共沉淀氢氧化铁强化牛乳的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是人体必不可少的营养元素,有着重要的生理作用,然而铁的缺乏是全球主要营养性疾病,食物铁强化被誉为预防铁缺乏最有效的方法之一。本试验采用营养丰富、消费潜力大的牛乳为强化载体,以共沉淀氢氧化铁作为强化铁源,旨在研制一种新型铁强化牛乳。主要研究了:共沉淀氢氧化铁的添加量对牛乳品质的影响;同一添加量下,不同铁源对牛乳品质的影响;共沉淀氢氧化铁强化乳的超声均质条件;稳定剂的选择及复配。主要研究结果如下:
     1.实验以日需铁最大量的妊娠后期人群需铁量(35 mg/d)的2/3为上限,以每人每日饮用牛乳250 g计算,分别按每100 g牛乳添加共沉淀氢氧化铁3.3 mg、4.3 mg、5.3 mg、6.3 mg、7.3 mg、8.3 mg、9.3 mg(以Fe计),制得杀菌牛乳,比较共沉淀氢氧化铁的不同添加量对牛乳感官品质的影响及在4℃贮藏过程中理化指标(pH、TBA)的变化;贮藏8d后,测定样品液中铁含量。结果表明:铁添加量在5.3mg/100 g及其以下的样品感官品质较好;添加共沉淀氢氧化铁的样品pH增大,且铁添加量越多,pH增加越多;在贮藏期间,各样品pH变化不大,TBA值呈上升趋势,不同铁添加量的样品TBA值差异不显著;贮藏8d后,铁添加量≤5.3 mg/100 g的样品液中铁含量达添加量的89%。说明以共沉淀氢氧化铁作为牛乳铁强化剂可行。
     2.在同一铁添加量下,以焦磷酸铁、共沉淀氢氧化铁、硫酸亚铁、乙二胺四乙酸铁钠(NaFeEDTA)作为铁源对杀菌牛进行铁强化,比较了四种铁源对牛乳感官品质的影响,测定样品液中铁含量及在4℃贮藏过程中理化指标(pH、TBA)的变化。结果表明:NaFeEDTA铁强化乳感官品质最好,共沉淀氢氧化铁强化乳稍次之,焦磷酸铁及硫酸亚铁样品的最差;不同铁源的强化乳中测得铁含量为共沉淀氢氧化铁>NaFeEDTA>硫酸亚铁>焦磷酸铁;添加硫酸亚铁、NaFeEDTA使牛乳pH降低;共沉淀氢氧化铁对牛乳的脂肪氧化作用小于硫酸亚铁及NaFeEDTA。共沉淀氢氧化铁可以作为牛乳铁强化的较佳铁源。
     3.采用超声波对共沉淀氢氧化铁强化乳进行均质处理,以180 w、270 w、360 w三种超声功率,分别在20 s、65 s、110 s、155 s、200 s、245 s、290 s、335 s的超声时间下处理牛乳,测定样品吸光值,贮藏8d后,测定沉淀量及样品液中铁含量。结果表明:超声功率为180 w,270 w,360 w时,超声时间分别在245 s,200 s,155 s时,共沉淀氢氧化铁强化乳分散最均匀;功率为180 w,270 w,360 w时,超声时间分别在245s,245s,200s时,共沉淀氢氧化铁强化乳沉淀量最少,分别为0.467%,0.433%,0.444%。综合成本因素,选择超声均质的最佳条件为:功率180 w,超声时间200s~245s。
     4.通过对乳化剂(单甘酯、蔗糖酯、司盘60、吐温60)、增稠剂(卡拉胶、微晶纤维素(MCC)、瓜尔豆胶、黄原胶、羧甲基纤维素钠)及添加盐(三聚磷酸钠、六偏磷酸钠、焦磷酸钠、柠檬酸钠)的单因素试验,选取对共沉淀氢氧化铁强化乳稳定性影响明显的因素,采用混料设计进行稳定剂复配。结果表明:添加盐对共沉淀氢氧化铁强化乳稳定效果不明显;选用卡拉胶、维晶纤维素、复合乳化剂(单甘酯:蔗糖酯为7:3)进行复配,得到共沉淀氢氧化铁强化乳稳定剂最佳配方比例:卡拉胶:微晶纤维素:复合乳化剂为0.4000:0.2040:0.3996。
     5.根据最佳稳定剂配方,采用180 w,200 s的超声均质条件,制得样品,于4℃下贮藏,观察贮藏过程中组织状态变化;于样品制得Od、3d、6d、9d、12 d、15 d测定pH、TBA及细菌菌落总数变化。结果表明:12d内无脂肪上浮,9d内无明显铁沉淀;贮藏15d中pH和TBA变化不明显;共沉淀氢氧化铁强化乳贮藏15d中,细菌菌落总数最高时达240 CFU/mL,远小于国家标准中巴氏杀菌牛乳的微生物指标。
     综合上述结果,共沉淀氢氧化铁的添加量为4.5 mg/100 g牛乳(以Fe计)时,加入0.15%的复合稳定剂(卡拉胶:微晶纤维素:复合乳化剂为0.4000:0.2040:0.3996),采用180 w,200 s的超声均质条件,在95℃下,杀菌5 min,制得的共沉淀氢氧化铁强化牛乳,于4℃下贮藏,9d内组织状态未发生变化且微生物含量低。
