铜阳极泥加压酸浸预处理工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜阳极泥是粗铜电解过程的副产物,产率约占粗铜量的1%左右。铜阳极泥中富集了由铜冶炼原、辅料带入冶炼过程,且不溶于电解液的各种物质。近年来处理铜阳极泥除回收金、银、铜等外,还综合回收硒、碲、铅、砷、锑、镍、铂族金属等。采用先进的工艺技术和高效装备,简化生产工序,加速过程进行,缩短贵金属的占压周期,提高金属回收率和资源综合利用率等是铜阳极泥处理技术的发展趋势。
     本文综述了国内外对铜阳极泥处理的研究与发展。根据热力学分析和试验研究,首次提出了一个拥有自主知识产权的铜阳极泥加压酸浸预处理新工艺。新工艺实现了铜阳极泥的清洁浸出,是一种环境友好的浸出方法,是对不同成分铜阳极泥处理技术的一种创新。本论文研究的主要内容如下:
     1.进行了加压浸出过程热力学方面的研究。
     铜阳极泥中除了含有金属铜外,还含有一定量的贱金属和稀有金属及贵金属金、银等。铜阳极泥的物相组成比较复杂,各种金属存在的形式多种多样,多以硫化物形式存在。为了研究这些金属及其硫化物在浸出过程中的行为,进行了加压浸出过程中铜的热力学性质的研究,从热力学方面对加压浸出过程中铜脱除的可行性进行了计算和分析;绘制了298K、373K下的S-H20系、Cu-S-O-H系、CuFeS2-H2O系、Ag2S-H20系、PbS-H2O系、ZnS-H2O系的φ-pH图,并在此基础上绘制了本研究中铜阳极泥中主要物质的综合MS-H20系的φ-pH图。这些φ-pH图的绘制为铜阳极泥加压浸出提供了理论依据。
     2.系统地进行了不同条件下铜阳极泥加压酸浸脱铜的试验研究。进行了铜阳极泥加压酸浸脱铜的实验室小型试验和扩大试验的研究。通过对水洗阳极泥、粒度、搅拌速度及温度等条件的考查,确定铜阳极泥加压酸浸的条件为:直接用生产过程的湿阳极泥进行调浆,在373K-393K以上,搅拌转速为700r/min。通过系统的加压浸出试验,从动力学分析出发,研究了影响铜阳极泥加压浸出的主要影响因素诸如温度、H2SO4浓度、氧压、浸出时间、液固比等,经优化工艺条件,在较低温度373K-393K、较短浸出时间60min-90min、H2SO4浓度100g/L、液固比5:1、压力0.8MPa的条件下,采用工业纯氧、富氧空气或压缩空气作为氧化剂,铜浸出率均高达98%以上,浸出渣中残留的铜小于0.4%,金属走向合理,贵金属金、银等不被浸出,集中在浸出渣中。
     3.对铜阳极泥加压酸浸进行了机理研究。分析了铜离子的自催化效应,提出利用Cu2+/Cu+之间电子转移的催化作用,大幅提高了多相反应过程的速度,取消以往的铜阳极泥水洗工序;铜阳极泥加压酸浸机理分析表明,硫酸通过阳极泥周围的液膜扩散到阳极泥的表面这一步骤是反应的控制步骤,对于铜、镍等有价金属,其在预处理过程中是液-固相反应,是以硫酸为浸出剂,生成产物可溶于水,可用“未反应核收缩模型”来描述。经假定反应物在反应过程中保持恒定,对推导出的动力学方程1-(1-x)1/3=(bk'CA0)/(αρBr0)t进行了试验验证。试验结果和该模型的动力学方程吻合较好,得出不水洗阳极泥的表观速率常数为水洗阳极泥的两倍,计算得出反应的活化能为7.838kJmol-1。
     4.研究开发的富Te阳极泥强化浸出工艺,在温度423K、较短浸出时间90min、H2SO4浓度100g/L、液固比5:1、压力0.7MPa的条件下,以氧气为氧化剂,得到Te浸出率达50%,铜浸出率在99%以上,银浸出较少,集中在浸出渣中。
     5.对镍含量较高的铜阳极泥进行加压酸浸预处理,经优化工艺条件,在433K、反应时间150mmin、H2S04浓度250g/L、压力0.9MPa、液固比6:1的条件下,均可以获得90%以上的镍浸出率,铜浸出率均在99%以上,银基本抑制在浸出渣中,实现了铜阳极泥中主金属镍的有效浸出,达到杂质金属与贵金属的有效分离。试验结果表明,用加压浸出工艺预处理高含镍量铜阳极泥脱除铜、镍等有价金属是可行的,进一步拓宽了铜阳极泥加压酸浸的应用范围。
     6.进行了铜阳极泥加压酸浸的半工业试验研究。根据实验室试验结果,对试验条件进行了优化,利用阳极泥中金属相和硫化物的还原性,保证了在高铜浸出率条件下有价金属走向更为集中,有利于稀散金属及贵金属的高效回收。在加压釜工作压力0.8MPa、温度393K-403K、H2SO4浓度100-150g/L、液固比5:1、釜内停留时间100min-120min条件下,采用压缩空气或工业纯氧进行连续加压浸出,均能实现铜浸出率在98%以上、渣含铜在0.5%以下。试验中采用能更好地促进气相在液相中分数的大流量气体氧化剂,大幅度降低了工艺能耗和成本,并大幅提高了生产过程及设备的安全性。在预定工艺控制条件下渣含Cu基本稳定在0.5%左右,最低达0.31%,Te、Ag等均更好地集中于固相中,并有所富集;在连续17天的试验过程中,作业过程运行稳定,加压釜运转率为96.8%,流程通畅,投料率为89.2%。工艺参数易于控制,参数调整过程转换平稳;半工业试验系统的阳极泥处理能力2.5-3.0t/d,平均为2.76t/d。所获工艺技术指标已作为云南铜业股份公司年处理铜阳极泥8000吨加压酸浸预处理工艺产业化系统建设的技术依据。
     总之,本文研发了一种采用加压酸浸预处理铜阳极泥的新工艺。该工艺不仅铜镍等金属浸出率高、操作简单、流程短;且利用了铜离子生成变价金属的自催化效应,强化反应的进行,反应时间短;整个过程为封闭运行,无废液废气排放,环境可接受性高,符合绿色清洁生产要求,是一种具有很好发展前途的环境友好的处理铜阳极泥的湿法冶金新技术,该技术的推广应用,将会带来巨大的经济效益和社会效益。
     论文的创新点:
     1.本文提出在加压酸浸的条件下进行铜阳极泥的预处理新工艺,并获得国家知识产权局发明专利授权(授权号:309983)。试验研究表明,在选定的工艺条件下,铜阳极泥中的铜、镍等有价金属浸出率高、浸出时间短,金属走向合理,贵金属基本富集在浸出渣中,实现了贱金属与贵金属的有效分离;
     2.本文提出对铜阳极泥进行连续加压浸出预处理,采用能更好地促进气相在液相中分数的大流量气体氧化剂,能耗小,热效高,设备寿命长,过程为自动控制,操作简单,劳动强度小:
     3.本文提出利用Cu2+/Cu+之间电子转移的催化作用,大幅提高了多相反应过程的速度,取消以往的铜阳极泥水洗工序;
     4.本文研究了铜阳极泥加压浸出预处理的热力学过程,绘制了298K和373K下的S-H20系、Cu-S-O-H系、CuFeS2-H2O系、Ag2S-H20系、PbS-H2O系、ZnS-H2O系的φ-pH图,确定各金属在加压酸浸条件下的行为及走向,这些体系的热力学研究丰富了铜阳极泥加压酸浸的理论基础。
     5.本文提出利用铜阳极泥中金属相和硫化物的还原性,保证了在高铜浸出率条件下有价金属走向更为集中,有利于稀散金属及贵金属的高效回收;
Copper anode slime is the byproduct in the process of electrorefining, which yield is 1 percent of the blister. There are several kinds of materials concentrated in copper anode slime, which from the raw and auxiliary materials, insoluble in electrolyte. These years, copper, silver and gold are recovered from copper anode slime, selenium, tellurium, lead, arsenic, antimony, nickel and platinum metals are also recovered from it. The develop tendency of the treating technology of copper anode slime are, utilization the advanced technology and high efficiency equipment, simple operation, rapidly process, shorten the holding time of precious metals, enhance the recovery rate of metals and comprehensive utilization of resources.
     The researches on and advances in the treatment of copper anode slime at home and abroad are. reviewed. Based on the theoretical analysis and explorative experiments, a novel process of copper anode slime pretreated by pressure acid leach is put forward. This process is in possession of independent knowledge property right. The novel process realizes green leaching copper anode slime. It is also an environmentally friendly improvement to the hydrometallurgical methods of treating copper anode slime. At the same time, this process was also an innovation in processing various components of copper anode slime. The main work and conclusions are as follows.
     1. Thermodynamics researches with the process of pressure leach had been examined. Besides of copper in copper anode slime, it still has a few base metals and precious metals, such as silver and gold, etc. In order to investigate the behaviors of these metals in leaching process, theφ-pH diagrams of systems S-H2O, Cu-S-O-H, CuFeS2-H2O, Ag2S-H2O, PbS-H2O, ZnS-H2O of 298K,373K had been drawn. To analysis the practicability of removing copper from copper anode slime with pressure leach method in thermodynamic aspect, copper thermodynamics had been examined.
