基于光纤光栅的高速铁路轨道结构监测方法及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国的高速铁路取得了举世瞩目的发展,已成为世界上高铁营运里程最长,行车速度最高的国家。高速铁路的运行安全性对于国家公共安全和人民生命保障都有重大意义。道轨结构的安全是高速铁路安全性的关键环节。我国高铁列车运行速度高,行车密度大,而且由于国土面积大,地理环境复杂,气候条件恶劣等现状导致道轨结构状态的安全监测显得尤为重要。一直以来,铁路系统都使用传统电类传感装置对轨道结构进行监测,但由于电类传感装置在恶劣的天气和环境下监测精度差、工作寿命短,信号传输距离近,无法大规模组建监测网络的等缺陷,使得国内外对于轨道状态监测领域的研究均缺乏实质性进展。光纤传感技术具有精度和灵敏度高、抗电磁干扰、寿命长、耐腐蚀、成本低等突出优点。其中,光纤光栅传感技术的信号为波长量,与传统电信号传感器的信号相比,没有零点漂移,它的问世和发展,使得长达数十年的工程结构连续监测成为可能。
     本文以光纤传感技术、监测技术和道轨工程技术为基础,对道轨结构进行分析,根据光纤光栅的传感原理设计了针对高速铁路道轨结构状态监测的传感装置及其解调方法。在此基础上,研究了高速铁路道轨结构状态监测的方法及关键技术,并且设计了监测系统。通过实验和实际应用验证了监测系统的准确性和可靠性,并获得了大量具有参考价值的监测数据,通过数据分析,提出了监测系统的改进方法。本文的主要研究内容如下:
     (1)光纤光栅传感技术的研究
     以光纤布喇格光栅(FBG, Fiber Bragg Grating)传感原理为研究基础,针对高速铁路道轨结构状态监测需求对FBG的温度、应变、位移等传感原理进行了分析,并介绍了对FBG应变传感的温度补偿技术和FBG的解调方法。通过对几种光纤传感复用方案的研究和比较,构建了一种基于波分复用和空分复用技术的FBG传感网络。
     (2)FBG传感器的设计和制作
     对于高速铁路道轨的钢轨温度力和道轨结构间位移,明确了对其进行实时监测的意义和必要性。根据FBG的传感原理和道轨结构的研究,设计并制作了FBG温度、应变和位移传感器。应用有限元分析法对钢轨受力进行分析,找到了钢轨温度力监测传感器安装的最佳位置。通过分析监测结果,对FBG温度传感器进行改进,使其更符合高速铁路道轨结构温度监测的要求。通过向量式有限元分析法对应变环进行受力分析,从而采用环形结构重新设计了FBG位移传感器并获发明专利。针对高速铁路道岔区间的安全需要,设计了一种FBG铁路道岔密贴监测装置并获发明专利授权,根据实验结果证明其符合铁路部门的要求。
     (3)高速铁路无砟道轨多状态参量的实时监测
     对高速铁路无砟道轨结构状态监测设计了一套在线监测装置和系统,无砟道轨结构多参量在线监测在我国尚属空白,以武广高铁某特大桥的无砟道轨高速道岔和郑西高铁某特大桥上连续弯梁桥结构监测为应用实例,研究无砟道轨多参量,包括3维温度力、轨温、结构间位移量等FBG传感监测点的布局,分析实测数据。并且将监测方法和技术应用于某城市道轨交通的桥上线路的伸缩调节器状态监测中。实测的结果对高速铁路和城轨无砟道轨结构设计、施工具有指导性的意义。
In recent years, the high-speed railway (HSR) in China has achieved remarkable development. This country has the longest kilometers and the highest speed of HSR operation in the world. The safety of operating HSR is of great significance for the national public safety and people's life. The safety of the track structure is a key point of the safety of HSR. In this country the HSR is high in speed and density in ply. Because this country is large in area, complicated in geographical environment and abominable in climatic conditions, to monitor the track structure of HSR is particularly important. The traditional electrical sensors are used, however, those sensors are short of precision, short of working life, short of signal transmitting under bad environment and unable to establish a large-scale monitoring network. So the research of track structure monitoring causes to make slow progress both in home and abroad.