Iron is an essential nutrient for human body with important physiological role, however, iron deficiency is the main nutritional disease in the world, and iron fortification of foods was identified as one of the most effective strategies for the contral of iron deficiency. In this experiment, milk was used as strengthening carrier that have characteristics of Nutrient-rich and great potential consumption, and the co-precipitation ferric hydroxide acted as a iron source of fortification, the aim was to develop a new type of iron fortified milk. It mainly studied:The effects of co-precipitation ferric hydroxide supplementation on the quality of milk; The effects of different iron sources on the quality of milk under the same dosage; The homogeneity condition for strengthening milk of co-precipitation ferric hydroxide; The selection of stabilizers and their combination. The main research results are as follows:
     1. The experiment regarded the 2/3 of the maximum iron requirements (35 mg/d) of the people during late pregnancy as the upper limit, and the consumption of milk was calculated as 250 g per person per day, then the milks were fortified with different amounts of co-precipitation ferric hydroxide (3.3 mg,4.3 mg,5.3 mg,6.3 mg,7.3 mg,8.3 mg,9.3 mg, in Fe) per 100 g and prepared to the sterilization milk. Through compared the effects of different adding amounts of co-precipitation ferric hydroxide on the sensory quality of milk, the changes of physiochemical indexes (pH value and TBA value) during the storage at 4℃, and determined the iron content of the samples, after the storage of 8 days. The results indicated that:the sensory qualities of sample was the better with the added amount of 5.3 mg/100 g or below it; when co-precipitation ferric hydroxide was added, all samples'pH value increased, and the more amount of iron was added, the higher pH rose; during the storage period, the variations of pH value were very small, the TBA value showed a rising tendency, and the difference of the TBA values among different samples that were added to in different amounts of iron was not significant; after the storage of 8 days, the iron content of sample milk liquid reached the point of 89%of the added amount, when the adding amount was controlled under 5.3 mg/100 g. Co-precipitation ferric hydroxide could be used as an iron fortificant for milk.