     2. Systematic experimental study and mechanism analysis of removing copper from copper anode slime with pressure leach method under different conditions. The laboratory test of treating copper anode slime with pressure leach method is carried out. It defined the pressure leach conditions through the examined of scrubbing, gradation, stirring rate and temperature. The conditions are, surge with the raw copper anode slime of the productive process, higher temperature, stirring rate of 700r/min. Through analysis of kinetics, the primary factors of affecting pressure leach such as temperature, acidity, oxidation pressure, leaching time, liquid to solid ratio, etc. had been examined. The conditions are,373K-393K, 60-90min, acidity is100g/L, liquid to solid ratio is 5:1, pressure is 0.8MPa. The results show that, the method can realize the aims to remove copper from copper anode slime efficiently whenever use oxygen, oxygenized air or compressed air as gaseous oxidizer. The removal efficiency of copper with such method can be above 98 percent, the copper content of leaching residue is below 0.4 percent.
     3. The mechanism of pressure leach had been examined. The catalytic action of Cu2+change to Cu+is put forward, which can enhance reaction rate and cancel the scrubbing process. The mechanism analysis of pressure leach shows, the step of sulphuric diffused to the surface of the copper anode slime through the fluidized membrane is the control step of the reaction. The valuable metal as copper and nickel are liquid-solid reaction in the pretreated process, the product is water-soluble, can be described by shirking dense-core model. Assume the reactor keep constant in the react course, the kinetic equation is tested by the experiment. The results shows, the apparent rate constant of scrubbing is double of no-scrubbing, the activation energy is 7.838kJmol-1, which shows the diffusion resistance determine the leach rate of anode slime.
     4. The examined technology of remove tellurium from copper anode slime is improvement and innovation of the pressure leach method, with the conditions are,423K,90min, acidity is100g/L, liquid to solid ratio is 5:1, pressure is 0.7MPa, oxygen as the oxidizer, the leaching rate of tellurium is above 50 percent, copper leaching rate is above 99%, silver leaching rate is lower, which enriched in leaching slag.
     5. The experiment of removing nickel from copper anode slime with pressure leach method is carried out. With the conditions are,433K,150min, acidity is250g/L, liquid to solid ratio is 6:1, pressure is 0.9MPa, oxygen as the oxidizer, the leaching rate of nickel is above 90 percent, the leaching rate of copper is above 99 percent, silver concentrated in slag. It can attain the aims to remove nickel from copper anode slime with pressure leach method, which opens up wide prospect for the application of the novel process.
     6. The pilot trail of copper anode slime treated by pressure leach method is carried out. Based on the results of the bench-scale experiment, the reducibility of metal phase and sulphide of copper anode slime is put forward, which can centralize the flow of valuable metal with the condition of higher copper leaching rate and be propitious to recover rare scattering and precious metals efficiently. It can attain the aims to remove copper from copper anode slime whenever use oxygen, oxygenized air or compressed air as gaseous oxidizer. The conditions as follows, the working pressure at 0.8MPa,393K-403K, 100-150g/L H2SO4,100-120min, the removal efficiency of copper is above 98 percent, the content of copper in leaching residue is below 0.5 percent. Utilization of oxidizer with big flow rate is put forward, which can promote the gas distribute into liquid quickly, cut down the cost and consumption of the technology, enhance the security of the process and equipment. It can attain the better indices of 0.5 percent of copper in leaching residue, silver and gold are concentrated in leaching residue. During the course of the experiment for 17days, the process is running stable, the running ratio of autoclave is 96.8 percent, the material input ratio is 89.2 percent. The technology parameter can be controlled easily, it also stable for changing parameters. The pilot trail capacity of treating copper anode slime is 2.5-3 tons per day, the average value is 2.76 tons per day. The technology indices from the experiment can be as the industrial construct technical reference of 8000 tons-per year of Yunnan copper corporation Ltd.
     In summary, a novel process of pressure acid leaching of copper anode slime is researched. The advantages of this process are, high leaching efficiency of copper and nickel, simple operation, short flow sheet, utilize self catalytic action of copper ion change to another valence state, which can strengthen process of the reaction, shorten reaction time. The whole process is working in blocking condition with high environmental acceptability. This process meets the environments of green clean production, and is a new promising hydrometallurgical method of copper anode slime.
     The following contributions have been made:
     1. A novel process of copper anode slime pretreated by pressure acid leach is put forward for the first time, which is authorized by State Intellectual Property Office of the P.R.C. Certificate No is ZL 200510011022.9,309983. The experiment result shows, on the conditions of the experiment, the leaching rate of copper and nickel are higher, leaching time is shorter, the metals are distributed reasonable, precious metals concentrated in leaching slag. It realized that base metals separated with precious metals efficiently.
     2. The continuous leaching method with copper anode slime has been presented. Utilization of oxidizer with big flow rate can promote the gas distribute into liquid quickly. The whole procedure is control by the computer with simple operation, thermal efficiency, equipment with long lifetime.
     3. The catalytic action of Cu+change to Cu+is put forward, which can enhance reaction rate and cancel the scrubbing process.
     4. The thermodynamic process of the copper anode slime with pressure leach method had been examined. Theφ-pH diagrams of systems S-H2O, Cu-S-O-H, CuFeS2-H2O, Ag2S-H2O, PbS-H2O, ZnS-H2O of 298K,373K had been drawn. It can be defined the behaviors and the flow of the metals in pressure leach conditions. The researches enriched the theoretical basis of pressure leach method of copper anode slime.
