飞蝗几丁质合成关键基因特性及转录调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质是昆虫体壁和中肠围食膜的主要成分,几丁质合成是一个高度复杂的生化生理过程,受激素等信号途径的调控。由于高等动物不存在几丁质,因此昆虫几丁质合成途径是设计环境友好杀虫剂的理想靶标,具有重要的研究价值。本文以飞蝗(Locusta migratoria)为研究材料,对几丁质合成关键基因谷氨酸盐:果糖-6-磷酸转氨酶(LmGfat)、 UDP-N-乙酰葡糖胺焦磷酸化酶(LmUAPs)和几丁质合成酶(LmCHSs)分子特性及转录调控进行了较为系统和深入的研究,主要内容如下:
     一、几丁质合成关键基因的mRNA表达特性分析
     利用qPCR技术分析了几丁质合成关键基因在飞蝗不同组织和发育阶段的mRNA表达特性,结果表明:LmGfat、LmUAP1和LmCHSl在若虫体壁高表达,卵发育前期和后期及若虫蜕皮后表达量较高,龄期中间表达量较低;成虫期体壁低表达,LmGfat和LmUAP1在卵巢中恒定高表达,LmCHS1随着卵巢的发育表达量逐渐降低;LmUAP2和LmCHS2分别在脂肪体、中肠和胃盲囊中高表达,且在飞蝗整个发育期稳定表达;进一步的研究发现LmCHS2在中肠前、中、后段的表达量逐渐降低,原位杂交实验显示其转录本主要在胃盲囊柱状细胞形成的顶端区域中。几丁质合成关键基因mRNA表达特性不同,表明其生理功能的差异。
     二、几丁质合成关键基因的功能研究
     利用RNA干扰技术进一步研究了几丁质合成关键基因的功能,结果表明:LmGfat、 LmUAP1和LmCHS1负责体壁几丁质的合成;注射各个基因的dsRNA后,体壁切片的组织学观察表明,与对照组相比,新表皮几丁质合成量显著减少,导致飞蝗因蜕皮困难死亡;LmCHS2基因对中肠围食膜几丁质的合成起关键作用,注射dsCHS2组中肠围食膜不完整或完全缺失,影响食物的消化吸收从而使飞蝗因饥饿死亡。
     三、LmBR-C和LmE74基因的分子特性及功能分析
     Broad-Complex和E74是蜕皮激素信号传导的早期应答基因,通过搜索飞蝗转录组数据库,获得6个BR-C和2个E74的同型异构体。以共同区域设计引物进行qPCR,结果表明:LmBR-C和LmE74具有不同的组织分布和发育阶段表达特性,在肌肉和脂肪体中表达量最高,体壁中表达量也较高;这2个基因均在卵-若虫-成虫期表达,但呈现不同的表达特性。在四龄或五龄若虫期注射LmBR-C的dsRNA后,LmBR-C基因没有明显下调,而LmE74基因的表达则被显著沉默,但E74表达下调后并未影响飞蝗的生长发育,注射dsE74的飞蝗亦能成功羽化为成虫。
     四、LmEcR和LmRXR基因的分子特性及功能分析
     LmEcR和LmRXR在脂肪体、肌肉、体壁和前肠中高表达,卵发育后期及若虫蜕皮后表达量均较高。注射dsEcR或dsRXR均导致飞蝗高致死率,五龄第2天注射dsEcR组飞蝗发育时间延迟,当对照组已完成正常蜕皮进入成虫时,处理组仍处于五龄若虫期,直至死亡。而注射dsRXR组飞蝗发育时间与对照组无明显差异,均因蜕皮困难死亡;切片的组织学观察显示,注射dsEcR组飞蝗旧表皮与皮细胞层没有分离,而注射dsRXR组飞蝗表皮与对照组相比无明显变化。
     五、几丁质合成关键基因的转录调控
     利用RNAi技术将LmEcR和LmRXR基因和早期转录因子LmE74的表达沉默后,并不影响几丁质合成关键基因(LmGfat、LmUAPl、LmCHSl和LmCHS2)的mRNA表达;解剖飞蝗体壁进行体外组织培养,加入20E后,几丁质合成关键基因的表达亦没有显著变化,表明几丁质合成关键基因不受20E的调控。研究发现进食影响LmCHS2基因的表达,饥饿处理后LmCHS2基因在中肠中的表达被显著抑制,重新进食后,该基因的表达快速上调。基于上述结果推测几丁质合成关键基因的调控模式存在差异。
     六、氟虫脲处理飞蝗后差异表达基因的DGE分析
     氟虫脲浸渍法处理飞蝗后,试虫均在蜕皮时死亡,进一步利用数字基因表达谱(Digital Gene Expression)分析氟虫脲处理前后差异表达的基因,结果显示:氟虫脲处理后差异表达基因主要集中在生物代谢,涉及蛋白、脂类、核酸、糖类等;部分几丁质酶、表皮蛋白及解毒酶系(羧酸酯酶、谷胱甘肽S-转移酶和P450)基因在氟虫脲处理后也有显著变化。分析认为氟虫脲可能通过影响多个代谢通路的基因而使飞蝗致死,这些变化基因的生物学功能和氟虫脲的潜在作用机理还有待进一步研究和探讨。
Chitin is the main component of the integument and peri trophic matrix (PM) of the midgut in insects. Chitin biosynthesis is a complicated chemical and physiological process and regulated by hormone. As chitin is absent in higher animals, the pathway of insect chitin biosynthesis has attracted much research interest in serving as a potential target for developing safe and effective insecticides. In this thesis, the molecular characteristics and transcriptional regulation of key genes involved in chitin biosynthesis from Locusta migratoria were analyzed comprehensively. The genes include glutamine: fructose-6-phosphate aminotransferase (LmGfat), UDP-N-acetylglucosamine pyrophosphorylase (LmUAP) and chitin synthase (LmCHS). The main contents are as follows:
     1. Analysis of the mRNA expression characteristics of key genes involved in chitin biosynthesis
     qPCR was used to analyze the mRNA expression of key genes involved in chitin biosynthesis in different tissues and developmental stages of L. migratoria. The results showed that LmGfat, LmUAP1and LmCHS1were highly expressed in the nymphal integument. High expression was detected during early embryogenesis after eggs laid, then decreased greatly, and slowly increased before eggs hatch. During nymphal development, the highest expression of these genes appeared after molting but declined in each intermolt period and then increased before molting to the next stage. During the development of adults, they were lowly expressed in the integument but consistently expressed in the ovary of adults expect for LmCHS1. LmUAP2and LmCHS2were highly expressed in fat body, midgut and gastric caeca during the developmental stages, respectively. For LmCHS2, the decreased expression was drastic from the anterior to the posterior regions of the midgut. In situ hybridization indicated LmCHS2transcripts were mainly detected in the apical regions of brush border forming columnar cells in gastric caeca. The different expression patterns of these genes suggested they have different physiological functions.
     2. Functional study on key genes involved in chitin biosynthesis
