遥感图像中港口目标的检测与识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
港口是重要的军用和民用建筑,遥感图像在军事侦察、精确打击和民用方面有很多应用,因此研究遥感图像中港口目标的自动检测与识别具有重要意义,但港口目标因环境和特征的复杂性使其识别技术成为图像处理领域难点之一。本文首先检测遥感图像中是否存在港口目标,再对检测出的港口目标进行基于特征点的Hausdorff距离匹配,由匹配结果完成港口目标识别。
     根据港口灰度、纹理、形状等特征,分析可用于检测的港口知识。对遥感图像进行阈值分割、边缘检测和Hough变换等操作后,由港口中防波堤间距离、两侧灰度和所围区域面积判断提取的直线是否属于港口目标,检测出港口目标的存在和在实测图中的位置。
     为保证港口目标特征点检测的准确性,在识别时首先采用主动活动轮廓(Snake)模型提取港口目标轮廓。Snake模型可以在模型本身的内部能量和由图像产生的外部能量的共同作用使模型不断逼近目标轮廓。改进Snake内力计算方法,避免向强边缘聚集。采用梯度矢量场(Gradient Vector Flow, GVF)作为Snake外力,扩大模型的捕获范围。实验证明由Snake模型提取的港口目标轮廓具有很高的精度。
     采用基于特征点的Hausdorff距离匹配识别港口目标。通过分析比较各种特征点提取算法,最小吸收核同值区(Smallest Univalue Segment Assimilating Nucleus, SUSAN)角点检测算子具有计算量小、精度高、稳定性好、对噪声不敏感等优点,可以很好的描述目标轮廓特征。采用自适应方法计算灰度阈值和几何阈值;采用稳健有效的相似比较函数;通过吸收核质心与中心的距离去除虚假角点。Hausdorff距离描述两个模糊点集之间的相似度,本文对其进行了两部分改进,即部分Hausdorff距离和基于角点特征响应值的Hausdorff距离,以消除出格点和图像遮挡对匹配结果的影响。
     在VC++6.0上建立实验平台,利用基于内容的相似搜索中的K紧邻(K Nearest Neighbor, KNN)查询方法评价本文算法,得到回召率—检索精度曲线,根据实验结果与直线段匹配、不变矩匹配比较,证明本文算法的优越性。
Harbor is an important military and civil building; remote sensing image has many applications in military reconnaissance, precision attack and civil activities, so it has great importance to detect and recognize harbor target automatically. However, because harbor environment and structure are very complex, harbor target recognition is a difficult point in image processing area. Firstly, this dissertation detected harbor target in remote sensing image, judged its existence, secondly matched the detected harbor target based on feature points, finished harbor target recognition through matching results.
     Based on harbor target gray, texture, shape and structure features, harbor knowledge was analyzed for detecting harbor target. After processing procedures of threshold segmentation, edge detection, hough transform, this dissertation judged these detected lines whether belonged to harbor target based on breakwaters distance, breakwaters bilateral gray and area size enclosed by breakwaters, detected the existence and location of harbor target in remote sensing image.
     In recognition phase, this dissertation firstly used initiative active contour model (Snake) to pick up harbor contour which ensures accuracy of harbor feature points. Snake model can approach target contour constantly under the action of model internal force and external force caused by image. This dissertation gave an improved method to compute internal force, which avoids snake model assembling to strong edges; taked gradient vector flow (GVF) as external force, which enlarges snake model’s capture area. Experiments proved that harbor target contour picked-up by snake model algorithm has great precision.
     Then, harbor target was recognized by hausdorff distance matching method based on feature points. By analyzing and comparing several feature points picking-up algorithms, susan(smallest univalue segment assimilating nucleus) operator has advantages of low computational complexity, high resolution, strong anti-noise and good invariability, it can describe target contour features perfectly. Gray and geometric thresholds were obtained with an adaptive method; this dissertation used robust and effective similar function; the distance between assimilating nucleus centroid and its center was calculated to remove false corner points. Hausdorff distance presents the similarity of two fuzzy point sets. Two improvements about hausdorff distance were given. They were: partial hausdorff distance and hausdorff distance based on corner feature response value, which were used to avoid influences of partial visibility and outlier.
     Finally, an experiment platform was builded up on VC++6.0. KNN (K nearest neighbor) quiry method in similarity search based on contents was used to evaluate this dissertation algorithm, and recall ratio—precision ratio curve was obtained. Trough comparing with linear matching and invariability matching based on the experimental results, this dissertation algorithm was proved to be superior.