     5. The reducibility of metal phase and sulphide of copper anode slime is put forward for the first time, which can centralize the flow of valuable metal with the condition of higher copper leaching rate and be propitious to recover rare scattering and precious metals efficiently.
引文
[1]贾龙光.铜冶炼技术发展回顾.有色金属(冶炼部分),1997(增刊):19~24.
    [2]广东冶金学院,马坝冶炼厂(合编).硫化铜矿湿法冶金.北京:冶金工业出版社,1978,11:4.
    [3]朱祖泽,贺家齐.现代铜冶金学,北京,科学出版社,2003年1月.
    [4]翟玉春,刘喜海,徐加振主编,现代冶金学,电子工业出版社,2001年9月.
    [5]王致勇,董松琦,张庆芳.简明无机化学教程,高等教育出版社,1990年.
    [6]中国有色金属工业协会,中国有色金属工业年鉴编辑委员会.中国有色金属工业年鉴.2002[M].北京:中国印刷总公司,2002.
    [7]中国有色金属工业协会,中国有色金属工业年鉴编辑委员会.中国有色金属工业年鉴.2003[M].北京:中国印刷总公司,2003.
    [8]中国有色金属工业协会,中国有色金属工业年鉴编辑委员会.中国有色金属工业年鉴.2004[M].北京:中国印刷总公司,2004.
    [9]王华俊,赵武壮.我国铜市场供求关系分析.中国有色金属信息,2005(3):4-7
    [10]黄仲权.我国铜工业发展势态与资源取向.世界有色金属.2004(1):18~21
    [11]刘广龙.铜资源的紧迫性与再生资源建议.有色金属再生与利用,2005(2)16-20
    [12]郭传兴.我国铜资源及开发现状.中国金属通报,2004(6)2-4
    [13]国土资源部信息中心编著.世界矿产资源年评——20,02-2003.北京:地质出版社,2004(11)p2
    [14]孙传尧.当代世界的矿物加工技术与设备:第十届选矿年评.北京:科学出版社,2006.
    [15]曹异生,国际铜矿业进展,世界有色金属,2007,(5),P35-41
    [16]铜铅阳极泥处理现状,重有色冶炼,1977,No4:12-23
    [17]黄金局:沈阳冶炼厂,铜、铅阳极泥资料汇编,1980
    [18]孙戬.金银冶金,北京,冶金工业出版社,1998年第2版
    [19]田广荣.阳极泥处理(贵金属冶金积累文摘1960-1982),1983
    [20]宾万达.铅阳极泥湿法处理研究进展,中国金属学会黄金学会首届全国选冶学术会议论文集,1988,6,三门峡:167
    [21]候慧芬.铜电解精炼及阳极泥处理,上海科学技术出版社,上海,1961
    [22]株洲冶炼厂,冶金读本编写小组,铜的精炼,湖南人民出版社,长沙,1973
    [23]世界铜电解精炼生产实践调查,有色冶炼,No.6,1998,30
    [24]卢宜源,宾万达,贵金属冶金学,长沙,中南大学出版社,2004年4月
    [25]张维霖.贵金属,1989(2),12-26
    [26]黎鼎鑫,王永录,贵金属提取与精炼,长沙,中南大学出版社,2003年5月.
    [27]孙倬,吴振祥,孙恒华等,重有色金属冶炼设计手册,锡锑汞贵金属卷,北京,冶金工业出版社,1995年8月.
    [28]黄孔宣译.铜精炼厂阳极泥的湿法冶金处理工艺,国外黄金参考,1997年第6期,P8-21.
    [29]Bunyamin Donmez, Faith Sevim, Sabri Colak, A study on recovery of gold from decopperized anode slime, Chem. Eng. Technol.24(2001)1
    [30]Adamson, R.J. in:Gold Metallurgy in South Africa, Chamber of Mines of South Africa, Johannesburg(88)1972
    [31]Cooper, W.C. The treatment of copper refinery anode slime. JOM 1990,42(8),45-49
    [32]王日.铜阳极泥处理工艺优化,南昌水专学报,2004年12月第23卷第4期,P75-78
    [33]Hoffmann, J. E. The wet chlorination of electrolytic refinery slimes. JOM 1990,42(8), 50-54
    [34]Hoffmann, J. E. Processing slimes:The base case and opportunities for improvement. JOM 1990,42(8),38.
    [35]首届全国金银选矿学术会议论文集,第三分册(1983.9):140
    [36]白银矿冶所,国外铜阳极泥处理技术现状,1982:7
    [37]Hydrometallurgy Research Development and Plant Practice Proceeding 112 the AIME Annual Metting,1983. Asare K. O. and J.D.Pud. Metallurgical Society of AIME P151.