     Optical fiber sensing technology has outstanding advantages, such as high accuracy and sensitivity, anti-electromagnetic interference, long life, corrosion resistance and low cost. Among them, the wavelength is used as signal in FBG (fiber Bragg grating) sensing technology. Comparing with the signal of electrical sensor, it has no zero drift. It makes continuously engineering structure monitoring in decades possible.
     This thesis discusses using optical fiber sensing technology to monitor track structure of HSR. First it analyzes the track structure, and all sensing devices to monitor HSR track structure according to the principle of FBG sensing and demodulating technology have been designed. Then the key monitoring methods and technology suitable for HSR track structure condition have been researched, and then to design the monitoring system. The accuracy and reliability of the monitoring system have been verified by experimental and practical application. Through the applications, valuable monitoring data are obtained. The last work is to analyze the data, and to put out some improving methods of the system. The primary contents in this thesis are as follows:
     (1) Research of FBG sensing technology
     Based on the FBG sensing principle, and on temperature, strain and displacement monitoring needs of HSR track structure, this thesis analyzes these kinds of FBG sensing devices in detail. The technology of temperature compensation of FBG strain sensor and its demodulating method are also introduced. Compared several kinds of optical fiber sensing multiplexing schemes, a sensing web of wavelength division multiplexing (WDM) and space division multiplexing (SDM) methods are structured.
     (2) FBG sensors design and fabrication
     The real-time monitoring significance and necessity of thermal stress and displacement of HSR track structure is defined. According to the research on FBG sensors and track structure, FBG temperature, strain and displacement sensors have been designed and fabricated. The best installation position of rail thermal stress monitoring sensor has been found by rail stress analysis and finite element analysis method. An improvement of FBG temperature sensor has been taken after analyzing the monitoring result to match site temperature monitoring requirement. A new displacement sensor is re-designed, after vector finite element analyzing its structure of strain ring. It received an invention patent. In connection with the safety requirement of HSR switches, a kind of FBG switch point closure monitoring device is created and received another invention patent. It has been demonstrated compliance with the requirements of the railway management.
     (3) Real-time multi-parameter monitoring on ballastless track structure of HSR sites
     A set of on-line monitoring system of HSR ballastless track structure has been designed. In this country, this kind of track structure on-line monitoring is still blank. A bridge in Beijing-Guangzhou HSR and a bridge in Zhengzhou-Xi'an HSR are applied sites. On the former, a high-speed ballastless switch is set on it and needs to monitor. And on the latter, its continuous beam is bent. The application of multi-parameter monitoring has been done including sensor arrangement and data analysis from the sensor from rail temperature, temperature force of three dimensions, displacement between track structure. Another application is on a rail expansion adjuster of an urban rail bridge. The actual monitoring results are of great significance for the structure design, construction of both HSR and urban rail.
引文
[1]佟立本.高速铁路概论(第四版)[M].中国铁道出版社,北京,2012:17-21.
    [2]S. Freudenstein. RHEDA 2000:Ballastless track systems for high-speed rail applications[J], International Journal of Pavement Engineering, Vol 11:293-300,2010.
    [3]潘建军.光纤传感轨道状态监测的研究与应用[D].武汉:武汉理工大学,2012.
    [4]朱军,范典.光纤光栅技术在智能交通领域中的应用[J].交通企业管理,2007(12):46-47.
    [5]张或锋.光纤光栅技术在高速铁路防灾系统中的应用研究[J].铁路通信信号,2009,45(6):48-50.
    [6]林斌,范典.光纤光栅传感铁路安全监测技术[J].交通科技,2008(5):93-94.
    [7]W. Y. Lia, C. C. Chenga, Y. L. Lob. Investigation of Strain Transmission of Surfaee-bonded FBGs used as Strain Sensors[J].Sensors and Actuators A,2009,149:201-207.
    [8]孙丽.光纤光栅传感应用问题解析[M].北京:科学出版社,2012-2-3.
