Ti-O薄膜表面抗凝生物分子固定及其抗凝血性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高与血液接触生物材料的血液相容性是一项重要的课题,通过在材料表面固定抗凝生物分子即表面生物化改性有望改善表面的抗凝血性能。本文选择具有较好生物相容性的Ti-O薄膜作为改性基础,采用三种不同的改性方法在其表面固定生物分子。首先研究了Ti-O薄膜结构对磷酸化学吸附的影响,并通过常用的硅烷化方法在磷酸化的Ti-O薄膜表面固定生物分子;其次,从获得稳定的生物化改性表面出发,研究了通过膦酸单分子自组装层和光化学方法在Ti-O薄膜表面分别固定肝素获得抗凝活性表面,固定白蛋白获得惰性表面,固定明胶获得仿生化表面;最后尝试了通过生物素-亲和素识别的方式在Ti-O薄膜表面构建肝素单层或多层膜。综合采用傅立叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、水接触角分析、荧光标记、表面轮廓分析、染色分析等方法对改性前后薄膜的成分和性质进行了定性和定量表征。通过体外的血小板粘附实验、APTT实验、材料表面纤维蛋白原变性检测、细胞培养实验和动物体内植入实验来研究改性前后材料表面的血液相容性以及内皮细胞相容性。主要结果如下:
     1.Ti-O薄膜的结构对磷酸化学吸附有较大的影响。相对金红石晶型薄膜,磷酸更容易在锐钛矿晶型薄膜表面化学吸附,磷酸在金红石晶型薄膜表面主要形成双齿配位结合,在锐钛矿晶型薄膜表面主要形成单齿配位结合。通过磷酸化学吸附和硅烷化方法在薄膜表面固定的生物分子层不稳定,主要的原因是中间连接层的硅烷化表面不断水解的原因。
     2.3-氨丙基膦酸能在Ti-O薄膜表面形成稳定的单分子自组装层。进一步通过光化学方法在膦酸自组装表面固定生物分子,获得的生物化层在PBS中浸泡时前1~3天有部分生物分子的释放,随后稳定。固定肝素的有效密度为1.2μg/cm~2,固定明胶的有效密度为2.3μg/cm~2。研究结果显示,固定肝素获得的抗凝活性表面和固定白蛋白获得的惰性表面能明显地抑制纤维蛋白原在材料表面变性,以及抑制血小板的粘附和聚集的功能。通过掩蔽曝光方式制备了图形化固定生物分子的表面。血小板在图形化固定肝素或白蛋白的表面具有图形化的分布,其粘附和活化主要集中在没有固定生物分子的微区,证实了通过该方法固定的肝素或白蛋白能有效抑制血小板的粘附。动物体内初步实验结果显示所获得肝素和白蛋白的改性表面具有优良的抗凝血性能。固定明胶获得的仿生化表面虽然具有优良的内皮细胞相容性,但由于增加了纤维蛋白原的变性程度和促进了血小板在表面的粘附,因此血液相容性较差。
     3.通过生物素-亲和素扩展体系能在Ti-O薄膜表面构建肝素单层或多层膜。生物素修饰肝素的比活力随着生物素修饰率的增加而降低,B-hepⅠ的比活力为原肝素活力的72%,B-hepⅡ比活力为原肝素活力的60%。肝素多层膜具有抑制血小板粘附和聚集的性能,随着肝素多层膜的增加,APTT时间先增加后趋于稳定。
It is a significant work to improve the blood compatibility of blood-contacting biomaterials. A promising method is by antithrombotic biomolecules immobilization on the biomaterial surfaces. In this paper, Ti-O thin films were used as the substrate and were modified by various biomolecule immobilization through three methods. Firstly, the influence of the Ti-O film structure on the surface H_3PO_4 chemisorption on the Ti-O surface was studied, and biomolecule immobilization on Ti-O film was achieved by further silanization via chemisorption of H_3PO_4 interface. Sencondly, in order to obtain a stable surface, a self-assembling monolayer of alkylphosphonic acid on Ti-O film was prepared and different biomolecules were then further immobilized by photochemical methods, e.g., heparin was immobilized to obtain an active antithrombotic surface, bovine serum albumin (BSA) was immobilized to obtain an inert surface and gelatin was used to obtain a biomimetic surface. Finally, it was tried to construct heparinylated monolayer or multilayer on the Ti-O films through biotin-avidin biorecognition. The chemical composition and surface property of Ti-O film and the biomolecule immobilized Ti-O film were qualitatively and quantitatively characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle analysis, fluorescence labeling method, surface profile analysis and staining methods. The blood compatibility and cell compatibility were investigated using in vitro platelet adhesion experiment, APTT test, evaluation of the denatured fibrinogen on surfaces, cell culture and in vivo implantation test. The following conclusions are obtained according to the results coming from the research mentioned above.