     The functions of key genes involved in chitin biosynthesis were further explored by using RNAi. The results showed that LmGfat, LmUAPl and LmCHSl were responsible for chitin synthesis of the integument. Injection of dsRNA of each gene lead to the reduction of chitin synthesis in new cuticle and insects died during the molting process. LmCHS2played key roles in chitin synthesis of peritrophic matrix of the midgut. Nymphs injected with dsLmCHS2showed a significantly reduced or even loss peritrophic matrix, which hindered the food absorption and caused locusts died by the starvation.
     3. Molecular characteristics and functional study on LmBR-C and LmE74
     Broad-Complex and E74are primary response genes involved in the ecdysone signalling pathway. By searching the transcriptome database of locust, six BR-C and two E74isoforms were obtained. The common region was used to design primers. qPCR analysis showed that LmBR-C and LmE74have different tissue and developmental expression patterns. LmBR-C and LmE74were highest expressed in muscle and fat body, respectively, and also highly expressed in the integument. The mRNA expression of two genes was detectable during the developmental stages from eggs to adults, but exhibited different characteristics. When dsRNA of LmBR-C was injected into the4th and5th instar nymphs, the mRNA expression of LmBR-C did not be repressed. The mRNA expression of LmE74could be silenced after dsE74injection with30μg, however, down-regulated expression of LmE74had no effect on the development of locusts. Locusts injected with dsE74molted to adults successfully.
     4. Molecular characteristics and functional analysis of LmEcR and LmRXR
     LmEcR and LmRXR were highly expressed in the fat body, muscle, integument and foregut in late eggs and after nymphal moult. Injection of dsEcR or dsRXR resulted in high mortality. Compared to the control, the development of nymphs injected with dsEcR delayed and insects died still in the5th instar. However, there is no difference of the developmental time between nymphs injected with dsRXR and control, all insects injected with dsRXR died during the molting process. The cuticle did not separate from epidermis in dsEcR injected nymphs by histological observation. There is no remarkably difference in the histological structure of cuticle between dsRXR injected nymphs and control.
     5. The transcriptional regulation of key genes involved in chitin biosynthesis
     The down-regulated expression of LmEcR or LmRXR or primary transcription factor LmE74did not affect the expression of LmGfat, LmUAP1, LmCHS1and LmCHS2. No significant change of the mRNA expression of these genes was detected after adding20E to the incubated integument in vitro. These results suggested that20E did not regulate the expression of key genes involved in chitin biosynthesis. However, feeding changed mRNA expression of LmCHS2. When locusts were maintained with no food, the transcript levels of LmCHS2in midguts were lower than those of control. The expression increased to the control level rapidly after feeding again. Based on these results, it is deduced that the regulation mechanism of key genes involved in chitin biosynthesis may be different.
     6. DGE analysis of differentially expressed genes after flufenoxuron treatment
     When insects were treated with flufenoxuron by immersion, the insects died during the molting process, suggesting flufenoxuron is a good pesticide to control locusts. We further analyzed differently expressed genes by using Digital Gene Expression (DGE). The results showed that the differently expressed genes mainly focus on the metabolism, including proteins, lipids, nuclear acid and hydrocarbons. Some genes encoding chitinase and detoxification enzymes like carboxylesterases, gluthathione S-transferases and P450s were also significantly affected after flufenoxuron treatment. The biological meaning of the differentially expressed genes and the potential mechanism of flufenoxuron need to be further studied.
