针状焦用作锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将针状焦(NC)进行不同HTT_(max)(最高热处理温度)的热处理,用密度、XRD图谱和激光Raman图谱来表征热处理后NC试样的微观结构。运用恒电流充、放电实验和粉末微电极循环伏安实验来检测上述NC试样的充、放电性能。在此基础上探讨了NC试样的微观结构与充、放电性能之间的关系。考察了具有最佳贮锂结构的NC_(2700)试样和六种电解液之间的相容性,利用FTIR图谱对NC_(2700)试样在上述六种电解液中首次充电时在炭负极表面所形成的SEI(固体电解质中间相)膜的成分和织构进行了分析,研究了试样与电解液的相容性和SEI膜的关系。结合恒电流充、放电实验,采用正交法分析了NC_(2700)试样的粒度、炭膜中乙炔黑的含量以及PTFE的含量对NC_(2700)负极材料的充放电性能的影响。试验结果表明:
     1.HTT_(max)对NC试样的微观结构和充、放电性能有很大影响。当HTT_(max)≤1500℃时,由于NC已经过1400℃~1500℃的煅烧,因此其微观结构及充、放电性能没有多大改变;在HTT_(max)<2100℃的范围内,NC属于乱层结构,石墨微晶尚未出现或数量很少,贮锂机制为“孔隙贮锂”,由于孔隙的大小不一,插锂时克服阻力所需的电位也不同,因此充、放电曲线呈“V”字形,无充、放电电位平台;随着HTT_(max)的增大,材料中孔隙逐渐变小、变少,充、放电容量也逐渐变小;HTT_(max)=2100℃时,微孔几乎消失,而石墨微晶又少又小,因此试样的充、放电容量最低:HTT_(max)>2100℃时,石墨微晶迅速成长,充、放电容量迅速增大,充、放电曲线为“U”字形,充、放电平台低而平稳,循环性能良好,表现出典型的“石墨微晶层间嵌锂”机制;当HTT_(max)=2700℃时,NC_(2700)在1mol/L LiClO_4/EC+DEC(1:1)电解液中第三循环的放电容量D_3=314.3mAh/g,充、放电效率η_3=95.7%,具有最好的充、放电性能;HTT_(max)>2700℃时,随着HTT_(max)的升高,石墨微晶继续增大,但由于能阻止溶剂化锂离子插入到石墨层间的sp~3键减少,使NC充、放电性能降低。
     2.不论使用LiClO_4还是LiPF_6作锂盐电解质,EC基溶剂体系总是大大优于PC基溶剂体系,当采用EC基溶剂体系时,以LiClO_4作溶质时的充、放电效率比以LiPF_6作溶质时相对要高5%左右。NC_(2700)
    
    试样在不同的电解液中,首次充电过程中形成的SEI膜化学组分均
    为碳酸铿和烷基碳酸铿,但在EC基电解液中形成的sEI膜薄而致
    密,可以有效地阻止溶剂化铿离子插入石墨层间,不可逆容量少,
    表现出与NC270(、负极材料有良好的相容性;在PC基电解液中形成的
    SEI膜虽厚但有缺陷,不能有效地阻止溶剂化铿离子插入石墨层间,
    不可逆容量大,与NC270。负极材料的相容性极差。
     3.NC27(l(,负极材料的粒度(A)、炭膜中导电剂乙炔黑的含量(B)
    和粘结剂PTFE的含量(C)对NC270。的充、放电性能均有影响,但
    程度不同。对NC27o.,负极材料在lm。1/L Lie10,/EC+DEC(l:l)电
    解液中第三循环放电容量的影响顺序为:A>B>C;对第三循环充、
    放电效率的影响顺序为:A>C>B。当NC270(,负极材料的粒度为一325
    目,乙炔黑含量为6%,PTFE含量为3%时,NC二。,的第三循环放电
    容量最大(D:、=318.4 mAh/g)。当NC27《,(,负极材料的粒度为一200「!,
    乙炔黑含量为O%,PTFE含量为3%时,NC270。的第三循环充、放电效
    率最大(几3=96.9%)。可以看出:NC270。负极材料的第三循环放电容
    量达到最大时各因素的水平与第三循环充、放电效率最人时并不
    致,考虑到第三循环充、放电效率的极差都不大,因此在压制炭膜
    时上述三因素可以选用第三循环的放电容量为最大时的水平。
     4.由方案2制备的NC270。试样既可以保持由方案1所制备的
    NC270.,试样的贮铿结构和充、放电性能,又能节约石墨化过程「一扫的
    能耗。
     5.当选取组合为AZB:,C.的炭膜时,NC27.川在lmol/L LICIO,/EC
    +DEC(1:l)电解液中第三循环的放电容量压=3 18.4mAh/g,充、
    放电效率n厂90.7%,是一种理想的铿离子电池负极材料。
NC (Needle coke) was heat-treated with different HTTmax (the maximum heated-treatment temperature). The microstructures of these samples were characterized by their densities, XRD spectra and Raman spectra. Their charging-discharging performances were investigated by galvanostatic charging-discharging experiments and powder microelectrode cyclic voltammetry experiments. The relationship between their charging-discharging performances and the microstructures was discussed. The compatibilities of sample NC2700 with six kinds of electrolytes were investigated too. The compositions of the solid electrolyte interphase(SEI) films formed during the first charging process were analyzed by FTIR spectra. The relationship between the SEI films and the compatibilities of samples with electrolytes was examined. The influences of other factors (the granularity of NC2700, the content of PTFE and the content of acetylene black) on the charging-discharging performances of NC2700 were also investigated by the orthogonal metho
