load flow in AC electrified railway[J]. IEEE Proc-Electic. PowerAPPI,2005,152(4):1003-1013.
    [10]B.Mellitt, J.Allan. Goodman Computer-based methods for induced-voltage calculations in AC railway[J]. IEE.PROCEEDINGS,1990,137(l):700-705.
    [11]R.J.Hill, Cevik.I, H. Parallel computer simulation of autotransformer-feed AC traction networks[J]. ASME/IEEEJoinRailroadConference,1990:157-164.
    [12]Fujue H. Fault oeator system in autotransformer feeding ciceuit of AC electric railway [J]. Quarterly Report of the Railway Technical Research Institute,1997, 18(3):33-38.
    [13]JP.Menu. The autotransformer and other equipment[J]. IEE Colloquium on 50kV autotransformer traction supply system-French Experience (Part3),1993:1-4.
    [14]C.Courtois. Earthing Protection Miscellaneous [J]. IEE Colloquium on 50kV autotransformer traction supply system-French Experience(Part4),1993:1-3.
    [15]Cella R, Giangaspero G, Mariscotti A. Measurement of AT Electric Railway System Currents at Power-Supply Frequency and Validation of a Multiconductor Transmission-Line Mode[J]. IEEE Transactions on power Delivery,2006, 21(3):1721-1726.
    [16]贺建闽,黄治清.牵引变压器容量的合理选择[J].电气化铁道[J],2005,6:1-5.
    [17]李群湛,王永宁.直接供电方式及其回流网的技术指标分析[J].铁道学报,1991,13:40-47.
    [18]吴命利.牵引供电系统电气参数与数学模型的研究[D].北京交通大学博士学位论文,2006.
    [19]杨振龙.V/X接线牵引变压器的研究和应用[J].电气化铁道,2004,4:12-15.
    [20]吴天明,谢小竹,彭彬MATLAB电力系统设计与分析[M].北京:国防工业出版社,2004.
    [21]张葛祥,李娜MATLAB仿真技术与应用[M].北京:清华大学出版社,2003.
    [22]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [23]U.J.Shenoy, K.G.Sheshadri, K.Parthasarathy, H.P.Khincha, D.Thukaram. MATLAB/PSB based modeling and simulation of 25kV AC railway traction system-aparticular reference to loading and fault conditions. TENCON 2004.2004 IEEE Region 10 conference Volume C,21-24 Nov.2004:508-511.
    [24]Turner, R.JTJRa, Improvement to the booster transformer/return conductor method of suppressing 50Hz interference form AC electrified railway system[J]. IEEPROC, 1981,128.
    [25]P.Ferrari, P.Pozzobon. Railway lines models for impedance evaluation[J].1998.
    [26]P.Ferrari, A.Maviscotti, P.Pozzobon. Reference curves of the pantograph impedance in DC railway systems[J].2000.
    [27]电气化铁道设计手册[M].牵引供电手册.北京:中国铁道出版社,1998.
    [28]姜仁波.多导体传输线电磁兼容的分析与研究[D].华北电力大学硕士论文,2005.
    [29]姚楠.电气化铁道牵引网基波与谐波模型研究[D].北京交通大学硕士论文,2008.
    [30]喻奇,高仕斌,桑丙玉.计入保护线影响的AT牵引网等值电路推导[J].电气化铁道,2009,2:14-18.
    [31]辛成山.AT供电系统等值电路推导方法[J].电气化铁道,1999,1:17-20.
    [32]黄足平.客运专线牵引变压器选型综合分析[J].电气化铁道,2005,6:14-16.
    [33]杨罡,刘明光,李娜,屈志坚.钢轨电位分布模型于仿真研究[J].北京交通大学学报,2010,34(2):137-141.
    [34]李韶军,孔亮勤.直供方式钢轨电流分布数学模型与软件仿真[J].北京交通大学学报, 1991, 15(3):65-76.
    [35]Gitemes J A. Method for calculating the ground resistance of grounding grids using FEM[J]. IEEE Transaction on Power Delivery.2004, 19(2):595-600.
    [36]Beck R T. Design Considerations for Arctic Grounding Systems[J]. IEEE Transactions On Industry Application.1988,24(6):36-38.
    [37]易东.高原铁路供电方案研究[D].西南交通大学硕士论文,2003.
    [38]冉理.青藏高原铁路的设计与研究[J].中国铁道科学,2001,1:16-22.
    [39]耿瑞香,王国枝,曹晓秀.供电线路供电能力的分析[J].电力学报,1994,3:168-170.
    [40]张秀然,孙国凯,朴在林,王刚,张志霞.一种新型低压绝缘分裂导线电气参数的理论计算与分析[J].农业工程学报,1999,4:177-181.
    [41]王春江.电线电缆手册[M].北京:机械工业出版社,2001.
    [42]卓金玉.电力电缆设计原理[M].北京:机械工业出版社,1999.
    [43]L.Heinhold, R.Stubbe.门汉文,崔国璋,王海(译).电力电缆及电线[M].北京:中国电力出版社,2001.
    [44]K.J.Satsions, D.P.Labridis, P.S.Dokpoulos. Inductive Interference Caused to Telecommunication Cables by Nearby AC Electric Traction Lines[J]. IEEE Transactions on Power Delivery, 1999,2:588-594.
    [45]张占平.直供方式交流电气化铁道钢轨泄露电流分布特性及其地电位[J].铁道学报,1991,13(1):25-33.
    [46]缪耀珊.交流电气化铁道的钢轨对地电位问题[J].电气化铁道,2007,4:1-6.
    [47]解绍锋,汪吉健,魏宏伟.高速铁路钢轨电位计算及限制方案研究[J].中国铁道学会电气化委员会学术会议论文集,2006:318-322.
    [48]艾兵,董安平,吴广宁.重载电气化铁路钢轨电位监测系统[J].电工电能新技术,2009,28(3):67-72.
    [50]李群湛,汪永宁.直接供电方式及其回流网的技术指标分析[J].铁道学报,1991,3:40-47.
    [51]杜学峰.长电缆传输研究[D].中国科学技术大学博士论文,2006.
    [52]梁毅刚,李志远.我国电气化铁路客车供电方式的经济效益分析及供电方式选择[J].铁道运输与经济,2002,4:42-45.
    [53]王建文,段晓红,王颢.青藏铁路35kV电缆供电线路仿真研究[J].水电能源科学,2008,2:164-167.
    [54]楚振宇,张长梅.电气化铁道直供分区所电气负荷的分析[J].铁道工程学报,2009,6:94-97.
    [55]刘卓辉.铁路贯通电缆容性参数及仿真的研究[J].电气化铁道,2009,2:5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700