引文
[1]周树堂,郭伟,宋佳晟.昆虫变态的激素与基因调控.生物学通报.2012,47(9):1-6.
    [2]陈永林.蝗虫与蝗灾.生物学通报.1991,11:8-12.
    [3]Barbakadze N, Enders S, Gorb S, Arzt E. Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 2006,209(4):722-730.
    [4]Moussian B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 2010,40(5):363-375.
    [5]Hopkins TL, Harper MS. Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 2001,47(2):100-109.
    [6]Barbehenn RV. Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Biochem Physiol 2001,47(2):86-99.
    [7]Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 2001,47(2):47-61.
    [8]Hegedus D, Erlandson M, Gillott C, Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 2009,54:285-302.
    [9]Eisemann C, Wijffels G, Tellam RL. Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia. Arch Insect Biochem Physiol 2001,47(2):76-85.
    [10]Wang P, Granados RR. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 2001,47(2):110-118.
    [11]Shao L, Devenport M, Jacobs-Lorena M. The peritrophic matrix of hematophagous insects. Arch Insect Biochem Physiol 2001,47(2):119-125.
    [12]Spindler KD, Spindler-Barth M, Londershausen M. Chitin metabolism:a target for drugs against parasites. Parasitol Res 1990,76(4):283-288.
    [13]Merzendorfer H. Insect chitin synthases:a review. J Comp Physiol B 2006, 176(1):1-15.
    [14]王荫长.昆虫生理学.中国农业出版社.2004,28.
    [15]Kramer KJ, Hopkins TL, Schaefer J. Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 1995,25:1067-1080.
    [16]Kramer K, Muthukrishnan S. Chitin metabolism in insects. Comp Mol Insect Sci 2005, 4:111-144.
    [17]Merzendorfer H, Zimoch L. Chitin metabolism in insects:structure, function and regulation of chitin synthases and chitinases. JExp Biol 2003,206(24):4393-4412.
    [18]Candy DJ, Kilby BA. Studies on chitin synthesis in the desert locust. J Exp Biol 1962, 39:129-140.
    [19]Jaworski E, Wang, L. and Margo G. Synthesis of chitin in cell free extracts of Prodenia eridania. Nature 1963,198:790.
    [20]Cohen E. Chitin synthesis and inhibition:a revisit. Pest Manag Sci 2001, 57(10):946-950.
    [21]Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 2008, 474(2):302-317.
    [22]张欢欢.飞蝗GFAT和GNA的分子特性及生物学功能研究.硕士毕业论文.2012.
    [23]Mouilleron S, Badet-Denisot MA, Badet B, Golinelli-Pimpaneau B. Dynamics of glucosamine-6-phosphate synthase catalysis. Arch Biochem Biophys 2011,505(1):1-12.
    [24]Raczynska J, Olchowy J, Konariev PV, Svergun DI, Milewski S, Rypniewski W. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. J Mol Biol 2001,372(3):672-688.
    [25]Peneff C, Mengin-Lecreulx D, Bourne Y. The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. JBiol Chem 2001,276(19):16328-16334.
    [26]Nakaishi Y, Bando M, Shimizu H, Watanabe K, Goto F, Tsuge H, Kondo K, Komatsu M. Structural analysis of human glutamine:fructose-6-phosphate aminotransferase, a key regulator in type 2 diabetes. FEBS Lett 2009,583(1):163-167.
    [27]Graack HR, Cinque U, Kress H. Functional regulation of glutamine: fructose-6-phosphate aminotransferase 1 (GFAT1) of Drosophila melanogaster in a UDP-N-acetylglucosamine and cAMP-dependent manner. Biochem J 2001, 360(2):401-412.
    [28]Etchebehere LC, Maia JC. Phosphorylation-dependent regulation of aminotransferase during the development of Blastocladiella emersonii. Arch Biochem Biophys 1989, 272(2):301-310.
    [29]Milewski S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. Biochim Biophys Acta 2002,1597(2):173-192.
    [30]Zhou J, Huynh QK, Hoffman RT, Crook ED, Daniels MC, Gulve EA, McClain DA. Regulation of glutamine:fructose-6-phosphate aminotransferase by cAMP-dependent protein kinase. Diabetes 1998,47(12):1836-1840.
    [31]Li Y, Roux C, Lazereg S, LeCaer JP, Laprevote O, Badet B, Badet-Denisot MA. Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate aminotransferase isoform 1. Biochem 2007,46(45):13163-13169.
    [32]Kato N, Dasgupta R, Smartt CT, Christensen BM. Glucosamine:fructose-6-phosphate aminotransferase:gene characterization, chitin biosynthesis and peritrophic matrix formation in Aedes aegypti. Insect Mol Biol 2002,11 (3):207-216.
    [33]Bulik DA, van Ophem P, Manning JM, Shen Z, Newburg DS, Jarroll EL.UDP-N-acetylglucosamine pyrophosphorylase, a key enzyme in encysting Giardia, is allosterically regulated. JBiol Chem 2000,275(19):14722-14728.