    [38]云南冶炼厂:有色金属(选冶部分),1976(1):31-34
    [39]王晓平.国外黄金参考.1989(11)
    [40]吴筱锦.国外黄金参考.1984(12)
    [41]施惟朴.大冶铜阳极泥处理工艺流程选择,第二届全国金银选冶学术会论文集,1987:244~245
    [42]昆明冶金研究所,试验研究报告,1986
    [43]杜三保.国内外铜阳极泥处理方法综述,中国物资再生,1997,(002):16-19
    [44]刘宏伟.三短熔炼法处理低品位阳极泥的研究与实践,有色矿冶,1998(5):23
    [45]邱光温,徐远志.高银铜阳极泥湿法处理流程研究,有色冶金设计,2000,27(2):19
    [46]蔡旭麒.从杂铜阳极泥重提取金银的研究,有色金属(冶炼部分),1999,(1):24
    [47]杨茂才,周杨霁,孙萼庭.从铜阳极泥中提取金和银,贵金属,1997,18(4):28
    [48]杨宗荣,朱素芬.从电解铜阳极泥中提取金和银,贵金属,1998,19(2):28
    [49]冯世钧,万由政,叶尉锬.大冶铜阳极泥处理及技术进步,有色金属(冶炼部分),1999(4):39
    [50]胡绪铭.ZL,89103853,1,1993.
    [51]李仲文.铜阳极泥处理湿法工艺改造,有色冶炼,1999,28(4):15~17
    [52]杨天足,水承静,宾万达.铅阳极泥湿法处理工艺述评,黄金,1996,17(11):33
    [53]杨茂才.铅阳极泥综合利用工艺技术进展,贵金属,1998,19(3):55
    [54]李卫锋,蒋丽华.铅阳极泥湿法工艺改进研究,湿法冶金,1996,(4):22
    [55]付稠林.铅阳极泥全湿法提取金银的研究,湿法冶金,1996(3):27
    [56]杨茂才.贵金属(增刊),昆明:贵金属编辑部,1997:273
    [57]吴继梅.高砷铅阳极泥预处理工艺研究,有色冶炼,1999,28(3):24
    [58]戴笃武.有色金属(冶炼部分),1991(5):29
    [59]鲁乐君.有色金属(冶炼部分),1992(3):21
    [60]熊宗国.全国第四届贵金属冶金科技学术会议论文集,昆明:贵金属情报网,1990:27
    [61]何喜庆.用螯合树脂回收铅阳极泥中的金,黄金,1998,19(5):34
    [62]张博亚,王吉坤,彭金辉.铜阳极泥中碲的回收,有色金属(冶炼部分),2006年第2期,P33-34
    [63]张博亚,王吉坤,彭金辉.加压酸浸从铜阳极泥中脱除碲的研究,有色金属(冶炼部分),2007年第4期,P25-27
    [64]奥利.雅维能,近来开发的阳极泥贵金属处理的现代温梅斯/奥托昆普(Wenmec/Outokwmpu)技术,国外金属矿选矿,1996年11月,P3-5
    [65]董凤书.波立登隆斯卡尔冶炼厂阳极泥的处理,有色冶炼,2003年8月第4期,P25-27
    [66]Yavuz, Omer, Recovery of gold and silver from anode slime, Separation Science and Technology,200(35), P133-141.
    [67]全湿法处理阳极泥新工艺,有色金属(选冶部分),1977(6):59~60
    [68]段发明,贵溪冶炼厂阳极泥湿法处理工艺的碱浸分碲及其综合效果,有色冶金设计与研究,1996年6月第17卷第2期,P32-35
    [69]李仲文.铜阳极泥处理湿法工艺改造,有色冶炼,1999年8月,P15-17
    [70]夏光祥:铜阳极泥全湿法处理工艺研究,有色金属(冶炼部分),2002年第1期,P29-33
    [71]吴玉林,徐朝阳,郑伸友.萃取技术在铜阳极泥提金中的应用,有色冶炼,1998年8月第4期,P20-23
    [72]Charles Copper W.铜精炼阳极泥的处理,《JOM》Aug,1990,P45-48
    [73]胡建辉,张传福.铜阳极泥预处理脱铜工艺优化,贵金属,2002年12月第23卷第4期,P1-5
    [74]华觉明.世界冶金发展史.科学文献出版社,北京,1985
    [75]北京钢铁学院,中国冶金简史编写组.中国冶金简史,科学出版社,北京
    [76]田长许.中国金属技术史,四川科学技术出版社,成都,1987
    [77]任鸿九,王立川.有色金属提取手册(铜镍),冶金工业出版社,北京,2000
    [78]E. G. West著,陈北盈等译.铜和铜冶金,中南工业大学出版社,长沙
    [79]World Bureau Metals Statistics, World Metals Statistics, Yearbook,1999
    [80]徐绍龄.无机化学丛书,第6卷,铜分族,科学出版社,北京,1998
    [81]潘云从,施维一,蒋继穆等.重有色金属冶炼设计手册,铜镍卷,北京,冶金工业出版社,1996年10月
    [82]陈邦俊,杨秉椿,张驾等.重有色金属冶炼设计手册,铅锌铋卷,北京,冶金工业出版社,1996年5月
    [83]曹大义.铜铅阳极泥处理,中国工业出版社,1962
    [84]黎鼎鑫.贵金属材料学,中南工业大学出版社,1991
    [85]陈寿椿.重要无机化学反应,上海科学技术出版社,1963
    [86]田玉芝译.贵金属冶金学,原子能出版社,1992
    [87]陈达平.贵金属回收工艺学,中国金融出版社,1991
    [88]周令治.稀散金属冶金学,冶金工业出版社,1988
    [89]中国科学院化工冶金研究所编译.黄金提取技术,北京大学出版社,1991
    [90]朱国明,严新毓译.金和银氰化厂生产实践,冶金工业出版社,1988
    [91]张博亚,王吉坤.加压酸浸预处理铜阳极泥的工艺研究,矿冶工程,2007年第5期,41-43
    [92]王吉坤,周廷熙.硫化锌精矿加压酸浸技术及产业化.北京,冶金工业出版社,2005
    [93]Aitchison L. A History of Metallurgy. London, Macdonald & Evans Ltd.,1961
