SiCp/Cf增强铝基复合材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金具有许多优良的性能,如比重小、导热导电性能好、抗氧化、耐腐蚀、塑性好,而且可加工性好,等等,在工业、民用等各个领域得到广泛应用。将具有高强度的铝合金作为基体,使它与硬度高、强度高和弹性模量大的陶瓷颗粒SiC、Al203、TiC,或者与具有固体润滑作用的碳纤维或石墨复合到一起,将得到非连续增强铝基复合材料。这类铝基复合材料的制备工艺灵活,而且可最大限度地综合发挥各组分材料的优势性能,使它既有铝合金高比强度,高导热,高阻尼等特点,同时又具有增强体高比模量,高耐磨,低膨胀和尺寸稳定性好等优异性能,是金属基复合材料中最具有广泛应用前景的一种新型材料,已经在航空航天、汽车和其它制造业作为结构材料得到了广泛的应用。
     本文研究了SiC颗粒和碳纤维的预处理方法,通过粉末冶金方法和时效热处理分别制备了SiCp/Al-Cu-Mg复合材料和Cf/Al-Cu复合材料,测试了它们的密度、硬度、抗拉强度和摩擦磨损性能,分析了机械合金化、增强相体积含量、载荷及其它因素对这两种复合材料的力学性能和摩擦磨损性能的影响,并探讨了复合材料的磨损机理。通过以上实验研究得到的主要结果如下。
     在SiCp/Al-Cu-Mg复合材料中,随着SiC颗粒体积分数的增加,复合材料的密度增大,硬度和抗拉强度呈现先增大后减小的规律,其中,9%SiCp/Al-Cu-Mg复合材料的力学性能最好。SiCp/Al-Cu-Mg复合材料的比磨损率随着SiC颗粒的含量增加而呈降低的趋势,其中以9%SiCp/Al-Cu-Mg和12%SiCp/Al-Cu-Mg复合材料的比磨损率最小。复合材料的比磨损率都明显低于其基体合金,表明SiCp/Al-Cu-Mg复合材料更耐磨。机械合金化使基体AlCuMg合金的抗拉强度明显提高,但对AlCuMg合金的密度、硬度、比磨损率和摩擦系数的影响不大。机械合金化使9%SiCp/Al-Cu-Mg复合材料的密度、硬度和抗拉强度明显提高,使其摩擦系数也增大,但对其比磨损率影响不大。载荷对复合材料的比磨损率影响不大,但使摩擦系数有所改变,比如,载荷越大,使9%SiCp/Al-Cu-Mg和12%SiCp/Al-Cu-Mg复合材料的摩擦系数越大。
     对于Cf/Al-Cu复合材料,随着碳纤维体积分数的增加,复合材料的密度减小,硬度和抗拉强度呈现先增大后减小的规律,其中6%Cf/Al-Cu复合材料的抗拉强度最高,而9%Cf/Al-Cu的硬度最高。Cf/Al-Cu复合材料的比磨损率随着碳纤维体积含量的增加呈先降低后增大的趋势,在Cf体积含量达6%左右时为最小值,而且Cf/Al-Cu复合材料的比磨损率都明显低于其基体合金。Cf/Al-Cu复合材料的摩擦系数随着碳纤维体积含量的增加呈降低的趋势。其中,基体AlCu合金和6%Cf/Al-Cu复合材料的摩擦系数相当,且为最大值,12%Cf/Al-Cu复合材料的摩擦系数最小。载荷对Cf/Al-Cu复合材料的比磨损率和摩擦系数的影响都不大,除了使12%Cf/Al-Cu复合材料的摩擦系数明显提高。
     SiCp/Al-Cu-Mg和Cf/Al-Cu复合材料的磨损机制均以粘着磨损为主。由于基体铝合金在磨损过程中容易被氧化,不可避免地存在有氧化磨损机制,而且Cf/Al-Cu复合材料因此在磨损过程中明显存在磨粒磨损机制。
Aluminum alloys are widely used in industry and civil fields, because they have many excellent properties such as, light density, good thermal and electric conductivity, good oxidation resistance, good corrosion resistance and good plasticity, and easily to be machined. Using the different aluminum alloys with high strength as matrix, the discontinuously reinforced aluminum matrix composites are produced if they compound with the discontinuous materials such as, SiC, Al2O3, TiC particles with high hardness and elastic modulus or carbon fiber and graphite with solid lubricant effects. These discontinuous aluminum matrix composites can be made by variable manufacture technologies. In addition, they can furthest integrate their component properties advantages which make they have high strength, good thermal and electric conductivity and easily processing as the matrix aluminum alloys do. Besides, they may have high specific modulus, good wear resistance, and low expandability and dimension stability properties. Therefore, they are ones of advanced metal matrix composites, which have a most potentially wide application and have been used as structure materials in aerospace, automobile and other industries.
     In this paper, the pretreatment of SiC particles and carbon fibers are investigated, and SiCp/Al-Cu-Mg and Cf/Al-Cu composites are made by powder metallurgy and heat treatment, respectively. Their density, hardness, ultimate tensile strength and tribological properties are measured, the factors such as mechanical alloying technique, volume fraction of reinforcements and loads on their mechanical and wear properties are analyzed, and the wear mechanisms are discussed. The main results are therefore found as follows.