    [34]Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 2003,25(4):367-385.
    [35]Marschall HU, Matern H, Wietholtz H, Egestad B, Matern S, Sjovall J. Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans. J Clin Invest 1992, 89(6):1981-1987.
    [36]Moussian B. The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B 2008,149(2):215-226.
    [37]Strominger JL, Smith MS. Uridine diphosphoacetylglucosamine pyrophosphorylase. J Biol Chem 1959,234(7):1822-1827.
    [38]Pattabiraman TN, Bachhawat BK. Purification of uridine diphosphoacetylglucosamine pyrophosphorylase from sheep brain. Biochim Biophys Acta 1961,50:129-134.
    [39]Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD. Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase. J Biol Chem 1996,271 (22):13147-13154.
    [40]Mio T, Yabe T, Arisawa M, Yamada-Okabe H. The eukaryotic UDP-N-metylglucosamine pyrophosphorylases:Gene cloning, protein expression, and catalytic mechanism. JBiol Chem 1998,273(23):14392-14397.
    [41]Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc:role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 2001, 20(22):6191-6202.
    [42]李峰.飞蝗UAPs的分子特性及功能研究.硕士毕业论文.2012.
    [43]Araujo SJ, Aslam H, Tear G, Casanova J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development--analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 2005,288(1):179-193.
    [44]Schimmelpfeng K, Strunk M, Stork T, Klambt C. Mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development. Mech Dev 2006,123(6):487-499.
    [45]Arakane Y, Baguinon MC, Jasrapuria S, Chaudhari S, Doyungan A, Kramer KJ, Muthukrishnan S, Beeman RW. Both UDP-N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity. Insect Biochem Mol Biol 2011,41(1):42-50.
    [46]Machida S, Saito M. Purification and characterization of membrane-bound chitin synthase. JBiol Chem 1993,268(3):1702-1707.
    [47]Uchida Y, Shimmi O, Sudoh M, Arisawa M, Yamada-Okabe H. Characterization of chitin synthase 2 of Saccharomyces cerevisiae II:Both full size and processed enzymes are active for chitin synthesis. J Biochem 1996,119(4):659-666.
    [48]Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. Insect chitin synthase cDNA sequence, gene organization and expression. Eur J Biochem 2000,267(19): 6025-6043.
    [49]Ostrowski S, Dierick HA, Bejsovec A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 2002,161(1):171-182.
    [50]Zhang J, Liu X, Li D, Sun Y, Guo Y, Ma E, Zhu KY. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 2010,40(11):824-833.
    [51]Ibrahim GH, Smartt CT, Kiley LM, Christensen BM. Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti. Insect Biochem Mol Biol 2000,30(12):1213-1222.
    [52]刘晓健.东亚飞蝗几丁质合成酶基因的分子特性及功能研究.硕士毕业论文.2010.
    [53]Schwedes CC, Carney GE. Ecdysone signaling in adult Drosophila melanogaster. J Insect Physiol 2012,58(3):293-302.
    [54]Ishimoto H, Sakai T, Kitamoto T. Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. Proc Natl Acad Sci U SA 2009,106(15):6381-6386.
    [55]Riddiford LM HK, Zhou X, Nelson CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 2003,33(12):1327-1338.
    [56]Riddiford LM, Truman JW, Mirth CK, Shen YC. A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 2010,137(7): 1117-1126.
    [57]Piulachs MD, Pagone V, Belles X. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem Mol Biol 2010,40(6):468-475.
    [58]Maroy P, Kaufmann G, Dubendorfer A. Embryonic ecdysteroids of Drosophila melanogaster. J Insect Physiol 1988,34:633-637.
    [59]Antoniewski C, Mugat B, Delbac F, Lepesant JA. Direct repeats bind the EcR/USP receptor and mediate ecdysteroid responses in Drosophila melanogaster. Mol Cell Biol 1996,16(6):2977-2986.
    [60]Henrich VC, Sliter TJ, Lubahn DB, MacIntyre A, Gilbert LI. A steroid/thyroid hormone receptor superfamily member in Drosophila melanogaster that shares extensive sequence similarity with a mammalian homologue. Nucleic Acids Res 1990, 18(14):4143-4148.
    [61]Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 1991,67(1):59-77.
    [62]Watanabe T, Takeuchi H, Kubo T. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects. BMC Evol Biol 2010,10:40.
    [63]Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 2003,130(2):271-284.
    [64]Li T, Bender M. A conditional rescue system reveals essential functions for the ecdysone receptor (EcR) gene during molting and metamorphosis in Drosophila. Development 2000,127(13):2897-2905.
    [65]Saleh DS, Zhang J, Wyatt GR, Walker VK. Cloning and characterization of an ecdysone receptor cDNA from Locusta migratoria. Mol Cell Endocrinol 1998, 143(1-2):91-99.
    [66]Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci USA 2001,98(4):1549-1554.
    [67]Billas IM, Iwema T, Gamier JM, Mitschler A, Rochel N, Moras D. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 2003,426(62):91-96.