     1. The structure of Ti-O thin film has significant influence on the chemisorption of H_3PO_4 on the Ti-O surface. It is beneficial for the H3PO4 chemisorption on the surface when anatase Ti-O film acts as the substrate compared with rutile Ti-O film. The results reveal the dominating monodentate coordination of phosphoric acid to anatase Ti-O film and bidentate coordination to rutile Ti-O film. Since the middle layer of silane hydrolyzes continuously, immobilized biomolecules on the Ti-O film are unstable by the method of silanization via chemisorption of H3PO4 interface.
     2. A stable organic monolayer can be obtained by 3-aminopropylphosphonic acid (APP) self assembling on Ti-O film. Biomolecules were immobilized further by photochemical method on the APP modified surface. Some biomolecules were released in the first 3 days when incubation in phosphate buffer solution (PBS), and after that it was stable. The effective surface density of immobilized heparin is 1.2μg/cm~2, and that of immobilized gelatin is 2.3μg/cm~2. It showed active antithrombotic surface by immobilization of heparin and inert surface by immobilization of BSA both have the effects on inhibiting fibrinogen denaturation and decreasing platelet adhesion and aggregation on the surfaces. Biomolecule patterned surface was obtained by using a photomask when irradiating. Platelet adhesion on the patterned surface displayed a patterned distribution, and it mainly aggregated on the non-biomolecule immobilized region which identifies the immobilized heparin or BSA indeed has the ability of inhibiting platelet from adhering on the surface. In addition, the preliminary in vivo evaluation also showed the modified surfaces have good anticoagulant properties. Gelatin immobilized biomimetic surface has good cell compatibility, while it increases the fibrinogen denaturation and platelet adhesion on the surface.
     3. Heparinylated monolayer or multilayer on the Ti-O films was constructed through biotin-avidin biorecognition. The activity of the biotinylated heparin decreases with the increase of biotinylated modification ratio. B-hepI has 72% activity of the virgin heparin, and B-hepII has only 60%. Heparinylated multilayer has the properties of inhibiting platelet adhesion and aggregation. APTT increases with the first several layers of heparin and then it trends to be stable with the following increase of layers.
引文
[1]顾汉卿,徐国风.生物医学材料学.天津科技翻译出版公司.1993,P11.
    [2]刘之景.等离子体技术在医用生物材料中的应用.生物医学工程学杂志,2000;17(1):91-94.
    [3]肖梅,凌一鸣.低温等离子体在材料表面改性中的应用.东南大学学报(自然科学版),2001;31(1):114-118.
    [4]王昌祥,陈治清,生物材料的离子束表面改性,功能材料,1999;30(3):246-248.
    [5]Cui F Z,Luo Z S.Biomaterials modification by ion-beam processing.Surface and Coatings Technology,1999;112:278-285.
    [6]Takemoto S,Tsuru K,Hayakawa S,et al.Highly blood compatibility titania gel.J.Sol-Gel Scien.&Tech.,2001;21:97-104.
    [7]刘敬肖,杨大智,史非等.医用金属表面溶胶—凝胶法和离子束合成TiO_2薄膜的结构、性能比较.无机材料学报,2002;17(4):797-804.
    [8]Frank S.Structure and growth of self-assembling monolayers.Progress in Surface Science,2000;65:151-256.
    [9]Du Y Zh,Wood L L,Saavedra S S.Growth behavior and structure of alkyltrichlorosilane monolayers bearing thioacetate and acetate tailgroups.Materials Science and Engineering C,2000;7:161-169.