     2. Under the same iron dosage, ferric pyrophosphate, co-precipitation ferric hydroxide, ferrous sulfate, sodium iron EDTA (NaFeEDTA) were used as iron sources for iron fortification of sterilization milk, their effects on sensory quality of milk were compared, the iron contents of the samples and the changes of physiochemical indexes (pH value and TBA value) were inspected during the storage at 4℃. The results indicated that:sensory quality of milk fortified with NaFeEDTA was the best, was slightly higher than that of the co-precipitation ferric hydroxide, and that of ferrous sulfate and ferric pyrophosphate were the worst; The iron content of samples which were added different iron sources was measured as co-precipitation ferric hydroxide>NaFeEDTA>ferrous sulfate>ferric pyrophosphate; The pH value of milks fortified with ferrous sulfate and ferric pyrophosphate decreased; The samples' TBA value were added the co-precipitation ferric hydroxide into were smaller than samples' of ferrous sulfate and Ferric pyrophosphate. It proved that the co-precipitation ferric hydroxide was a better source of iron as an iron fortificant for milk.
     3. Homogenisation of milk fortified with co-precipitation ferric hydroxide was carried out by power ultrasound, the parameters of that included ultrasonic power level (180 w,270 w,360 w) and treatment times (20 s,65 s,110 s,155 s,200 s,245 s,290 s,335 s). The absorbance of samples were determined; The amount of precipitation and iron content in sample solution were inspected, after the storage of 8 days. The results showed that:when the ultrasonic power was at 180 w,270 w,360 w, strengthening milk was the most evenly distributed at the ultrasonic time 245 s,200 s,155 s respectively; when the ultrasonic power was at 180 w,270 w,360 w and the ultrasonic time was at 245 s,245 s,200 s, strengthening milk had the least precipitation amount of 0.467%,0.433%,0.444% respectively. Considering the cost factors, the best choice of ultrasonic conditions was 180 w,200 s-245 s.
     4. By the single factor experiment of emulsifier (monoglyceride, sucrose ester, Span 60, Tween 60), thickener (carrageenan, microcrystalline cellulose (MCC), guar gum, xanthan gum, carboxymethyl fiber Sodium) and addition salt (sodium tripolyphosphate, sodium hexametaphosphate, sodium pyrophosphate, sodium citrate), chose the factors which had a obvious affection to the stability of strengthening milk of coprecipitation ferric hydroxide and based on the mixture design method for compound stabilizer. The result showed that addition salt did not have a obvious affection to milk fortifitied with co-precipitation ferric hydroxide; selected carrageenan, MCC and composite emulsifier (monoglyceride:sucrose ester 7:3) as compound stabilizer, got the radio of the optimal stabilizer for the milk: carrageenan:microcrystalline cellulose:emulsifier was 0.4000:0.2040:0.3996.
     5. The sample was prepared by the optimal composite stabilizer, under the ultrasonic conditions at 180w,200s, then stored at 4℃, observed the change of the tissue state during the time of storage process, and tested the changes of pH value, TBA value, and the total number of bacteria on the day,0 d,3 d,6 d,9 d,12d,15 d. The result showed that:there was no fat floating during 12 days, and obvious iron deposits observed in the samples at 9 days of the storage; the changes in pH value and TBA value were not obvious during 15 days; during the storage of 15 days of the strengthening milk, the highest total number of bacteria reached 240 CFU/mL, far less than the microbiological indexes of pasteurized milk in national standards.
     In conclusion, the iron fortification of milk, which co-precipitation ferric hydroxid and composite stabilizer (carrageenan:microcrystalline cellulose:emulsifier was 0.4000:0.2040: 0.3996)was added into at 4.5 mg (in Fe),0.15 g per 100 g respectively and was homogenezed under ultrasonic condition of 180 w,200 s and sterilizated 5 min at 95℃, had no change in the organizational state and less content of the microbial during 9 d stored at 4℃.
引文
[1]刘志皋.铁的食品营养强化[J].中国食品添加剂,2003,(2):12-15.
    [2]Lindsay Allen, Bruno de Benoist, Omar Dary, et al.Guidelines on food fortification with micronutrients[M], WHO/FAO,2007:43-97.
    [3]朴建华,赖建强,殷士安,等.中国居民贫血状况研究[J].营养学报,2005(27):268.