    [68]Maestro O, Cruz J, Pascual N, Martin D, Belles X. Differential expression of two RXR/ultraspiracle isoforms during the life cycle of the hemimetabolous insect Blattella germanica (Dictyoptera, Blattellidae). Mol Cell Endocrinol 2005, 238(12):27-37.
    [69]Hayward DC, Bastiani MJ, Trueman JW, Truman JW, Riddiford LM, Ball EE. The sequence of Locusta RXR, homologous to Drosophila Ultraspiracle, and its evolutionary implications. Dev Genes Evol 1999,209(9):564-571.
    [70]Martin D, Maestro O, Cruz J, Mane-Padros D, Belles X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J Insect Physiol 2006,52(4):410-416.
    [71]Lahr EC, Dean D, Ewer J. Genetic analysis of ecdysis behavior in Drosophila reveals partially overlapping functions of two unrelated neuropeptides. J Neurosci 2012, 32(20):6819-6829.
    [72]Roller L, Zitnanova I, Dai L, Simo L, Park Y, Satake H, Tanaka Y, Adams ME, Zitnan D. Ecdysis triggering hormone signaling in arthropods. Peptides 2010,31(3):429-441.
    [73]Dai L, Adams ME. Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti. Gen Comp Endocrinol 2009,162(1):43-51.
    [74]Christiaens O, Iga M, Velarde RA, Rouge P, Smagghe G Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid. Insect Mol Biol 2010,19 (2):187-200.
    [75]Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 2008, 125(12):984-995.
    [76]Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci U S A 2005,102(8): 2820-2825.
    [77]Guo E, He Q, Liu S, Tian L, Sheng Z, Peng Q, Guan J, Shi M, Li K, Gilbert LI et al. MET is required for the maximal action of 20-hydroxyecdysone during Bombyx metamorphosis. PLoS One 2012,7(12):e53256.
    [78]Dubrovsky EB. Hormonal cross talk in insect development. Trends Endocrinol Metab 2005,16(1):6-11.
    [79]Gagou ME, Kapsetaki M, Turberg A, Kafetzopoulos D. Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis. Insect Biochem Mol Biol 2002,32(2):141-146.
    [80]Qu M, Yang Q. Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect Ostrinia furnacalis (Lepidoptera). Insect Mol Biol 2012:1-12.
    [81]唐斌.甜菜夜蛾(Spodoptera exigua)几丁质合成通路中重要基因的特性与转录调控初步研究.博士学位论文.2008.
    [82]Ampasala DR, Zheng S, Zhang D, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng Q. An epidermis-specific chitin synthase CDNA in Choristoneura fumiferana:cloning, characterization, developmental and hormonal-regulated expression. Arch Insect Biochem Physiol 2011,76(2):83-96.
    [83]Yao Q, Zhang D, Tang B, Chen J, Lu L, Zhang W. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS One 2010,5(11):el4058.
    [84]Mulder R, Gijswijk MT. The laboratory evaluation of two promising new insecticides which interfere with cuticle formation. Pestic Sci 1973,4:737-745.
    [85]Post LC, Vincent WR. A new insecticide inhibits chitin synthesis. Naturwissenschaften 1973,60:431-432.
    [86]Hunter E, Vincent JFV. The effects of a novel insecticide on insect cuticle. Experientia 1965,30(143):2-3.
    [87]王贵强,严毓骅,张龙,赵萍.昆虫生长调节剂对飞蝗体重及表皮的影响.现代化农业.1996,8:5-7.
    [88]Ker RF. Investigation of locust cuticle using the insecticide diflubenzuron. Insect Physiol 1977,39-48.
    [89]Post LC, Vincent WR. 1-(2,6-disubstituted benzoyl)-3-phenylurea insecticides: Inhibitors of chitin synthesis. Pestic Biochem Physiol 1974,4:473-483.
    [90]Deul DJ. Inhibition of chitin synthesis by two 1-(2,6-disubstituted benzoyl)-3-phenylurea insecticides. Pestic Biochem Physiol 1978,8:78-105.
    [91]Ishaaya I, Casida JE. Dietary TH 6040 alters cuticle composition and enzyme activity of house fly larval cuticle. Pestic Biochem Physiol 1974,4:484-490.
    [92]Leighton T, Marks E. Leighton F. Pesticides:insecticides and fungicides as chitin synthesis inhibitors. Science 1981,213:905-907.
    [93]Cunningham PA. A review of toxicity testing and degradation studies used to predict the effects of diflubenzuron (Dimilin) on estuarine crustaceans. Environ Pollut 1986, 40:63-86.
    [94]Yu SJ, Terriere LC. Activities of hormone metabolizing enzymes in house flies treated with some substituted urea growth regulators. Life Sci 1975,17:619-625.
    [95]Uljana W, Baier U, Penzlin H. The effect of diflubenzuron (dimilin) on the ecdysteroid titer and neuronal activity of Periplaneta americana (L.). Pestic Biochem Physiol 1991,39:8-19.