    [10]Hofer R,Textor M,Spencer N D.Alkyl Phosphate Monolayers,Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces.Langmuir,2001;17:4014-4020.
    [11]Kang I K,Kwon O H,Lee Y M,et al.Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge.Biomaterials,1996;17:841-847.
    [12]Jo S,Park K.Surface modification using silanated poly(ethylene glycol)s.Biomaterials,2000;21:605-616.
    [13]Marios Y,Chakfe N,Guidoin R,et al.An albumin-coated polyester arterial graft:in vivo assessment of biocompatibility and healing characteristics. Biomatedals,1995;17:3-14.
    [14]Liu J X,Yang D Zh,Shi F,et al.Sol- gel deposited TiO fill on NiTi surgical alloy for biocompatibility improvement.Thin Solid Films,2003;429:225-230.
    [15]Sunny M C,Sharma C P.Titanium-protein interaction:change with oxide layer thickness.J Biomater Appl,1991;5(6):89-98.
    [16]N Huang,P.Yang,Y.X.Leng,et al.Surface modification of biomaterials by plasma immersion ion implantation.Surface & Coatings Technology,2004;186:218-226.
    [16]Huang N,Yang P,Cheng X,et al.Blood compatibility of amorphous titanium oxide fills synthesized by ion beam enhanced deposition.Biomatedals,1998;19:771-776.
    [17]Yang W M,Liu Y W,Zhang Q,Leng Y X.Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering.Surface & Coatings Technology,2007;201:8062-8065.
    [18]Logothetidis S,Gioti M,Lousinian S,Fotiadou S.Haemocompatibility studies on carbon-based thin films by ellipsometry.Thin Solid Films,2005;482:126-132.
    [19]顾汉卿,徐国风.生物医学材料学.天津科技翻译出版公司.1993,P151.
    [20]Kim J H,Kim S C.PEO-grafting on PU/PS IPNs for enhanced blood compatibility-effect of pendant length and grafting density.Biomatedals,2002;23:2015-2025.
    [21]Maale N,Albrecht R,Loscalzo J,et al.The Potent Platelet Inhibitory Effects of S-Nitrosated Albumin Coating of Artificial Surfaces.Journal of the American College of Cardiology,1999;33(5):1408-1414.
    [22]Liu T Y,Lin W Ch,Huang L Y,et al.Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane.Biomaterials,2005;26:1437-1444.
    [23]Sache E,Maillard M,Malazzi P,et al.Partially N-desulfated heparin as a non-anticoagulant heparin: Some physico-chemical and biological properties. Thrombosis Research, 1989;55(2):247-258.
    [24] Yoon S J, Pyun Y R, Hwang J K, et al. A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor II-dependent anticoagulant activity. Carbohydrate Research, 2007 342:2326-2330.
    [25] Lin C Z, Guan H S, Li H H, et al. The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities. European Polymer Journal, 2007;43:3009-3015.
    [26] Poussard L, Burel F, Couvercelle J P, et al. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Biomaterials, 2004;25:3473-3483.
    [27] Lahann J, Klee D, Pluester W, et al. Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices. Biomaterials, 2001; 22:817-826.
    [28] Hasegawa T, Iwasaki Y, Ishihara K, Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials, 2001;22:243-251.
    [29] Kojima M, Ishihara K, Watanabe A, et al. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials, 1991;12(2):121-124.
    [30] Zhu Y B, Gao C Y, Shen J C, et al. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials, 2002;23:4889-4895.
    [31] Plummer S T, Wang Q, Bohn P W. Electrochemically Derived Gradients of the Extracellular Matrix Protein Fibronectin on Gold. Langmuir, 2003;19:7528-7536.
    [32] Li Y H, Huang Y D. The study of collagen immobilization on polyurethane by oxygen plasma treatment to enhance cell adhesion and growth. Surface & Coatings Technology, 2007;201:5124-5127.
    [33] Lopez L C, Gristina R, Ceccone G, et al. Immobilization of RGD peptides on stable plasma-deposited acrylic acid coatings for biomedical devices.Surface & Coatings Technology,2005;200:1000-1004.
    [34]Chen C S,Mrksich M,Huang S,et al.Micropattemed Surfaces for Control of Cell Shape,Position,and Function.Biotechnol.Prog.,1998;14:356-363.