    [4]陈君石.食物强化在国民营养素质改善中的作用[J].卫生研究,2003(27(增刊)):1-2.
    [5]Manuel Olivares, Fernando Pizarro, Oscar Pineda, et al. Milk Inhibits and Ascorbic Acid Favors Ferrous Bis-glycine Chelate Bioavailability in Humans.[J]. The Journal of Nutrition,1997,16(3):1407-1411.
    [6]NUZHAT HUMA, SALIM-UR-REHMAN, FAQIR MUHAMMAD ANJUM, et al. Food Fortification Strategy-Preventing Iron Deficiency Anemia:A Review[J].Critical Reviews in Food Science and Nutrition,2007(47):259-265.
    [7]Hertrampf E, D. M, Sc M. Iron Fortification in the Americas[J]. Nutrition Reviews,2002,60(7):s22-s25.
    [8]曹劲松,王晓琴.食品营养强化剂[M].北京:中国轻工业出版社,2002:3-30.
    [9]王惠霞,张丽.乳类产品营养价值浅析[J].中国乳业,2002(12):23-24.
    [10]陆东林,张丹凤,刘新丽,等.牛奶中的氨基酸含量及其营养价值[J].中国乳业,2002(2):24-25.
    [11]韦薇,南庆贤.世界乳品加工业的发展与前瞻[J].中国食品工业,1999(3):4-6.
    [12]利乐中国.全球乳品消费发展趋势[J].中国乳业,2009(8):6-7.
    [13]张磊,车斌.基于行业生命周期的中国居民乳品消费研究[J].经济与管理,2010,24(11):14-17.
    [14]李卫平,秦翠霞.富铁牛乳的研究与开发[J].中国乳业,2002(8):21-23.
    [15]王海滨,黄泽元.人体铁营养与食物补铁[J].中国食物与营养,2000(3):41-43.
    [16]袁宝君,潘炜.膳食因素与缺铁性贫血的研究进展[J].江苏预防医学,2010,21(4):67-70.
    [17]葛可佑.中国营养科学全书[M].北京:中国卫生出版社,2004:133.
    [18]邹尧,竺晓凡.缺铁性贫血[J].中国实用儿科杂志,2010(02):158-160.
    [19]张敏红,王海宝.我国缺铁性贫血与补铁药的现状[J].中国药师,2005(12):1044-1046
    [20]张雪生,柳启沛.铁过量与疾病[J].国外医学医学地理分册,1999,20(4):145-149.
    [21]王宝琴,魏战勇.动物铁中毒[J].广东微量元素科学,2002(6):25-28.
    [22]黄桥梁,胡晓抒,袁宝君.缺铁性贫血研究进展[J].中国公共卫生,2005,22(11):1406-1407.
    [23]霍军生,刘凌云.铁吸收和转运机制研究进展[J].国外医学卫生学分册,2006,33(3):150-154.
    [24]袁粒星,高举,潘玲丽.肠道铁吸收及转运调节的研究进展[J].现代预防医学,2005,32(12):1652-1654.
    [25]刘鲁林,丁听,常欣,等.铁营养强化剂的应用[J].中国食品添加剂,2009(S1):163-168.
    [26]M Gillooly, JD Torrance, TH Bothwell, et al. The relativeffect of ascorbic acid on iron absorption from soy-based and milkbased infant formula[J]. American Journal of Clinical Nutrition,1984(40):522-527.
    [27]焦广宇,周春凌,王朝旭.铁加维生素C改善缺铁性贫血试验研究[J].中国公共卫生,2001,17(7):611-612.
    [28]周桂莲,韩友文.影响铁吸收利用因素研究进展[J].动物营养学报,2001,13(1):6-13.
    [29]周桂莲,韩友文,滕冰,等.氨基酸铁在大鼠小肠中的吸收及组织中沉积研究[J].动物营养学报,2003,15(3):18-24.
    [30]张华英,周锴,杨同舟.乳铁蛋白的补铁作用[J].食品科技,2003(12):89-91.