    [96]DeLoach JR, Meola SM, Mayer RT, Thompson JM. Inhibition of DNA synthesis by diflubenzuron in pupae of the stable fly Stomoxys calcitrans (L.). Pestic Biochem Physiol 1981,15:172-180.
    [97]Soltani N, Besson MT, Delachambre J. Effect of diflubenzuron on the pupal-adult development of Tenebrio molitor L. (Coleoptera:Tenebrionidae):Growth and development, cuticle secretion, epidermal cell density and DNA synthesis. Pestic Biochem Physiol 1984,21:256-264.
    [98]Van WH. Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem 1979,9:295-300.
    [99]Griffith MB, Barrows EM, Perry SA. Effect of diflubenzuron on flight of adult aquatic insects (Plecoptera, Trichoptera) following emergence during the second year after aerial application. J Econ Entomol 2000,93(6):1695-1700.
    [100]Ledirac N, Delescluse C, Lesca P, Piechocki MP, Hines RN, de Sousa G, Pralavorio M, Rahmani R. Diflubenzuron, a benzoyl-urea insecticide, is a potent inhibitor of TCDD-induced CYP1A1 expression in HepG2 cells. Toxicol Appl Pharmacol 2000, 164(3):273-279.
    [101]Zhang J, Zhu KY. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem Mol Biol 2006,36(9):712-725.
    [102]Ashfaq M, Sonoda S, Tsumuki H. Developmental and tissue-specific expression of CHS1 from Plutella xylostella and its response to chlorfluazuron. Insect Biochem Mol Biol 2007,89:20-30.
    [103]Abo-Elghar GE, Fujiyoshi P, Matsumura F. Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem Mol Biol 2004,34(8):743-752.
    [104]Meyer F, Flotenmeyer M, Moussian B. The sulfonylurea receptor Sur is dispensable for chitin synthesis in Drosophila melanogaster embryos. Pest Manag Sci 2013. DOI 10.1002/ps.3476
    [105]David JP, Coissae E, Melodelima C, Poupardln R, Riaz MA, Proust AC, Reynaud S. Transcritome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics 2012,11:216.
    [106]Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 2010,11:400.
    [107]Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Racz P, Mink M, Spaink HP, Meijer AH. Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 2009,46(15):2918-2930.
    [108]Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED et al. 3'tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 2009,10:531.
    [109]Zhou J, Zhao LQ, Xiong MM, Wang XQ, Yang GR, Qiu ZL, Wu M, Liu ZH. Gene expression profiles at different stages of human esophageal squamous cell carcinoma. World J Gastroenterol 2003,9(1):9-15.
    [110]刘晓健,杨美玲,张建琴,马恩波,张建珍.氟虫脲对东亚飞蝗和中华稻蝗对几丁质合成酶基因表达的影响.昆虫学报.2012,53(9):1039-1044.
    [111]Hammond SM, Bernstein E, Beach D, Harmon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404(6775):293-296.
    [112]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391(6669):806-811.
    [113]Brantl S. Antisense-RNA regulation and RNA interference. Biochim Biophys Acta 2002,1575(1-3):15-25.
    [114]Voinnet O, Baulcombe DC. Systemic signalling in gene silencing. Nature 1997,389 (6651):553.
    [115]Hamilton AJ, Baulcombe DC. A species of small antisense RNA in post transcriptional gene silencing in plants. Science 1999,286(5441):950-952.
    [116]Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000,408(6810):325-330.
    [117]Ui-Tei K, Zenno S, Juni A, Saigo K. RNAi induced in mammalian and Drosophila cells via transfection of dimers and trimers of small interfering RNA. J RNAi Gene Silencing 2005, 1(2):79-87.
    [118]Price DR, Gatehouse JA. RNAi-mediated crop protection against insects. Trends Biotechnol 2008,26(7):393-400.
    [119]Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 2007,25(11):1307-1313.
    [120]Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 2007,25(11):1322-1326.
    [121]Mello CC, Conte DJ. Revealing the world of RNA interference. Nature 2004,431 (7006):338-342.
    [122]尤其做,郭孵,陈永林,张福海,尤端苏.东亚飞蝗的生活习性.昆虫学报.1958,8(2):119-135.
    [123]Yang ML, Zhang JZ, Zhu KY, Xuan T, Liu XJ, Guo YP, Ma EB. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch Insect Biochem Physiol 2009,71(1):3-15.
    [124]Ma EB HY, Zhu KY. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust(Locusta migratoria manilensis): implications of insecticide resistance. Pestic Biochem Physiol 2004,78:67-77.
    [125]Zhu YC, Specht CA, Dittmer NT, Muthukrishnan S, Kanost MR, Kramer KJ. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochem Mol Biol 2002,32(11):1497-1506.
    [126]Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 2004,34(3):291-304.
    [127]Chen X, Yang X, Senthil Kumar N, Tang B, Sun X, Qiu X, Hu J, Zhang W. The class A chitin synthase gene of Spodoptera exigua:molecular cloning and expression patterns. Insect Biochem Mol Biol 2007,37(5):409-417.
    [128]Qu M, Yang Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis-gene organization, expression pattern and physiological significance. Insect Biochem Mol Biol 2011,41 (12):923-931.