    [35]Cai K Y,Rechtenbach A,Hao J Y,et al.Polysaecharide-pmtein surface modi.cation of titanium via a layer-by-layer technique:Characterization and cell behaviour aspects.Biomaterials 2005;26:5960-5971.
    [36]He P G,Ye J N,Fang Y Z,et al.Self-assembled biotinylated disulfide derivative monolayer on gold electrode for immobilizing enzymes.Talanta,1997;44:885-890.
    [37]Shi Y T,Yuan R,Y Q Chal,et al.Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles.1ms on Titania nanoparticles/gold nanoparticles-coated Au electrode.Journal of Electroanalytical Chemistry,2007;604:9-16.
    [38]Liu X Q,Xing J M,Guan Y P,et al.Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization.Colloids and Surfaces A:Physicochem.Eng.Aspects,2004;238:127-131.
    [39]Sung H W,Chert C N,Huang R N,et al.In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent.Biomaterials,2000;21:1353-1362.
    [40]Simon A,Bouhacina T C,Porte M C,et al.Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface.Journal of Colloid and Interface Science,2002;251:278-283.
    [41]Suri C R,Mishra G C.Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application.Biosensors and Bioelectronics,1996;11(12):1199-1205.
    [42]S H Choi,Zhang Newby B M.Suppress polystyrene thin film dewetting by modifying substrate surface with aminopropyltriethoxysilane.Surface Science, 2006;600:1391-1404.
    [43]Qian W P,Xu B,Wu L,et al.Controlled site-directed assembly of antibodies by their oligosaccharide moieties onto APTES derivatized surface.Journal of Colloid and Interface Science,1999;214:16-19.
    [44]Yuan K,Gu S J,Li Z F.Preparation and characterization of poly(N-isopropylacrylamide)films on a modified glass surface via surface initiated redox polymerization.Materials Letters,2005;59(14-15):1736-1740.
    [45]Wang A F,Cao T,Tang H Y,et al.In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces.Colloids and Surfaces B:Biointerfaces,2005;43:245-255.
    [46]Danahy M P,Avaltroni M J,Midwood K S,et al.Self-assembled Monolayers of a,ω-Diphosphonic Acids on Ti Enable Complete or Spatially Controlled Surface Derivatization.Langmuir,2004;20:5333-5337.
    [47]Gao W,Dickinson L,Grozinger C,et al.Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides.Langmuir,1996;12:6429-6435.
    [48]Midwood K S,Hahner G,Ruiz L,et al.Highly Oriented,Self-Assembled Alkanephosphate Monolayers on Tantalum(V)Oxide Surfaces.Langmuir,1999;15:4324-4327.
    [49]Schreiber F.Structure and growth of self-assembling monolayers.Progress in Surface Science,2000;65:151-256.
    [50]Jafari R,Tatoulian M,Morscheidt W,et al.Stable plasma polymerized acrylic acid coating deposited on polyethylene(PE).lms in a low frequency discharge(70 kHz).Reactive & Functional Polymers,2006;66:1757-1765.
    [51]Harsch A,Calderon J,Tlmmons R B,et al.Pulsed plasma deposition of allylamine on polysiloxane:a stable surface for neuronal cell adhesion.Journal of Neuroscience Methods,2000;98:135-144.
    [52]Hersel U,Dahmen C,Kessler H.RGD modified polymers:biomaterials for stimulated celladhesion and beyond.Biomaterials,2003;24:4385-4415.
    [1]Schwartz J,Avaltroni M J,Danahy M P,ct al.Cell attachment and spreading on metal implant materials.Materials Science and Engineering C,2003;23:395-400.
    [2]Auemheimer J,Kessler H.Benzylprotectcd aromatic phosphonic acids for anchoring peptides on titanium.Bioorganic & Medicinal Chemistry Letters,2006;16:271-273.
    [3]Gawalt E S,Avaltroni M J,M P Danahy,et al.Bonding Organics to Ti Alloys:Facilitating Human Osteoblast Attachment and Spreading on Surgical Implant Materials.Langmuir,2003;19:200-204.