引文
1魏军伟.遥感图像中港口目标检测研究与实现.西安电子科技大学硕士论文. 2007: 9~10
    2钱乐祥.遥感数字影像处理与地理特征提取.科学出版社. 2004: 15~19
    3 Carlos Miravet Alvaro Enriquez De Luna, Deitze Otaduy, Carlos Dorronsoro. A Decision Support System for Ship Identification Based on The Curvature Scale Space Representation. Electronic Optical Remote Sensing. 2005, (2): 12~13
    4 John M.Weiss, Ruixuan Luo, Ronald M.Welch. Automatic Detection of Ship Tracks in Satellite Imagery. IEEE Trans on Geoscience and Remote Sensing. 1997, 1(1): 160~162
    5 S. Syed, P. Dare, S. Jones. Semi-Automatic 3-D Building Model Generation from Lidar and High Resolution Imagery, Proceedings of SSC2005 Spatial Intelligence, Innovation and Praxis: The National Biennial Conference of the Spatial Sciences Institute, Melbourne. 2005, (3): 170~171
    6 Z. J Liu, J Wang, W. P Liu. Building Extraction from High Resolution Imagery Based on Multi-Scale Object Oriented Classification and Probabilistic Hough Transform. Geoscience and Remote Sensing Symposium, 2005, IGARSS’05. Proceedings. 2005, 3(1): 779~783
    7 T. Kim, T. Lee, Y. J. Lim. The Use of Voting Strategy for Building Extraction from High Resolution Satellite Images. Geoscience and remote sensing symposium, 2005, IGARSS’05. Proceedings. 2005, 6(2): 426~430
    8 M. Nagao. A Structural Analysis of Complex Aerial Photographs. New York, Plenum, 1980, (5): 89~92
    9 Yohta. Color Information for Region Segmentation. 1980, (13): 105~110
    10 A.Hanson. Computer Vision System. New York, Academic. 1978: 37~43
    11王润生.图像理解.长沙:国防科技大学出版社. 1995: 25~26
    12 R.?Brooks. Model-based Computer Vision. UMI Research Press. 1984: 118~124
    13 Brooks R. Symbolic Reasoning among 3-D Models and 2-D Images. AI-17. 1981, (4): 57~63
    14 R.Brooks. The Acronym Model-Based Vision System. Inter. J.Conf. on AI. 1979, (6): 131~149
    15 M. Monocular Herman. Reconstruction of a Complex Urban Scene in the 3-D MOSAIC system. Proc. ARPA Image Understanding Workshop, 1983: 177~195
    16 M. Monocular Herman. Incremental Reconstruction of 3-D Scenes from Multiple Complex.AI-30. 1986: 55~72
    17 L. Itti, C. Koch, E. Niebur. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence. 1998, 20(11):1254~1259
    18方晓芙.遥感图像中战略目标识别方法研究.西北工业大学硕士论文. 2004: 5~20
    19李艳,彭嘉雄.港口目标特征提取与识别.华中科技大学学报. 2001, 29(6): 10~12
    20 Li Yan, Peng Jiaxiong. Feature Extraction of The Harbor Target and Its Recognition. Journal of Huazhong University of Science and Technology. 2001, (6):10~12
    21侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割.红外与毫米波学报. 2002, 21(5): 385~389
    22张志龙.基于遥感图像的重要目标特征提取与识别方法研究.国防科学技术大学士论文. 2005: 121~123
    23朱兵,李金宗,陈爱军.基于知识的快速港口识别.计算机应用. 2006, 26(3): 729~732
    24杨耘,王树根,邱丹丹.基于规则的高分辨率影像港口识别模型.测绘信息与工程. 2005, 30(5): 40~42
    25谢建春.机场目标分割与识别方法研究.西北工业大学硕士论文. 2006: 2~6
    26郭立斌,罗三定,曾涛.复杂情况下的军用机场跑道识别算法研究. 2008, (2): 31~34
    27杨浩,尹东,洪日昌.高分辨率遥感图像中桥梁自动识别方法研究.计算机仿真. 2006, 23(9): 119~122
    28 Jianbo Shi, Jitendra Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(8): 888~905
    2 9武冰.遥感图像道路提取方法研究.国防科技大学硕士论文. 2005: 12~24
    30吴建华.遥感图像中港口识别与毁伤分析研究.南京理工大学硕士论文, 2005: 10~12
    31 H. Freeman. Boundary Encoding and Processing in Picture Processing and Psychohistories. Lipkin and Posenfeld, Eds. New York: Academic Press, 1970: 241~306
    32 P. V. C. Hough. Method and Means of Recognizing Complex Patterns, 1962, U.S. Patent 3069654
    33赵波.遥感图像目标识别算法研究.国防科技大学硕士论文. 2004: 44~50
    34 J. S. Lee, I. Jurkevich. Unsupervised Coastline Detection and Tracing in SAR Images. Geoscience and Remote Sensing Symposium, 1989. IGARSS’89. 12th Canadian Symposium on Remote Sensing. 1989, 4(13): 2611~2614
    35 Jong Sen Lee, Ignor Jurkevich. Coastline Detection and Tracing in SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 662~668.