    d through galvanostatic charging-discharging experiments. The experimental results are as follows:
    1.The microstructures and the charging-discharging performances of NC samples relate to HTTmax. When HTTmax<1500 ℃, the microstructures and the charging-discharging performances of NC samples remain unchanged due to the previous calcination under temperature 1400℃-1500℃. When HTTmax <2100℃, the graphite microcrystals have not appeared. The mechanism of storing' lithium-ions is to insert lithium ions in the micropores of the samples. The charging
    
    
    -discharging curves look like the letter "V" and have no flat plateaus due to the different sizes of the micropores. With the increasing of HTTmax, the micropores in NC samples become smaller and fewer and the charging-discharging capacities decrease. When HTTmax = 2100℃, the charging-discharging capacity reaches the minimum due to the minimum micropores and the small and few graphite microcrystals in NC samples. When HTTmax >2100℃, the graphite microcrystals grow rapidly, and the charging-discharging capacities of the samples increase too. The mechanism of storing lithium-ions converts to the intercalation of the lithium ions between the graphene layers of the graphite microcrystals. The charging-discharging curves of the samples look like the letter "U" and have low potential flat plateaus. When HTT.ax-2700℃, the charging-discharging characteristic of NC sample in 1mol/L LiClO4/EC+DEC (1:1) electrolyte reaches the optimum with discharging capacity 314.3mAh/g and charging-discharging efficiency 95.7% in the
     3rd cycle. When HTTmax>2700℃, the charging-discharging performances of NC become worse since the exfoliation of graphene layers in the graphite microcrystals due to the decrease of sp3 bonds which can prevent the solvate-d lithium ions from intercalating into graphene layers.
    2. Using either LiClO4 or LiPF6 as the lithium salt solute, the charging-discharging performances in EC-based solvent system are always much better than in PC based solvent system. For EC-based system, the charging-discharging efficiency using the solute LiClO4 is about 5% higher than using the solute LiPF6. The chemical compositions of SEI films formed on the interfaces of NC2700 samples in different electrolytes during the first charging process are mainly Li2CO3 and LiOCO2R, but their textures are different. The SEI films formed in
    
    
    EC-based electrolytes are thin and compact, which can prevent the solvated lithium ions from cointercalating into graphene layers; the irreversible capacities are small. The compatibilities with NC2700 are good. However, the SEI films formed in PC-based electrolytes are thick but defective, which could not effectively prevent solvated lithium ions from intercalation; the irreversible capacities in PC-based electrolytes are large. The compatibilities with NC2700 are very bad.