    [9]William R. Allan, Zachary W. Graham, Jose R. Zayas, et al. Multiplexed Fiber Bragg Grating Interrogation System Using a Microeleetrol mechanical Fabry-Perot Tunable Filter[J].IEEE Sensors Jounal,2009,9 (8):937-943.
    [10]Abdelfateh Kerrouche, J. Leighton, W. J. O. Boyle et al. Strain Measurement on a Rail Bridge Loaded to Failure Using a Fiber Bragg Grating-Based Distributed Sensor System[J]. IEEE SENSORS JOURNAL,2008,8 (12):2059-2065.
    [11]刘金谴,柴敬,圭盘,等.岩层变形检测的光纤光栅多点传感理论与工程应用[J].光学学报,2008,28(11):2143-2147.
    [12]张耀明.非通讯光纤的研究与发展[J].玻璃纤维,2003(5):1-9.
    [13]周承湖.光纤光栅在建筑物应变测量中的应用[D].北京:北京工业大学,2002.
    [14]史锦珊,郑绳楦.光电学及其应用[M].北京:机械工业出版社,1991:527-553.
    [15]Franz J H, Jain V K. Optical Communications Components and Systems[J].Publishing house of electronics industry.2002.
    [16]Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J].Engineering Structures,2004,26(11):1647-1657.
    [17]Wu Z S. Structural health monitoring and intelligent infrastructures in Japan[A]. Wu Z S., Abe, M. Structural Health Monitoring and Intelligent Infrastructure[C].Tokyo, Japan:A. A. BALKEMA PUBLISHERS,2003:153-167.
    [18]Zong Z H, Wang T L, Huang D Z, et al. State-of-the-art report of bridge health monitoring[J].Journal of Fuzhou University (Natural Science),2002,30 (2):127-152.
    [19]Whelan M P, Albreeht D, Capsoni A. Remote structural monitoring of the cathedral of Como using an optical fiber Bragg sensor system[A]. Smart Structurals and Materials and Nondestructive Evaluation for Health Monitoring and Diagnostics[C].SPIE,2002:242-252.
    [20]蔡德所.光纤传感技术在大坝工程中的应用[M].北京:中国水利水电出版社,2002.
    [21]张志鹏.光纤传感器原理[M].北京:中国计量出版社,1991:1-80.
    [22]Mendez A, et al. Aplication of embedded optical fiber sensors in reinforced concrete building and structures, SPIE,1989,1170:6-069.
    [23]Tard y A, JurczyszynM, Caussignac J M, et al. High Sensitivity transducer for fibre optic pressure sensing to dynamic mechanical testing and vehicle detection on roads. Springer Preceedings in Physics,1989,44:215-221.
    [24]J.Dornstadter, H Gorres, Th Strobl. Fibre optical temperature measurements in concrete Case study at the Birecik gravity dam in South-east Anatolia. Dam Engineering Vol.X Issue 1.55-60.
    [25]J.Chail, S.M.Wei, T.Chang, et al. Monitoring deformation and damage on rock structures with distributed fibre optical sensing. Int.J.Rock Mech. Min.Sci.Vol.41, No.3.
    [26]Keith L.Bristow. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agriceltural and Forest Meteorology.89 (1998): 75-84.
    [27]Keith L. Bristow, Gerard J.Kluitenberg, Chris J.Goding, Terry S. Fitzgerald A small multi-needle probes for measuring soil thermal properties, water content and electrical conductivity. Computers and Electronics in Agriculture 31 (2001):265-280.
    [28]W. W. Morey, G. Meltz, W. H. Glenn. Bragg Grating Temperature and Strain Sensor:Sixth Optical Fiber Sensor Conference[C]. Paris, Franee:Springer,1989,526-531.
    [29]http://projects.dot.state.mn.us/35wbridge/index.html.
    [30]Chulhun Seo, Taesun Kim. Temperature Sensing with Different Coated Metals on Fiber Bragg Grating Sensors[J]. Microwave And Optical Technology Letters,2001,21 (3): 162-165.
    [31]J. Canning. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Reviews, 2008,2(4):275-289
    [32]姜德生,郭明金,袁宏才,干维国.光纤Bragg光栅低温特性研究[J].光电子·激光,2004,15(6):660-662.