    [94]Habashi F. A History of Metallurgy. Quebec, Metallurgy Extractive Quebec, Enr.,1994
    [95]Dennis W H. Extractive Metallurgy. New York, Philosophical Library,1965
    [96]Gilchrist J D. Extractive Metallurgy.2nd ed., Oxford, Pergamon Press Ltd.,1980
    [97]Wadsworth M E. Hydrometallurgy—past, present and future. In:Hydrometallurgy— Research, Development and Plant Practice. By Osseo—Asare K, Miller J D, New York: AIME,1983,3-38
    [98]Ashman D W., Jankola W A., Recent Experience with Zinc Pressure Leaching at Cominco, Lead-Zinc'90,253(The Minerals, Metals and Materials Society:Warrendale)
    [99]Mollison A C., Moore G W., Sulphide Pressure Leaching at Kidd Greek, Lead-Zinc' 90,277(The Minerals, Metals and Materials Society:Warrendale)
    [100]Tylecote R. F. AHistory of Metallurgy. London, The Metal Society,1970
    [101]周廷熙.加压反应釜搅拌轴双端面密封液供应自动伺服技术.有色冶金,2004,11
    [102]张淑珍.工程材料.北京,化学工业出版社,2004
    [103]魏龙.密封技术.北京,化学工业出版社,2004
    [104]王吉坤,周廷熙.高铁闪锌矿精矿加压浸出半工业试验研究.中国工程科学,2005,1
    [105]孙秋霞.材料腐蚀与防护.北京,冶金工业出版社,2004
    [106]郑逊良.碲铜合金市场前景与产业化的制约瓶颈.世界有色金属,2005,(3):12-14
    [107]周中平,赵毅红,朱慎林(编著).清洁生产工艺及应用实例.北京:化学工业出 版社,2002,5:1
    [108]N.N. Greenwood Aearnshaw(著).李学同,孔玲,单辉,张兴英,等(译).元素化学.北京:高等教育出版社,1996,10:466-467
    [109]H. Y. Sohn. R&D in the metallurgical industry toward the 21st century. Review of extraction & processing. JOM,1997,4:36
    [110]徐凯,徐慧.世界铜冶炼发展趋势及我国铜工业发展对策.有色金属,2003,55(2):129
    [111]小西纯二,林庄作.铜电解阳极泥浸出液的处理.国外锡工业,1989,17(3):38-41
    [112]邓峰.国外从阳极泥中回收金、银主要厂家工艺改进状况,黄金,1998,(5):37-41
    [113]O. Hyrarinen.奥托昆普公司波利精炼厂从铜阳极泥中回收硒和贵金属,金川译文集,1982年6月
    [114]徐传华,奥托昆普公司的冶炼技术,有色冶炼,2000(5)
    [115]Jhumki Hait, R. K. Jana, and S. K. Sanyal, Mineralogical Characteristics of Copper Electrorefining Anode Slime and Its Leached Residules, Ind. Eng. Chem. Res. 2004,43,2019-2087
    [116]Chen, T. T.;Dutrizac, J. E. A mineralogical overview of the behavior of nickel during copper electrorefing. Metall. Trans. B 1990,21,229-238
    [117]Zhou, T. L., Montoya-Jurado, J. L., Characterisation and leaching of copper refinery anode slimes. In Leeds University Mineral Engineering Association,1998:63-74
    [118]Chen, T. T.;Dutrizac, J. E. Mineralogical study of the. deportment and reaction of silver during copper electrorefining. Metall. Trans. B 1989,20:345-361
    [119]R. B. Bahappu, "Advances in Hydrometallurgical Extraction of Precious Metals," in 1st International Mineral Processing Symposium, Ege University Ataturk Cultural Centre, Izmir-Turkey, Vol.1,1986, pp.435-456.
    [120]S. Tataru, "Dissolution of Gold in Thiourea Solution," Rev. Roum. Chim.,13,891 (1968);Chem. Abstr.,69,100037k.