    [129]陈宏鑫.甜菜夜蛾UAP基因的克隆、时空表达及功能的初步研究.硕士学位论文.2009.
    [130]Akpan BE, Okorie, TG. Allometric growth and performance of the gastric caeca of Zonocerus variegatus (L.) (Orthoptera:Pyrgomorphidae). Acta Entomol Sinica 2003, 46:558-566.
    [131]Zhang X, Zhang J, Park Y, Zhu KY. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 2012,42(9):674-682.
    [132]Moreira MF, Dos Santos AS, Marotta HR, Mansur JF, Ramos IB, Machado EA, Souza GH, Eberlin MN, Kaiser CR, Kramer KJ et al. A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochem Mol Biol 2007,37(12):1249-1261.
    [133]Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW. Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 2008,38(10):959-962.
    [134]Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. The Tribolium chitin synthase genes TcCHSl and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 2005,14(5):453-463.
    [135]Kumar NS, Tang B, Chen X, Tian H, Zhang W. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua. Comp Biochem Physiol B 2008,149(3):447-453.
    [136]Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ, Beeman RW, Kanost MR, Specht CA, Muthukrishnan S. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 2005, 35(6):529-540.
    [137]Zimoch L, Merzendorfer H. Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 2002,308(2):287-297.
    [138]Liu PZ, Kaufman TC. Short and long germ segmentation:unanswered questions in the evolution of a developmental mode. Evol Dev 2005,7(6):629-646.
    [139]Erezyilmaz DF, Riddiford LM, Truman JW. Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev Genes Evol 2004,214(7):313-323.
    [140]Konopova B, Smykal V, Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 2011,6(12):e28728.
    [141]Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D. Embryonic desiccation resistance in Aedes aegypti:presumptive role of the chitinized serosal cuticle. BMC Dev Biol 2008,8:82.
    [142]Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 2012,42(9):637-646.
    [143]Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA, Fujisaki K. Characterization of glutamine:fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding. Int J Parasitol 2007,37(34):383-392.
    [144]Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochem Mol Biol 2006,36(1):1-9.
    [145]Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bull Entomol Res 2008,98(6):613-619.
    [146]Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito(Anopheles gambiae). Insect Mol Biol 2010,19(5):683-693.
    [147]Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H. Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 2005,35(6):515-527.
    [148]Gordon KH, Waterhouse PM. RNAi for insect-proof plants. Nat Biotechnol 2007, 25(11):1231-1232.
    [149]Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 2009,4(7):e6225.
    [150]Kuwahara J, Watanabe Y, Kayasuga T, Itoh K. Zn finger and nuclear localization of transcription factor Sp1. Nucleic Acids Symp Ser 2000(44):265-266.
    [151]Konopova B, Jindra M. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 2008, 135(3):559-568.
    [152]DiBello PR, Withers DA, Bayer CA, Fristrom JW, Guild GM. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 1991,129(2):385-397.
    [153]Nishita Y, Takiya S. Structure and expression of the gene encoding a Broad-Complex homolog in the silkworm, Bombyx mori. Gene 2004,339:161-172.
    [154]Suzuki Y, Truman JW, Riddiford LM. The role of Broad in the development of Tribolium castaneum:implications for the evolution of the holometabolous insect pupa. Development 2008,135(3):569-577.
    [155]Albagli O, Dhordain P, Deweindt C, Lecocq G, Leprince D. The BTB/POZ domain:a new protein-protein interaction motif common to DNA-and actin-binding proteins. Cell Growth Differ 1995,6(9):1193-1198.
    [156]Hoffmann JA, Lagueux M, Hetru C, Charlet M, Goltzene F. Ecdysone in reproductively competent female adults and in embryos of insects. Progress of Ecdysone Research, Developments in Endocrinology 1980, Elsevier/North Holland Biomedical Press(New York):431-465.
    [157]Sullivan AA, Thummel CS. Temporal profiles of nuclear receptor gene expression reveal coordinate transcriptional responses during Drosophila development. Mol Endocrinol 2003,17(11):2125-2137.
    [158]Huang JH, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta 2013,1830(1):2178-2187.
    [159]Mugat B, Brodu V, Kejzlarova-Lepesant J, Antoniewski C, Bayer CA, Fristrom JW, Lepesant JA. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Dev Biol 2000,227(1):104-117.
    [160]Zhou B, Riddiford LM. Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol 2001,231(1):125-137.
    [161]Erezyilmaz DF, Riddiford LM, Truman JW. The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc Natl Acad Sci U S A 2006,103(18):6925-6930.
    [162]Zhou X, Riddiford LM. Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 2002,129(9):2259-2269.
    [163]Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci USA 2003,100(26):15607-15612.
    [164]Karim FD, Thummel CS. Ecdysone coordinates the timing and amounts of E74A and E74B transcription in Drosophila. Genes Dev 1991,5(6):1067-1079.
    [165]Sun G, Zhu J, Li C, Tu Z, Raikhel AS. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol Cell Endocrinol 2002,190(12): 147-157.
    [166]Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcription factors determine the expression region of target cuticular protein genes in the epidermis of Bombyx mori. Dev Genes Evol 2012,222(2):89-97.