    3. In the process of the manufacture of the electrode, the granularity of NC2700 (A), the contents of PTFE (B) and acetylene black(C) influence the charging-dischargi
引文
1.胡绍杰,徐保伯,锂离子电池工业的发展与展望,电池,2000,30:171-174
    2.胡信国,阎智刚,章宁琳,国外电动车的发展近况,电池,2001,(3):138-141
    3.杨毅夫 从EVS-17看国际电动车及动力电池发展趋势,电池,2001,(4):192-194
    4.毕道治,CIBF2001技术交流会,电源技术,2001,25(4):315-317
    5.吴国良,刘人敏等,电动车用锂离子电池负极材料研制,电池,2002增刊,32:43-46
    6.吉野彰,日本锂离子蓄电池技术的开发过程和最新趋势,电源技术,2001,25(6):416-422
    7. Nagaura T, Tozawa. Prog Batts Sol Cells, 1990, (9): 209
    8. CHEN, Jin-ming, LIU Mao-huang, et al. Battery World, 2001, (4): 28-30
    9.郭丙琨,李新海等,化学电源,中南工业大学出版社,2000:1
    10. ED. Jeorg, et al. Cathodic properties of a Lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction, J. Power Sources, 1998, 70(1): 70-77
    11. Yet-Mingchiang, et al. Synthesis of LiCoO_2 by decomposition and intercalation of hydroxides. J Electrochem. soc, 1998, 145(3): 887-891
    12.吴国良,刘人敏等,锂离子电池LiCoO_2正极材料及其应用研究,电池世界,2002(2):9-12
    13.黄可龙,熊奇等,缺金属型锂钴氧化物正极材料的研究,电池,2001,31(6):264-267
    14.高虹,瞿秀静等,锂离子电池正极材料LiNiO_2的制备研究,电源技术,1999,23:53-55
    15.刘汉三,杨勇等,锂离子电池正极材料锂镍氧化物研究新进展,电化学,2001,7(3):145-151
    16.钟俊辉,锂离子电池的正极材料,电源技术,1997,21(4):174-177
    17.唐致远,李建刚等,LiNiO_2的制备与改性探讨,电池,2001,31(1):10-13
    18. OhzukuT, UedaA, Kouguchi M. Synthesis and characterization of LiAl_(1/4)Ni(3/4)O_2(R3m) for Lithium-ion batteries. J Electrochem soc, 1995, 143(12): 4033-4039
    19.彭斌,黄可龙.锂离子二次电池正极材料LiMn_2O_4的研究进展,材料导报,1999,13(6):25-27
    20.陈彦彬等,锂离子蓄电池LiMn_3O_4的研究进展.电源技术,2000,24(4):238-242
    21. PERNMUNAGE D, ABRAIINM K M. Preparation and electrochemical characterization of overlithiated spinel LiMn_2O_4J Electrochem soc, 1998, 145: 1131
    
    
    22. J. M. Taraxcon, E, Wang, et al. The Spinel Phase of LiMn_2O_4as a Cathode in Secondary Lithium Cells, J. Electrochem. Soc, 1991, 138(10): 2859-2864
    23.吴国良,锂离子电池负极材料的现状与发展,电池,2001,31(2):54-57
    24.周向阳,胡国荣等,锂离子电池碳负极材料的研究进展,电池,2001.31(3):146-149
    25. Bruno Scrosati. Recent advances in lithium ion battery materials. Electrochimica Acta, 2000, 45: 2461-2466
    26.刘业翔,胡国荣等,锂离子电池研究与开发进展,电池,2002,32(5):269-274
    27. Simon B, Flandrois S, Gurein K, et al. On the choice of graphite for lithium-ion batteries. J Power Sources, 1999, 81-82: 312-316
    28.阚素荣,吴国良等,国产石墨作为锂离子蓄电池负极材料,电源技术,2002,26(2):66-68
    29.李建军,天然石墨锂离子电池负极材料循环性能研究,炭素技术,2000(4):5-7
    30.马树华,国汉举等,锂离子电池负极材料表面改性与修饰,电化学,1996,2(4)]:413-419
    31. Kuribayashi Isao, Yokoyama Mika, Yamashita Masataba. Battery characteristics with various carbonaceous materials, J Power Sources, 1995, 54: 1-5
    32.杨瑞枝,以酚醛树脂热解炭包覆天然鳞片石墨的复合材料作为锂离子二次电池负极材料的研究,炭素,1999(1):43-48
    33.仇卫华,锂离子电池负极材料-树脂包覆石墨的性能,电源技术,1999,23(1):7-9,25
    34. Yamada K, Tanaka H, et al. Method for manufacting cabon composite electrode material(Pa). USP: 5595838, 1997