    [31]牟光庆,鹿保鑫,王新,等.酪蛋白磷酸肽(CPP)对铁吸收影响的研究[J].黑龙江八一农垦大学学报,2001,13(1):70-73.
    [32]Flynn A. Minerals and trace elements in milk[J]. Advancees in Food and Nutrition Research, 1992(36):209-252.
    [33 Frederic Gaucheron. Iron fortification indairy industry[J]. Trends in Food Science & Technology, 2000(11):403-409.
    [34]高兴娟,李卫平.矿物质营养强化剂应用技术问题的探讨[J].食品工业科技,2008(8):264-267.
    [35]周张章,赵国华,周才琼,等.铁强化剂的研究应用现状[J].中国食品添加剂,2005(1):95-98.
    [36]赵秋艳,李汴生.新型铁营养强化剂-超微细元素铁粉[J].食品与发酵工业,2001,27(6):67-69.
    [37]夏书芹,许时婴.硫酸亚铁脂质体的研制[J].无锡轻工大学学报,2004,23(4):74-77.
    [38]罗爱平,赵贤煜,朱秋劲.乳酸亚铁微胶囊化及对液态奶感官性状影响研究[J].食品科学,2006,27(7):180-184.
    [39]李金影.硫酸亚铁微胶囊的制备及其应用研究[D].哈尔滨:东北农业大学,2008.
    [40]孟凡德,赵全芹,李明霞.紫菜多糖Fe-配合物的生物利用度初步研究[J].中国现代应用药学,2002(3):207-209.
    [41]李淑敏.富铁酵母的研究进展[J].微生物学通报,1996,26(3):220-222.
    [42]薛冬桦,张恒真,赵小敏.高铁营养酵母发酵培养及营养评价[J].食品科学,2003,24(9):79-82.
    [43]胡源媛,张守文.乳铁蛋白的功能特性及其国内外的应用情况[J].中国乳品工业,2005,133(12):31-35.
    [44]陆桂岭.营养素强化奶开发中的关键问题[J].中国乳业,2009(7):38-39.
    [45]井乐刚,赵新淮.铁强化乳的生物物理化学变化[J].食品与发酵工业,2006,32(5):105-108.
    [46]刘庆生,王加启,卜登攀,等.牛奶乳脂肪氧化的影响因素研究进展[J].食品科学,2009,30(23):443-446.
    [47]Frederic Gaucheron, Yvon Le Graet, Karine Raulot, et al. Physicochemical characterization of iron-supplemented skim milk[J]. International Dairy Journal,1997(7):141-148.
    [48]Sana Raouche, Sebastien Naille, Marie Dobenesque. et al. iron fortification of skim milk:Minerals and 57Fe Mossbauer study[J]. International Dairy Journal,2009(19):56-63.
    [49]耿倩,陆淳.高铁高锌奶牛的研制[J].中国乳业,2002(7):21-22.
    [50]FREDERICW. DOUGLAS, JR., N. H. RAINEY, N.P.WONG, L.F. EDMONDSON, et al.Color, Flavor, and Iron Bioavailability in Iron-Fortified Chocolate Milk[J].J Dairy SCi,1981(64):1785-1793.
    [51]Ali Karrar Osman, Abdulaziz Al-Othaimeen. Experience with Ferrous Bis-Glycine Chelate as an Iron Fortificant in Milk[J].International Journal for Vitamin and Nutrition Research,2002,72(4):257-263.
    [52]Jose R.Boccio, Marcela B.Zubillaga, Ricardo A.Caro, et al. A New Procedure to Fortify Fluid Milk and Dairy Products with High-Bioavailable Ferrous Sulfate[J]. Nutrition Reviews,1997,55(6):240-246.
    [52]TAIYO KAGAKU CO. MINERAL COMPOSITION:Japan, WO2005/004640[P].2005-01-20.