    [33]詹亚歌,向世清,何红,等.光纤光栅高温传感器的研究[J].中国激光,2005,36(9):1235-1238.
    [34]李阔,周振安,刘爱春等.一种高温下高灵敏光纤光栅温度传感器的制作方法[J].光学学报,2009,29(1):249-251.
    [35]PeterK. C. Chan, W. Jin, K. T. Lau, et al.Multi-Point Strain Measurement of Composite-bonded Conerete Materials with a RF-band FMCW Multiplexed FBG Sensor Array[J],2000,87:19-25.
    [36]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报,2005,37(4):435-441.
    [37]P. Moyo, J. M. W. Brownjohnb, R. Sureshc, et al.Tjinc.Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures,2005.27 (12): 1828-1834.
    [38]兰玉文,刘波,罗建花.光纤光栅三维应力传感器的设计与实现[J].光子学报,2009,35(3):656-659.
    [39]Abdelfateh Kerrouehe, WilliamJ.0. Boyle. Tong Sun.Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anehored Carbon Fiber Polymer Reinforcement Prestressing Rod for Struetural Monitoring[J].IEEES ensors Journal,2009,9 (11):1456-1461.
    [40]张伟刚,刘艳格,王跃等.利用单光纤光栅实现力学量垂直感测的研究[J].中国激光,2003,30(1):71-74.
    [41]M. Noshad, H. Hedayati, A. Rostami. A Proposal for High-Precision Fiber Optic Displacement Sensor[J]. Proeeedings of Asia-Pacific Microwave Conference 2006,2006.
    [42]H. Golnabi, P. Azimi. Design and Operation of a Double-Fiber DisPlacement Sensor[J]. Optics Communications,2008,281:614-620.
    [43]Yong Zhao, Hua-wei Zhao, Xin-yuan Zhang, A Novel Double Arched Beam Based Fiber Bragg Grating Sensor for DisPlacement Measurement[J]. IEEE Photonics Technology Letters, 2008,20(15):1296-1298.
    [44]Yang Zhang, Bai-Ou Guan. High-Sensitivity Distributed Bragg Reflector Fiber Laser DisplacementSensor[J]. IEEE Photonies Technology Letters,2009,2 (5):280-282.
    [45]Sadeghi, J; Askarinejad, H. An investigation into the effects of track structural conditions on railway track geometry deviations[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,223(4):415-425,2009.
    [46]徐进军,张民伟.几种动态测量传感器综述[J].测绘信息与工程,2005,30(2):42-44.
    [47]张俊平,周建宾.桥梁监测与维修加固[M].北京:人民交通出版社,2006.
    [48]杨小森,闫维明,陈彦江,等.基于倾角仪的桥梁挠度测试方法研究[J].土木工程学报,2010,43:106-111.
    [49]中华人民共和国铁道部.铁路桥梁检定规范[S].北京:中国铁道出版社,2004.
    [50]程寿山,李兴庆,于刚勤,等.预应力连续梁桥预应力损失预测及测试方法研究[J].公路交通科技,2006,23(4):71-73.
    [51]王鹏,丁汉山,夏文俊,等.碳绞线体外预应力桥梁预应力损失监测与分析[J].特种结构,2008,25(1):84-87.
    [52]LI Sheng, JIANG De-sheng. Bridge external prestressing monitoring based on FBG [C]. Twentieth International Conference on Optical Fibre Sensors (OFS20), October 5-9,2009, Edinburgh, United Kingdom.
    [53]Martinez I. and C. Andrade, Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cement and Concrete Composites.2009,31 (8):545-554.
    [54]Elsener B. Macrocell corrosion of steel in concrete-implications for corrosion monitoring[J]. Cement and Concrete Composites,2002,24 (1):65-72.
    [55]Hu, W., et al., Fe-C-coated fibre Bragg grating sensor for steel corrosion monitoring[J]. Corrosion Science,2011,53(5):1933-1938.
    [56]Hu, W. and H. Cai. Characterization of Fiber Bragg grating corrosion sensor in different environments. ICISE 2011,2011. Yangzhou, China.