    [167]Boyd L, O'Toole E, Thummel CS. Patterns of E74A RNA and protein expression at the onset of metamorphosis in Drosophila. Development 1991,112(4):981-995.
    [168]Fletcher JC, Burtis KC, Hogness DS, Thummel CS. The Drosophila E74 gene is required for metamorphosis and plays a role in the polytene chromosome puffing response to ecdysone. Development 1995,121(5):1455-1465.
    [169]Porcheron P, Moriniere N., Grassi J., Pradelles P. Development of an enzyme immunoassay for ecdysteroids using acetylcholinesterase as label. Insect Biochem 1989,19:117-122.
    [170]Cruz J, Mane-Padros D, Belles X, Martin D. Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Dev Biol 2006,297(1):158-171.
    [171]Talbot WS, Swyryd EA, Hogness DS. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 1993,73(7): 1323-1337.
    [172]Huet F, Ruiz C, Richards G. Sequential gene activation by ecdysone in Drosophila melanogaster. the hierarchical equivalence of early and early late genes. Development 1995,121(4):1195-1204.
    [173]Henrich VC, Szekely AA, Kim SJ, Brown NE, Antoniewski C, Hayden MA, Lepesant JA, Gilbert LI. Expression and function of the ultraspiracle (usp) gene during development of Drosophila melanogaster. Dev Biol 1994,165(1):38-52.
    [174]Jindra M, Malone F, Hiruma K, Riddiford LM. Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol 1996,180(1): 258-272.
    [175]Jindra M, Huang JY, Malone F, Asahina M, Riddiford LM. Identification and mRNA developmental profiles of two ultraspiracle isoforms in the epidermis and wings of Manduca sexta. Insect Mol Biol 1997,6(1):41-53.
    [176]Tan A, Palli SR. Ecdysone receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol 2008,291(1-2):42-49.
    [177]Karim FD, Thummel CS. Temporal coordination of regulatory gene expression by the steroid hormone ecdysone. EMBO J 1992, 11(11):4083-4093.
    [178]Wang SF, Li C, Sun G, Zhu J, Raikhel AS. Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol Cell Endocrinol 2002,196(12):29-42.
    [179]Verras M, Gourzi P, Zacharopoulou A, Mintzas AC. Developmental profiles and ecdysone regulation of the mRNAs for two ecdysone receptor isoforms in the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol 2002, 11(6):553-565.
    [180]Bender M, Imam FB, Talbot WS, Ganetzky B, Hogness DS. Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. Cell 1997, 91(6):777-788.
    [181]Davis MB, Carney GE, Robertson AE, Bender M. Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development. Dev Biol 2005,282(2):385-396.
    [182]Schubiger M, Wade AA, Carney GE, Truman JW, Bender M. Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development 1998,125(11):2053-2062.
    [183]Smagghe G, Dhadialla TS, Lezzi M. Comparative toxicity and ecdysone receptor affinity of non-steroidal ecdysone agonists and 20-hydroxyecdysone in Chironomus tentans. Insect Biochem Mol Biol 2002,32(2):187-192.
    [184]Nakagawa Y. Nonsteroidal ecdysone agonists. Vitam Horm 2005,73:131-173.
    [185]Lafont R, Dinan L. Practical uses for ecdysteroids in mammals including humans:an update. J Insect Sci 2003,3-7.
    [186]Apple RT, Fristrom JW.20-Hydroxyecdysone is required for, and negatively regulates, transcription of Drosophila pupal cuticle protein genes. Dev Biol 1991,146(2): 569-582.
    [187]Hiruma K, Hardie J, Riddiford LM. Hormonal regulation of epidermal metamorphosis in vitro:control of expression of a larval-specific cuticle gene. Dev Biol 1991, 144(2):369-378.
    [188]Devine WP, Lubarsky B, Shaw K, Luschnig S, Messina L, Krasnow MA. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc Natl Acad Sci U S A 2005,102(47):17014-17019.
    [189]Bray SJ, Kafatos FC. Developmental function of Elf-1:an essential transcription factor during embryogenesis in Drosophila. Genes Dev 1991,5(9):1672-1683.
    [190]Gangishetti U, Veerkamp J, Bezdan D, Schwarz H, Lohmann I, Moussian B. The transcription factor Grainy head and the steroid hormone ecdysone cooperate during differentiation of the skin of Drosophila melanogaster. Insect Mol Biol 2012,21(3): 283-295.
    [191]Qu M, Liu T, Yang J, Yang Q. The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis. Biochem Biophys Res Commun 2011,404(1):302-307.
    [192]曾慧花,张建珍,杨美玲,郭亚平,马恩波.几丁质合成抑制剂除虫脲对中华稻蝗的毒性效应研究.四川动物.2008,27(5):835-836.
    [193]李峰,刘晓健,张建珍,马恩波.几丁质合成抑制剂定虫隆对飞蝗的毒性效应研究.山西大学学报.2012,35(1):124-127.
    [194]Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, Brown SJ, Manak JR, Beeman RW, Kramer KJ et al. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochem Mol Biol 2012,42(4):264-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700