    [54]Anonymous. Frotifying with Iron[J]. Dairy Foods,2002(11):39.
    [55]http://xueyebing.59120.com/pinxue/jibenchangshi/571869.shtml.
    [56]Ulusoy B H, Colak H, Hampikyan H. The Use of Ultrasonic Waves in Food Technology[J]. Research Journal of Biological Sciences,2007,2(4):494-497.
    [57]刘亚珍,屠康,王运.超声波技术在ESL奶中的应用[J].中国乳品工业,2006(4):39-41.
    [58]闫坤,吕加平,谢跃杰,等.超声波技术在乳品加工中的应用[J].中国乳品工业,2009(11):29-32.
    [59]赵旭博,董文宾,于琴,等.超声波技术在食品行业应用新进展[J].食品研究与开发,2005(1):3-7.
    [60]刘立静,迟玉杰,杨玉琢,等.超声波在乳品行业中的作用[J].中国乳品工业,2006(1):44-47.
    [61]朱海清.超声波对牛奶的均质效果研究[J].粮油加工与食品机械,2002(5):42-43.
    [62]赵永勋,耿小丕,王剑.超声技术在牛奶保鲜中的应用[J].承德石油高等专科学校学报,2007(2):8-10.
    [63]T.Bosiljkov, M.Brncic, B.Tripalo, et al. Impact of ultrasound-enhanced homogenization on physical properties of soybean milk[J]. chemical engineering transactions,2009(17):1029-1034.
    [64]H.W. Schmidt. Ultrasonic homogenization of milk[J]. Lebensmittelindustrie,2011,32(4):173-175.
    [65]M.Fatih ERTUGAY, Mustafa SENGUL, Memnune SENGUL, et al. Effect of Ultrasound Treatment on Milk Homogenisation and Particle Size Distribution of Fat[J]. Turkish Journal of Veterinary and Animal Sciences,2004(28):303-308.
    [66]Sonal Patil, Paula Bourke, Bridget Kelly, et al. The effects of acid adaptation on Escherichia coli inactivation using power ultrasound[J]. Innovative Food Science and Emerging Technologies, 2009(10):486-490.
    [67]王蕊,高翔.超声波在原料乳保鲜中应用的研究[J].中国乳品工业,2004(6):35-37.
    [68]Skiba, E. A, Khmelev, V.N. Sterilization of Milk by Ultrasonics[J]. Electron Devices and Materials, 2007(5):308-610.
    [69]闫坤.超声波对乳品辅助杀菌及改性技术的研究[D].北京:中国农业科学院,2010.
    [70]张和平,张列兵.现代乳品工业手册[M].北京:中国轻工业出版社,2005:971-996.
    [71]浮吟梅,王林山,苏海燕.卡拉胶在食品工业中的应用[J].中国食品添加剂,2009(5):159-164.
    [72]杭锋,郭本恒,任璐,等.基于混料设计优化超高温灭菌乳复配乳化剂[J].化工学报,2009(4):984-989.
    [73]张锋华,张云,孟令洁.高钙牛奶稳定性研究[J].乳业科学与技术,2009(2):63-65.
    [74]郭瑞,丁恩勇.纳米微晶纤维素胶体的流变性研究[J].高分子材料科学与程,2006,22(5):125-127.
    [75]成坚,谢鹏.中性高钙液体奶的钙剂筛选及稳定性研究[J].食品工业科技,2001(1):27-28.
    [76]Shane N.D. Lal, Charmian J. O'Connor,Laurence Eyres. Application of emulsifiers/stabilizers in dairy products of high rheology[J]. Advances in Colloid and Interface Science,2006:433-437.
    [77]汤丽华,刘敦华.红枣保健乳的稳定性研究[J].食品科技,2009(12):147-150.
    [78]王元兰,李忠海.黄原胶溶液流变特性及应用研究进展[J].经济林研究,2007(1):66-69.