    [57]胡文彬,姜德生,蔡汉莉.一种基于镀有敏感膜的光栅金属锈蚀的监测方法及其传感器[Z].专利号:201010201763,2010.
    [58]Jianjun Pan, Weilai Li, Yefang Zhang. Track strain field analysis for positing FBG sensor in fiber optic axle detecting(C). Fiber Optic Communication and Sensors, SPIE,2009.
    [59]H Y Tarn, T Lee, S L Ho, et al. Utilization of Fiber Optic Bragg Grating Sensing Systems for Health Monitoring in Railway Applications[M]. Hong Kong:Photonics Research Centre, The Hong Kong Polytechnic University,2007.
    [60]Hwa-yaw TAM. Applications of fibre Bragg grating sensors in railways[C]. Joint Conference of the Opto-Electronics and Communications Conference (OECC) and the Australian Conference On Optical Fibre Technology (ACOFT),2008. Sydney:2008.
    [61]Li, W., Dai, X., Liu, J., et al. FBG tread wear detecting lines[C].Third Asia Pacific Optical Sensors Conference, SPIE Vol.8351,2012.
    [62]T.K. Ho, S.Y. Liu, Y.T. Ho, et al. Signature Analysis on Wheel-rail Interaction for Rail Defect Detection(C). The 4th IET International Conference on Railway Condition Monitoring, 2008,2008(1):1-6.
    [63]Reinhardt Willsch.Optical Fiber Sensor Systems based on Nanostructures and Examples of their Application[M].Ottawa:OIDA Photonic Sensor Workshop,2007.
    [64]T H T Chan, L Yu, H Y Tam, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J]. Engineering Structures,2006,(28):648-659.
    [65]张文涛,孙宝臣.杜彦良.基于光纤光栅的青藏铁路冻土路基地温监测试验研究[J].石家庄铁道学院学报,2005,18(4):49-51.
    [66]Ahlbeck D R, et al. The development of analytical models for railroad track dynamics[C]. Railroad Track Mechanical & Technology[C]. Pergamon Press,1978.
    [67]Li Dingqing, Elkins John A, Otter Duane E, et al. Vehicle/track dynamic models for wheel/rail forces and track response[J]. Heavy Vehicle Systems.1999,6(1):345-359.
    [68]Dietz S, Hippmann G, Schupp G. Interaction of Vehicles and Flexible Tracks by Co-simulation of MulLibody Vehicle System and Finite Element Track Models[C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks. Lyngby, Denmark, 2001.
    [69]Braccesi C, Cianetti F, Scaletta R. Development of a new procedure for the wheel-rail contact force evaluation in simulations of railway dynamics[J]. International Journal of Heavy Vehicle Systems,2005,12(2):69-86.
    [70]Shabana Ahmed A, Zaazaa Khaled E, Escalona Jos L. Development of elastic force model for wheel/rail contact problems[J]. Journal of Sound and Vibration,2004,269 (1-2):295-325.
    [71]Ting E C, Shih C, Wang Y K. Fundamentals of a Vector Form Intrinsic Finite Element:Part Ⅰ. Basic procedure and a plane frame element[J]. Journal of Mechanics,2004,20 (2):113-122.
    [72]Ting E C, Shih C, Wang Y K. Fundamentals of a Vector Form Intrinsic Finite Element:Part Ⅱ. Plane solid elements[J]. Journal of Mechanics,2004,20 (2):123-132.
    [73]Shih C, Wang Y K, Ting E C. Fundamentals of a Vector Form Intrinsic Finite Element:Part Ⅲ. Convected material frame and examples[J]. Journal of Mechanics,2004,20 (2):133-143.
    [74]丁承先.向量式结构与固体力学[R].杭州,2009.
    [75]丁承先,王仲宇,吴东岳,等.运动解析与向量式有限元V2.0[M].台北,2007.
    [76]丁承先.拟真结构分析的力学基础[A].第四届海峡两岸结构与岩土工程学术研讨会论文集[C].杭州:浙江大学出版社,2007.
    [77]Lien K H, Chiou Y J, Wang R Z. Vector Form Intrinsic Finite Element analysis of nonlinear behavior of steel structures exposed to fire[J]. Engineering Structures,2010,32 (1):80-92.