    35. HONBO, TATAOO, et al. Properties of sliver-deposited graphite anodes for lithium secondary batteries. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1998, 496: 557-562
    36.唐致远,潘丽珠等.锂离子电池石墨负极材料表面镍包覆,电池,2002,32(4):194-132
    37. Zhao Linlin, et al. Modification of synthetic graphite for secondary Li-ion battery application. J Power sources, 1997, 81: 187-191
    38. Basket Vceraraghavan, Anand Durairajan, et al. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries. J Electrochem Soc, 2002, 149(6): A675-A681
    39.朱鹏,煤沥青基中间相炭微球用作锂离子电池负极材料的研究,湖南师范大学硕士学
    
    位论文,2002,5
    40.彭丽华.石油沥青基中间相炭微球用作锂离子电池负极材料的研究,湖南师范大学硕士学位论文,2002,5
    41.郑洪河,锂离子电池正负极材料与电解液的相容性,湖南大学博士论文,2000,7
    42.周志才,高温热处理石油焦用作锂离子电池负极时影响其充放电性能的有关因素,湖南大学博士学位论文,1997
    43. Xu Zhong-yu, Tu Jian, et al, The Charge-Discharge Performances of Anthracite Samples Heated with Different Maximum Heat Treatment Temperatures. An International Conference on Carbon, Beijing, 2002
    44. Xu Zhong-yu, Xie Hui, Yin Dulin, et al, The Common Charge-Discharge Characteristics of the Heat-treated Soft Carbon Materials Used as the NegativeElectrodes for Lithium Ion Batteries. An International Conference on Carbon, Beijing, 2002
    45. Katia Gverin, et al. On the irreversible capacities of disorderd carbons in lithium-ion rechargeable batteries. Electrochimica Acta, 2000, 45: 1607-1615
    46. J. S. Gnanaroj, et al. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc, 2001, 148(6): A525-A536
    47. HARA M, SATOH A, TAKMAI N, et al. Structural and electrochemical properties of lithiated polymerized aromatics anodes for lithium-ion cells. J Phy Chem, 1995, 143(6): 338-343
    48. Theng T, Liu Y, et al. Lithium insertion in high capacity carbonaceous materials. J Electrochem Soc, 1995, 142(8): 2581-2590
    49. Yazami R, Deschamps M. High reversible capacity carbon lithium negative electrode in polymer electrolyte. J Power Sources, 1995, 54: 411-415
    50.唐致远,庄新国等,炭材料贮锂机理研究的现状,新型炭材料,2001,16(4):71-75
    51. Theng T, Mckimnon W R, Dahn J R. Hysteresis during lithium insertion in hydrogen-containing c arbons. J Electrochem Soc, 1996, 143(7): 2317-2145
    52. Way B M, Dahn J R. The effect of boron substitution in carbon on the intercalation of lithium in Li,(B_2C(?))6. J Electrochem Soc, 1994, 141: 907-912
    
    
    53. Wilson A M, Dahn J R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem Soc, 1995, 142: 326-332
    54. Tossici R, Berretton I M, Rosolen M, et al. Electrochemistry of KC8 in lithium-containing electrolytes and its use in lithium ion cells. J Electrochem Soc, 1997, 144: 186-192
    55.吴宇平,万春荣等,锂离子电池碳负极材料的改性,电化学,1998,4(3):286-293
    56. R Tossici, M Berrettoni, et al. A High-Rate Carbon Electrode for Rechargeable Lithium-Ion Batteries. J Electrochem Soc, 143(3): L65-L67
    57.尹鸽平,王庆等,锂离子电池新型负极材料的研究进展,电池,1999,29(6):270-274
    58. Brouse T, Retoux R, Herterich U, et al. Thin film crystalline SnO2-lithium electrodes. J Electrochem Soc, 1998, 145: 1-4.