    [121]T. Groenewald, "Dissolution of Gold in Acidic Solutions of Thiourea," Hydrometallugy,1,277-290 (1976).
    [122]G. Deshenes and E. Ghali, "Leaching of Gold from Chalcopryte Concentrate by Thiourea,"Ibid.,20,179-202 (1988).
    [123]R. J. Hisshian and C. G.; Waller, "Recovering Gold with Thiourea," Min. Mag.,pp. 237-243 (September 1984).
    [124]S. Goto, O. Ogawa, I. Asakura, and S. Nakamura, "Leaching of Gold and Silver from Ore with Thiourea in Sulfuric Acid Solution," Nippon Kogyo Kaishi,101(1164), (1985); Chem. Abstr.,105,195019.
    [125]P. Vodvarka, "Leaching Tests Using Thiourea," Fiz-Khim. Probl. Min.,19,275-281 (1987).
    [126]I. H. Gundiler and H. J. Huyhua, "Thiourea Leaching of Gold and Silver," in 1st International Mining Processing Symposium, Ege University, Ataturk Cultural Centre, Izmir-Turkey, Vol.1,1986, pp.457-470.
    [127]B. J. Shalton, "Determination of Ag, Se, Te, Sb, Sn, Pb and As in Anode Slags," National Republic of South Africa, Report 1771,1975,12 pp.
    [128]J. C. Huyhua and I. H. Gundiler, "Recovery of Gold and Silver from Acidic Thiourea Solutions,"in 1st International Mining Processing Symposium, Ege University, Ataturk Cultural Centre, Izmir-Turkey, Vol.1,1986, pp.471-480.
    [129]R. Ziyadanogullari and O. Yavuz, "Recovery of Selenium and Tellurium from Anode Slime," Doga Tr. J. Chem.,14,165-172 (1990).
    [130]R. C. Shulze, "New Aspect in Thiourea Leaching of Precious Metals," J. Met.,6, 62-65(1984).
    [131]D. M. Chizhikov and V. P. Shchastlivyi, Tellurium and Tellurides, Collect's Publishers,London,1970, p.66.
    [132]I. Fujimura and A. Katai, Selenium Recovery from Copper Electrolysis Slime at Mitsubishi Osaka Refinery (TMS paper A82-12), TMS-AIME, Warrendale, PA,1982
    [133]赖建林.水氯化法浸出阳极泥中的铜,江西有色金属,1991年3月第5卷第1期,9-10
    [134]杨长江,张旭,蓝德均.铜阳极泥脱硒工艺现状及趋势,四川有色金属,2005年第1期,22~25
    [135]Haffmann J E.,从铜精炼阳极泥中回收硒和碲,有色金属技术经济研究,1990年 第2、3期,31-36
    [136]周犇.铜阳极泥处理生产实践,有色冶金设计与研究,2002年4月第23卷第1期,8~10
    [137]周犇,赵忱.阳极泥处理工艺优化实践,有色金属(冶炼部分),2003年第1期,26-28
    [138]陈东.国内铜阳极泥湿法处理流程评述,黄金,1989年第10卷第4期,30~32
    [139]余真荣.铜阳极泥湿法处理工艺的技术改造,黄金,1999年4月第20卷第4期,34-37
    [140]赖建林.铜阳极泥湿法处理过程中有价元素的分布,江西有色金属,1994年12月第8卷第4期,36-40
    [141]胡少华.铜阳极泥中金银及有价金属的回收,江西有色金属,1999年9月第13卷第3期,37~39
    [142]刘文权.选冶联合工艺生产白银的改进实践,中国有色冶金,2005年第5期,22-26
    [143]徐朝阳.碲在铜阳极泥处理过程中的分布及对白银质量的影响,矿冶,2002年9月,第11卷第3期,63~65
    [144]张华.某厂铜阳极泥中铜的回收试验研究,四川有色金属,2000年第3期,51~55
    [145]ChenT. T. Can. Met. Quart,1988,27 (2):91-116
    [146]车国生.矿产保护与利用,1988(2):37-39
    [147]黄作仁.国内外阳极泥处理资料专辑,湖南株洲冶炼厂情报室,1981
    [148]谭清华.铜阳极泥含铜量的控制与脱除,株冶科技,1989年2月,第17卷第1期:20~23
    [149]赖建林.水氯化法浸出阳极泥中的铜,江西有色金属,1991年3月第5卷第1期:9-10
    [150]陈庆邦,聂晓军,李明建.铜阳极泥湿法回收贵金属工艺研究,黄金,1999,(5):38-40