    [79]赵红玲,陈文贞,卫晓英,等.稳定剂对乳体系稳定性影响的研究[J].饮料工业,2010(2):26-29.
    [80]郭跃龙,刘浩,于鹏,等.黄原胶和槐豆胶提高维生素C稳定性研究[J].药学与临床研究,2007,15(6):513-514.
    [81]郝利平.食品添加剂[M].北京:中国农业出版社,2004:180-189.
    [82]刘艳群,刘钟栋.食品乳化剂的发展趋势[J].食品科技,2005(2):32-35.
    [83]杨舒雅,赵亚萍,刘战洪,等.复合磷酸盐在乳制品加工中的应用[J].磷酸盐工业,2007(4):8-10.
    [84]赵芳芳,肖林平,刘小杰.磷酸盐对豆乳饮料稳定性的影响[J].食品工业,2009(2):25-26.
    [85]王晓斌,黄国林.纳米Fe304颗粒的制备及应用[J].化工时刊,2010,24(9):38-43.
    [86]苏延磊,侯万国,孙德军,等Mg-Fe-LDHs纳米颗粒的合成及其阴离子交换容量的研究[J].高等学校化学学报,1999(20):1012-1016.
    [87]熊平,傅伟,彭飞武,等.磁性纳米铁微粒的制备方法研究[J].金属功能材料,2007,14(1):33-36.
    [88]孟弘.纳米材料制备研究进展[J].矿业保护与利用,2003(4):14-18.
    [89]石惠民.一种有希望成为食品添加剂的含铁混合物溶解性能比较[A].食物营养强化营养标识及数据应用研讨会与培训班资料集[C],2003.
    [90]李春.乳品分析与检验[M].北京:化学工业出版社,2008:102.
    [91]Jun-Beum LEE, Joungjwa AHN, Jonghwi LEE, et al. L-Ascorbic Acid Microencapsulated with Polyacylglycerol Monostearate for Milk Fortification[J]. Bioscience, Biotechnology, and Biochemistry, 2004,68(3):495-500.
    [92]巴根纳.液态乳制品加工均质工艺研究[D].北京:中国农业科学院,2007.
    [93]朱良工,林劲松,王丹,等.卡拉胶在中性乳饮料中的作用机理[J].中国乳业,2002(8):28-30.
    [94]赵谋明,孙为正,吴燕涛,等.广式腊肠脂质降解与氧化的控制研究[J].食品与发酵工业,2007(8):10-13.
    [95]丁保淼,张晓鸣,夏书芹.甘氨酸螯合铁纳米脂质体对铁强化牛奶氧化稳定性和感官质量的影响[J].食品与生物技术学报,2010,29(4):508-513.
    [96]Shuqin Xia, Shiying Xu. Ferrous sulfate liposomes:preparation, stability and application in fluid milk[J].Food Research International,2005(38):289-296.
    [97]Donna Berry. Trends in Fortification[J]. Dairy Foods,2004(4):36-41.
    [98]E. Chouliara, K.G. Georgogianni, N. Kanellopoulou, et al. Effect of ultrasonication on microbiological, chemical and sensory properties[J]. International Dairy Journal,2010(20):307-313.
    [99]Dorthe Kristensen, Eva Hansen, Allan Arndal, et al. Influence of light and temperature on the colour and oxidative stability of processed cheese[J]. International Dairy Journal,2011,11(10):837-843.
    [100]Nguyen H.A. Nguyen, Skelte G. Anema. Effect of ultrasonication on the properties of skim milk used in the formation of acid gels[J]. Innovative Food Science and Emerging Technologies, 2010(11):616-622.
    [101]Joerg Riener, Francesco Noci, Denis A. Cronin, et al. Characterisation of volatile compounds generated in milk by high intensity ultrasound[J]. International Dairy Journal,2009(19):269-272.
    [102]唐民民,姜中航.不同乳化剂对牛乳饮料稳定性影响的研究[J].乳业科学与技术,2007(1):23-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700