    59.雷钢铁,苏光耀,锂离子电池锡基负极材料研究概况,电池,200l,31(6):270-297
    60. Mao Ou, Bunalp R A, Dahn J R. Mechanical. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries I. The Sn2Fe-C system. J Electrochem Soc, 1999, 146: 425-413
    61.王茂章,贺福,碳纤维的制造、性质及应用,科学出版社,1990:169
    62.全国炭素制品信息网第十七届炭素技术交流会论文汇编,全国炭素制品信息网兰州炭素股份有限公司,2001:1-19
    63.贾昌涛,王素秋,针状焦成焦机理及应用条件探讨,炭素技术,2000,108(3):37-38
    64. Z. X. Shu, R. S. Mcmillan, J. J. Murray, et al. Effects of 12 crown 4 on the electrochemical intercalation of lithium into graphite, J Electrochem. Soc., 1993, 140: L101-103
    65. D. Aurbach, A. Zaban. Impedance spectroscopy of non-active metal electrodes at low potential in propylene carbonate solution. J Electroanal. Chem. 1994, 367: 15-27
    66. E. Endo, M. Atam, K. Tanaka, et al. Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries, J Electrochem. Soc., 1998, 145: 4047-4053
    67. Xuerong Zhaag. Electrochemical and Infrared Study of the Reduction of Organic Carbonates, J Electrochcm. Soc., 2001, 148(12): A1341-A1345
    68.无机化学丛书第一卷,1998年版.科学出版社
    
    
    69.电化学测定方法,(日)藤屿著,陈震,姚建年译,北京大学出版社,1995.5:326
    70. R. Kostecki, T. Tran, X. Song, K. Kinoshita, et al. Raman Spectroscopy and Electron Microscopy of heat-treated petroleum cokes for lithium-Intercalation electrodes. J. Electrochem. Soc, 1997, 144: 3111-3117
    71. M. Inaba, H. Yoshida, Z. Ogumi. In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures. J Electrochem. Soc, 1996, 143: 2572-2577
    72.日本炭素材料学会编,新·炭材料入门.第三版,中国金属学会炭素材料专业委员会编,1999
    73. Tao zheng, yinghu liu, E. W. fuller, et al. Lithium insertion in high capacity carbonaceous materials. J Electochem. Soc, 1995, 142(8)2581-2590
    74. K. Tatsumi, N. Iwashita, H. Sakaebe, et al. The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem. Soc., 1995, 142: 716-720
    75. M. Inaba, H. Yoshida, Z. Ogumi. In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures. J Electrochem. Soc, 1996, 143: 2572-2577
    76.苏玉长,原位X射线衍射法在电化学插脱层过程研究中的应用,湖南大学博士学位论文,1997,7
    77. D. Aurbach, A. Zaban, A. Shechter. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable batteries I. Li metal anodes. J Electrochem. Soc., 1995, 42: 2873-2881.
    78. D. Aurbach, A. Zaban, A. Shechter. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable batteries Ⅱ. Graphite anodes. J Electrochem. Soc., 1995, 142: 2882-2887.
    79.周志才,高温热处理石油焦用作锂离子二次电池负电极时影响其充、放电性能的有关因素:湖南大学博士学位论文,1997
    80. Fei Cao, Igorv, Barsukov, et al., Evaluation of Graphite Material as Anodes for Lithium Ion Batteries. J Electrochem. Soc. 2000, 147(10): 3579-3583
    81. Z. X. Shu, R. S. Mcmillan, J. J. Murray. Electrochemical Intercalation of Lithium into Graphite, J. Electrochem. Soc. 1993, 140(4): 922-927
    82.武·河岛千寻编,梁济博译,新炭素材料.兰州碳素厂研究所,1981:5
    
    
    83.A·C·费阿尔柯夫著,杨耿志译,碳和石墨材料,哈尔滨电碳研究所,1987:13-25
    84.美·曼德尔,碳和石墨手册,《碳和石墨手册》翻译小组译,兰州炭素厂研究所,1978,3:87,93
    85.陈蔚然,碳素材料工艺基础,湖南大学,1984:44-60
    86.何灿芝,应用统计,湖南科学技术出版社,1997:223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700