    36 Ireena A. Erteza. An Automatic Coastline Detector for Use with SAR Images. Sandia Report. 1998, (4): 48~52
    37 B. O. Giancarlo, Silvana Dellepiane, Raimondo De Layrentils. Semi-automatic Coastline Detection in Remotely Sensed Images. Geoscience and Remote Sensing Symposium,2000. Proceedings. 2000, 5(24): 1869~1871
    38 B. O. Giancarlo, Silvana Dellepiane, Raimondo De Layrentils. Coastline Extraction in Remotely Sensed Images by Means of Texture Features Analysis. Geoscience and Remote Sensing Symposium,2001. IGARSS’01. 2001, 3(9): 1493~1495
    39 M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models. International Journal of Computer Vision. 1987, 1(4): 321~331
    40 A. Amini, S. Tehrani, Weymouth T E. Using Dynamic Programming for Minimizing The Energy of Active Contours in The Presence of Hard Constraints. Computer Vision. 1988, (2): 95~99
    41 Chenyang Xu, Jerry L.Prince. Snakes. Shape and Gradient Vector Flow. IEEE Transactions on Image Processing. 1998, 7(3): 359~369
    42 A. K. Jain, Fundamentals of Digital Image Processing. Englewood Clis, NJ: Prentice-Hall. 1989: 45~49
    43 J. L. Prince and Chengyang Xu. A New External Force Model for Snakes. In 1996 Image and Multidimensional Signal Processing Workshop. 1996: 30~31
    44 J. Donna, Williams, Mubarak Shah. A Fast Algorithm for Active Contours and Curvature Estimation. Image Understanding. 1992, 55(1): 14~26
    45席学强,王润生.一个针对遥感图像特定目标的自动识别系统.遥感技术与应用. 2000, 15(3): 180~183
    46张立华,徐文立.点模式匹配.计算机学报. 1999, (7): 66~70
    47 H. P. Moravec. Visual Mapping by a Robot Rover. International Joint Conference on Artificial Intelligence. 1979: 598~600
    48 C. G.. Harris and M. J. Stephens. A Combined Corner and Edge Detector. Proc. Alvey Vision Conf., Univ. Manchester, 1988: 147~151
    49 W. Forstner, E. Gulch. A Fast Operator for Detection And Precise Location of Distinct Points, Corners And Centres of Circular Features. Interlaken: Switzerland Proceeding of Inter-comission Workshop on Fast Processing of Photogram Metric Data. 1987: 24~29
    50 M. Trajkovic, M. Hedley. Fast Corner Detection. Image and Vision Computing. 1998, 16(2): 75~87
    51陈静.图像配准特征点提取算法研究.南京理工大学硕士论文. 2006: 36~43
    52 S. M Smith, J. M Brady. SUSAN—A New Approach to Low Level Image Processing. International Journal of Computer Vision. 1997, 23(1): 45~78
    53陈利军.图像角点检测与匹配算法研究.西安电子科技大学. 2005: 10~11
    54 D. P Huttenlocher. Comparing Images Using The Hausdorff Distance. IEEE Transaction Pattern Analysis and Machine Intelligence. 1993, (9): 14~17
    55芮挺,王金岩,沈春林,丁健,廖明. Hausdorff距离下的景像特征快速匹配.光电工程. 2005, 32(6): 20~23
    56张钰,林巍,李海瑛.基于Hausdorff距离的图形快速匹配.微计算机信息. 2007, 23(11): 290~291
    57孟飞,王仕成,杨小冈,张合新.基于Hausdorff距离和免疫遗传算法在图像匹配的应用研究.兵工自动化. 2008, 27(2): 79~81
    58沈庭芝,臧铁飞,朱少娟,方力.一种改进的部分Hausdorff距离检测技术和遗传算法在图像匹配识别中的应用.通信学报. 2001, 22(12): 112~116
    59张志刚,周明全,耿国华.一种基于Hausdorff距离的图像配准算法.计算机应用与软件. 2007, 24(8): 17~19
    60 D. G. Sim, O. K. Kwon, P. H. Park. Object Matching Algorithm Using Robust Hausdorff Distance Measures. IEEE Transaction on Image Process. 1999, 8(3):425~429
    61 Krystian Mikolajczyk, Cordelia Schmid. Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision. 2004, 60(1): 63~86
    62吴均.基于内容的图像检索技术及其在遥感图像中的应用研究.中国科学院士论文. 2001: 69~72
    63王井龙.基于内容的图像检索系统研究.南京理工大学硕士论文. 2003: 25~30
    64刘灿,张德贤. KNN查询处理算法性能研究.苏州科技学院学报. 2006, 23(3): 73~76
    65邓汉成,王敏芳,王瑛.查全率与查准率之间关系的理论研究.情报学报. 2000, 19(4): 359~362
    66 Jinqiao Wang, Lingyu Duan, Qingshan Liu, Hanqing Lu, Jesse S.Jin. Robust Commercial Retrieval Video Streams. 2007 IEEE. 2007: 260~263
    67沈建人.查准率与查全率之间的关系.情报探索. 2006, (4): 32~34
    68许忠锡.关于查全率与查准率相互关系问题的新认识.情报杂志. 2004, (3): 57~60
    69范晴,徐建华,宋震.查全率与查准率关系初探.情报杂志. 2002, (9): 41~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700