    [4]Wissink M J B,Beernink R,Pieper J S,et al.Immobilization of heparin to EDC/NHS-crosslinked collagen.Characterization and in vitro evaluation.Biomatefials,2001;22:151-163.
    [5]Kang I K,Kwon O H,Lee Y M,et al.Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge.Biomaterials,1996;17:841-847.
    [6]Gao W,Lucy Dickinson,Christina Grozinger,et al.Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides.Langmuir,1996;12:6429-6435.
    [7]Nilsing M,Lunell S,Persson P,et al.Phosphonic acid adsorption at the TiO_2anatase(101)surface investigated by periodic hybrid HF-DFT computations.Surface Science,2005;582:49-60.
    [8]刘敬肖,杨大智,蔡英骥.医用TiO2/SiO2薄膜表面共价键和肝素的研究.材料研究学报,2002;16(5):529-535.
    [9]Du Y Z,Wood L L,Saavedra S S.Growth behavior and structure of alkyltrichlorosilane monolayers beating thioacetate and acetate tailgroups.Materials Science and Engineering C,2000;7:161-9.
    [10]Chittur K K.FTIR/ATR for protein adsorption to biomaterial surface.Biomaterials,1998;19:357-369.
    [11]Schreiber F.Structure and growth of self-assembling monolayers.Progress in Surface Science,2000;65:151-256.
    [12]Nilsing M,Lunell S,Persson P,et al.Phosphonic acid adsorption at the TiO2 anatase(101)surface investigated by periodic hybrid HF-DFT computations.Surface Science,2005;582:49-60.
    [13]Schwartz J,Avaltroni M J,Danahy M P,et al.Cell attachment and spreading on metal implant materials.Materials Science and Engineering C,2003;23:395-400.
    [14]Wang A F,Cao T,Tang H Y,et al.In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces.Colloids and Surfaces B:Biointerfaces,2005;43:245-255.
    [1]Gawalt E S,Avaltroni M J,Danahy M P,et al.Bonding Organics to Ti Alloys:Facilitating Human Ostcoblast Attachment and Spreading on Surgical Implant Materials.Langmuir,2003;19:200-204.
    [2]Auernheimer J,Kessler H.Benzylprotected aromatic phosphonic acids for anchoring peptides on titanium.Bioorganic & Medicinal Chemistry Letters,2006;16:271-273.
    [3]Yoon J J,Song S H,Lee D S,et al.Immobilization of cell adhesive RGDpeptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method.Biomaterials,2004;25:5613-5620.
    [4]Kang I k,Kwon O H,Lee Y M,et al.Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge.Biomaterials,1996;17:841-847.
    [5]刘建伟,陈元维,唐昌伟等.PET膜的接枝改性及其血液相容性研究.四川大学学报(工程科学版),2004;36(1):41-44.
    [6]Zhu Y B,Chan-Park M B.Density quantiWcation of collagen grafted on biodegradable polyester:Its application to esophageal smooth muscle cell.Analytical Biochemistry,2007;363:119-127.
    [7]Zwahlen M,Tosatti S,Textor M,et al.Orientation in Methyl- and Hydroxyl-Terminated Self-Assembled Alkanephosphate Monolayers on Titanium Oxide Surfaces Investigated with Soft X-ray Absorption.Langmuir,2002;18:3957-3962.
    [8]Gawalt E S,Avaltroni M J,Koch N,et al.Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface of Titanium.Langrnuir,2001;17:5736-5738.
    [9]Konno T,Hasuda H,Ishihara K,et al.Photo-immobilization of a phospholipid polymer for surface modification.Biomaterials,2005;26:1381-1388.
    [10]Chen J Y,Wan G J,Leng Y X,et al.Behavior of cultured human umbilical vein endothelial cells on titanium oxide films fabricated by plasma immersion ion implantation and deposition.Surface & Coatings Technology,2004;186:270-276.
    [11]Kleinfeld D,Kahler K H,Hockberger P E.Controlled outgrowth of dissociated neurons on patterned substrates.J.Neurosci.,1988;8:4098-4120.
    [12]Stenger D A,Georger J H,Dulcey C S,et al.Coplanar molecular assemblies of amino- and perfluorinated alkylsilanes:characterization and geometric definition of mammalian cell adhesion and growth.J.Am.Chem.Sot.,1992;114:8435 -8442.