    [151]段发明.贵溪冶炼厂阳极泥湿法处理工艺的碱浸分碲及其综合效果,有色冶金设计与研究,1996年6月,第17卷第2期:32~35
    [152]CTARN YIDIRIM.含硒碲高的铜阳极泥的湿法处理,有色冶炼,1986,15(8): 26
    [153]韩河初,王敏.从铜阳极泥中提取碲,白银科技,1987,16(6):3
    [154]余真荣.铜阳极泥湿法处理工艺的技术改造,黄金,1999,20(4):34~37
    [155]陈真华.论金川铜阳极泥镍铜硒的脱除方法,金川科技,2002,(3):24~27
    [156]选矿手册编委会.选矿手册,第8卷第1分册,冶金工业出版社,北京
    [157]农大桂.铜阳极泥处理工艺的改进,中国有色冶金,2004,(6):44-46
    [158]Oli Hyvarinen.从铜精炼厂阳极泥中回收硒,有色冶炼,1991,1:62~63
    [159]谢瑞荣.贵冶阳极泥生产发展综述,铜业工程,2003,(3):30~33
    [160]沙梅.铜阳极泥浮选处理工艺及实践,有色冶炼,2003(5):27-29
    [161]尹湘华.贵冶阳极泥处理系统改扩建设计,有色金属(冶炼部分),2005(1):27-29
    [162]王玮,唐尊球,陈晓东.论金川集团有限公司原生铜精矿及二次铜精矿所产阳极泥处理工艺,有色冶金设计与研究,2002,23(3):16-20
    [163]吕高平.铜阳极泥湿法处理工艺的改进与优化,有色冶炼,2003(4):28-30
    [164]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987,208
    [165]李绍芬.化学反应工程.北京:化学工业出版社,2000,319~321
    [166]杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,2001
    [167]陈家镛.湿法冶金手册.北京:冶金工业出版社,2005
    [168]余继燮.贵金属冶金学.北京:冶金工业出版社,1990
    [169]S.苏伊.圣本托金矿——巴西的瑰宝.国外金属矿选矿,1999,(8):13-15
    [170]李滦宁,马玖彤等.铜精矿中铜镍的浸出研究.湿法冶金,2001,20(1):14-17
    [171]周勤俭,陈庭章,杨静等.氧压酸浸法处理浮选铜锌混合精矿的研究.矿冶工程,1997,17(1):47-50
    [172]David Dreisinger. R&D opportunities for pressure hydrometallurgy. JOM.,1991, (4):8-11
    [173]郎家重.国外锌冶炼工艺发展状况.有色矿冶,1999,(4):3032
    [174]李岚等.加压氧化浸出处理硫化砷渣.矿冶,1998,7(4):46-50
    [175]邱定蕃.加压湿法冶金过程化学与工业实践.矿冶:1994,3(4):55-67
    [176]邱定蕃.重有色金属加压湿法冶金的发展.有色金属(冶炼部分).1997增刊,9-18
    [177]崔学仲.加压湿法冶金技术研究.有色金属(冶炼部分).1997增刊,54-61
    [178]柯家骏.湿法冶金中加压浸出过程发展.湿法冶金,1996,(2):1-6,13
    [179]张国柱.阜康镍厂加压酸浸系统设计投产总结.有色冶炼,1996,(1)23-26
    [180]周绍銮,孙全庆,张晓泓等.难处理金矿石的加压浸出技术.铀矿冶,1997,16(4):237-244
    [181]M.N.雷赫曼等.改善从含毒砂和磁黄铁矿的难选金矿石中回收金的预处理方法的评价.国外金属矿选矿,2000,(5):21-27,33
    [182]张兴仁译.难浸金矿石的加压氧化预处理工艺研究.国外黄金参考,1996,(8):19-27
    [183]张秀华.难选冶金矿石预处理工艺现状.湿法冶金,1998,(3):13-18
    [184]桑利摘译.难处理金精矿加压氧化浸出技术的工业应用.有色冶炼,2000,29(2):45-46
    [185]Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. NATIONAL ASSOCIATION of CORROSION ENGINEERS Houston,Texas, USA.1974
    [186]朱屯.现代铜湿法冶金.北京:冶金工业出版社,2002
    [187]刘纯鹏.铜的湿法冶金物理化学.北京:科学出版社,1991,第一版:110~111
    [188]李自强,何良惠(编)。水溶液化学位图及其应用。四川:成都科技大学出版社,1991,第1版:134~141
    [189]杨显万,邱定蕃.湿法冶金.冶金工业出版社,1998,158-174
    [190]李洪桂.湿法冶金学.长沙:中南大学出版社,2005
    [191]李洪桂.冶金原理.北京:科学出版社,2005
    [192]梁英教.物理化学.北京:冶金工业出版社,1998
    [193]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册.北京:冶金工业出版社,1983
    [194]《浸矿技术》编委会.浸矿技术.北京:原子能出版社,1994,10:113-115
    [195]Fact Sage5.0数据库
    [196]昆明工学院有色金属冶炼教研组译冶金原理提取冶金原理(第一卷)冶金工业出版社1978年7月第一版p224,p226-227
    [197]邱竹贤.有色金属冶金学.北京:冶金工业出版社,2006
    [198]蒋安仁校.《有色冶金物理化学》第一辑上海市科学技术编译馆1963年9月第一版,21-43
    [199]华一新.冶金过程动力学导论.冶金工业出版社,2004,6-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700