    [78]LEE BYOUNGHO. Review of the Present Status of Optical Fiber Sensors [J].Optical Fiber Technology,2003,9 (2):57-79.
    [79]李志全,许明妍,汤敬,等.光纤光栅传感系统信号解调技术的研究[J].应用光学,2005,26(4):36-41.
    [80]Kersey AD, Davis MA, Pattiek H, etal. Fiber grating sensors[J].Lightwave Technology, 1997,15(8):1442-1463.
    [81]王静,冯德军,隋青美,姜明顺.光纤Bragg光栅传声器设计[J].仪表技术与传感器,2009(10):10-12.
    [82]马玉玲.双光栅匹配解调系统研究[D].沈阳:沈阳工业大学,2009.
    [83]Kersey A.D., Berkoff T.A., Morey W.W.. Multiplexed Fiber Bragg Grating Strain-Sensor System with a Fiber Fabry-Perort Wavelength Filter[J]. Opt. Lett.,1993,18 (16):1370-1372.
    [84]M.A.Davis, D.GBellemore, M.A.Putnam et al. Interrogation of fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett,1996,32 (10):1393-1394
    [85]姜莉.光纤光栅写入及其应用研究[D].天津:南开大学,2005.
    [86]关柏鸥,Tam.H.Y, Ho.S.L,等.用一根光纤光栅实现温度与应变的同时测量[J].光学学报,2000,20(6):827-830.
    [87]刘波,马秀荣,开桂云,等.闪耀光纤光栅写制技术及解调技术研究[J].光子学报,2009,38(3):641-645.
    [88]罗爱平,Emmanuel Marin, Jean-Pierre Meunier,等.光纤耦合器上写入光栅制作滤波器的实验研究[J].中国激光,2004,31(12):1491-1494.
    [89]张世杰,孙立,杨艳丽,等.武广铁路客运专线雷大桥特大桥道岔区板式无砟轨道设计研究[J].铁道建筑,2010(1):13-16.
    [90]郑西客运专线(http://baike.baidu.com/view/243557.htm).
    [91]杨勤智.郑西客专黄龙村特大桥菱形挂篮施工监控[J].山西科技,2008(6):108-109,118.
    [92]黄小妹.高速铁路无缝道岔光纤光栅应变、温度和位移的监测[D].武汉:武汉理工大学,2011.
    [93]周庆瑞.地铁规范与地铁安全保障[J].都市快轨交通,2006,19(1):19-20.
    [94]陈小平.桥梁温度跨度对CRTS Ⅱ型板式无砟轨道无缝线路的影响[J].华东交通大学学报,2012,29(3):26-30.
    [95]陈萍,黄信基.京沪高速铁路综合检测实施方案的探讨[J].铁路勘测与设计,2008(5):40-44.
    [96]张华,孙洋.道岔状态监测系统的研究[J].铁道通信信号,2008,44(11):7-9.
    [97]刘东升.轨道电路分路不良对行车安全的影响及对策[J].铁路建筑技术,2009(S):28-29.
    [98]刘军,姜德生.基于光纤光栅传感的桥梁监测采集系统[J].传感器与仪器仪表,2009,25(6-1):156-158.
    [99]姜德生,高翩,张翠,等.基于最小二乘法的光纤光栅Bragg波长直线拟合[J].传感器与微系统,2006,25(6):25-27.
    [100]南秋明,姜德生.光纤光栅传感技术在宜万铁路边坡监测的应用[J].路基工程,2009,3:3-5.
    [101]梁迅.光纤水听器系统噪声分析及抑制技术研究[D].长沙:国防科技大学,2008.
    [102]Shinji Komatsuzaki, Seiji Kojima, Akihito Hongo, et al. Development of high-speed optical wavelength interrogation system for damage detection in composite materials[C]. SPIE,2005,5758:51-61.
    [103]Edmon Chehura, Stephen W.James, Ralph P.Tatam. Temperature and strain discrimination using a single titled fibre Bragg grating[J].Optics Communication,275 (2007):344-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700