    [13]Griesser H J,Chatelier R C,Gengenbach T R,et al.Growth of human cells on plasma polymers:putative role of amine and amide groups.J.Biomater.Sci.Polym.Ed.,1994;5(6):531-554.
    [14]Schakenraad J M,Busscher H J,Wildevuur C R H,et al.The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins.J.Biomed.Mater.Res.,1986;20:773-784.
    [15]王涛,顾玉东,李继峰等.肝素对内皮细胞增殖与收缩因子释放的影响.中华显微外科杂志,1989;22(3):195-197.
    [16]潘欣,曹广文,柯重建等.血管内皮细胞生长因子及其相关蛋白的结构与功能.生物化学与生物物理学学报,1999;31(4):357-361.
    [17]Fairbrother W J,Champe M A,Chfistinger H W,et al.Solution structure of the heparin-binding domain of vascular endothelial growth factor.Stucture,1998;6(5):637-648.
    [18]邢伟;刘素嫒;孙黎光等.ECGF生物活性与肝素的相关性研究.中国医科大学学报,1996;3:235-238.
    [19]Wang A F,Cao T,Tang H Y,et al.In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces.Colloids and Surfaces B:Biointerfaces,2005;43:245-255.
    [20]Barbucci R,Magnani A,Lamponi S,et al.The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour.Biomaterials,2003;24:915-926.
    [21]Elam J H,Nygren H.Adsorption of coagulation proteins from whole blood on polymer materials:relation to platelet activation,biomaterials,1992;13(1):3-8.
    [22]Topoi E J.Prevention of cardiovascular ischemic complications with new platelet glycoprotein Ⅱb/Ⅲa inhibitors,Am.Heart J.,1995;346:635-636.
    [23]Ito Y.Micropattem immobilization of polysaccharide.Journal of Inorganic Biochemistry,2000;79:77-81.
    [24]Hersel U,Dahmen C,Kessler H.RGD modified polymers:biomaterials for stimulated cell adhesion and beyond.Biomaterials,2003;24:4385-4415.
    [25]Ruoslahfi E,Pierschbacher M D.New perspectives in cell adhesion:RGD and integrins.Science,1987;238:491-495.
    [26]Harsch A,Calderon J,Timmons R B,et al.Pulsed plasma deposition of allylamine on polysiloxane:a stable surface for neuronal cell adhesion.Journal of Neuroscience Methods,2000;98:135-144.
    [27]Zhu Y B,Gao Ch Y,Shen J C.Surface modification of polycaprolactone with poly(methacrylic acid)and gelatin covalent immobilization for promoting its cytocompatibility.Biomaterials,2002;23:4889-4895.
    [28]Zhu Y B,Gao Ch Y,He T,et al.Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalenfly grafted with gelatin.Biomaterials,2004;25:423-430.
    [29]Absolom D R,Zingg W,Neumann A W,et al.Protein adsorption to polymer particles:role of surface properties.J.Biomed.Mater.Res.,1987;21:161-171.
    [30]杨苹.西南交通大学博士论文,2006.5:P72-77.
    [1] Chin S F, Pantano P. Antibody-modified microwell arrays and photobiotin patterning on hydrocarbon-free glass. Microchemical Journal, 2006;84 :1-9.
    [2] Laitinen O H, Nordlun H R, Hytonen V P. Brave new (strept)avidins in biotechnology. TRENDS in Biotechnology, 2007;25(6):269-277
    [3] Dai Z F, Wilson J T, Chaikof E L. Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions. Materials Science and Engineering C, 2007;27:402-408.
    [4] Bailey L M, Ivanov R A, Wallace J Cet al. Artifactual detection of biotin on histones by streptavidin Analytical Biochemistry, 2008;373:71-77.
    [5] Han D K, Lee N Y, Park K D, et al. Heparin-like anticoagulant activity of sulphonated poly(ethylene oxide) and sulphonated poly(ethylene oxide)-grafted polyurethane. Biomaterials, 1995;16:467-471.
    [6] Kim Y H, Han D K, Park K D, et al. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 2003;24:2213-2223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700