     To SiCp/Al-Cu-Mg composites, with the increase of the SiC particle volume fraction, their density increases, but their hardness and ultimate tensile strength increases first and then drops, as a result that 9%SiCp/Al-Cu-Mg composite has the optimize mechanical properties. The SiCp/Al-Cu-Mg composites have better wear resistance than the matrix alloy does. The wear rates of the composites are obviously lower than that of their matrix alloy, and they decrease with the increase of the SiC particle volume fraction.9%SiCp/Al-Cu-Mg and 12%SiCp/Al-Cu-Mg composites have the almost equal lowest wear rate values. The mechanical alloying technique improves the ultimate tensile strength of the AlCuMg matrix alloy, but it does not influence its density, hardness, wear rate and friction coefficient. On the other hand, the mechanical alloying technique enhances the density, hardness, ultimate tensile strength and friction coefficient of 9%SiCp/Al-Cu-Mg composite, but it does not influence its wear rate. The loads hardly affect the wear rate of SiCp/Al-Cu-Mg composites while somewhat change their friction coefficient, such as, the heavier load obviously raises that of 9%SiCp/Al-Cu-Mg and 12%SiCp/Al-Cu-Mg composites.
     To Cf/Al-Cu composites, their density drops with carbon fiber volume fraction (Vf) increasing, besides their hardness and ultimate tensile strength increases first and then decreases, of which 6% Cf/Al-Cu has the best ultimate tensile strength and the 9%Cf/Al-Cu has the best hardness. The wear rate of Cf/Al-Cu composites drops first and then increases with Vf of carbon fiber increasing, and the 6%Cf/Al-Cu composite has the lowest value. Furthermore, the wear rates of the composites are lower than that of the matrix alloy. The friction coefficient of Cf/Al-Cu composites drops with Vf of carbon fiber volume fraction augmenting. The AlCu matrix alloy and 6%Cf/Al-Cu composite have the equal maximum friction coefficient while the 12%Cf/Al-Cu composite has the minimum. The loads hardly affect the wear rates and friction coefficients of the composites, except that the heavier load enhances the friction coefficient of the 12%Cf/Al-Cu composite.
     The wear mechanism of SiCp/Al-Cu-Mg and Cf/Al-Cu composites is mainly adhesive mechanism. In additional, the oxidation mechanism inevitably exists because the aluminum matrix alloy is easily oxidized during the wearing process, resulting in that the abrasive mechanism exists in that of Cf/Al-Cu composites.
引文
[1]郝元恺,肖加.高性能复合材料学[M].化学工业出版社.2004.
    [2]倪礼忠,陈麒.复合材料科学与工程[M].科学出版社.2002
    [3]沃丁柱.复合材料大全[M].化学工业出版社,2000
    [4][美]邹祖讳.复合材料的结构与性能[M].科学出版社,1999
    [5]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨工业大学出版社1999
    [6]尹洪峰,任耘,罗发.复合材料及其应用[M].陕西科学技术出版社2003
    [7]汤佩钊.复合材料及其应用技术[M].重庆大学出版社,1998
    [8]王震鸣.复合材料及其结构的力学、设计、应用和评价[M],哈尔滨工业大学出版社,1998
    [9]罗彦茹,泡沫SiCp/ZL104复合材料的制备及性能研究[D],吉林大学,2007年12月
    [10]张国定赵昌正,金属基复合材料[M].上海交通大学出版社 1996
    [11]T.W.克莱茵,P.J.威瑟斯,金属基复合材料导论[M],冶金工业出版社,1996
    [12]王广欣,刘惠民.金属基复合材料的制备及力学性能[M],浙江大学出版社,1996
    [13]张玉龙.先进复合材料制造技术手册[M].机械工业出版社.2003
    [14]陈华辉.现代复合材料[M].中国物资出版社,1998
    [15]周祖福.复合材料学[M],武汉工业大学出版社
    [16]陈剑峰,武高辉,孙东立、姜龙涛.金属基复合材料的强化机制,航空材料学报,Vol.22(2)2002:49-53
    [17]柏振海,SiCp/6061Al复合材料弹性模量、内耗及加工制备的研究[D],中南大学,2006年3月
    [18]王文明,SiCp/6061Al铝基复合材料工艺优化及弹性模量的数值模拟[D],重庆大学,2006年11月
    [19]贺春林,碳化硅颗粒增强铝基复合材料的微结构和力学与腐蚀行为研究[D],东北大学,2002年2月
    [20]有色金属及其热处理[M],国防工业出版社
    [21]董尚利,杨德庄,江中浩,短纤维增强铝基复合材料强化机制评述,材料科学与工程,2000,Vol 18(1):121-125
    [22]康立忠.SiC颗粒增强铝基复合材料干摩擦磨损的研究[D].上海交通大学.2008.1
    [23]高彩桥,摩擦金属学[M].哈尔滨工业大学出版社,1990
    [24]温诗铸,摩擦学原理[M],清华大学出版社,2008
    [25]黄平,摩擦学教程[M],高等教育出版社,2008
    [26]K H哈比希著.材料的磨损与硬度[M].北京:机械工业出版社,1987.
    [27]Kassim S. Al-Rubaie, Humberto N. Yoshimura, Jose Daniel Biasoli de Mello, Two-body abrasive wear of Al-SiC composites, Wear, Vol.233-235, (1999):444-454
    [28]Kassim S. Al-Rubaie, Helio Goldenstein, Jose Daniel Biasoli de Mello, Three-body abrasion of Al-SiC composites. Wear, Vol.225-229, Part 1, (1999): 163-173
    [29]王丽雪,曹丽云,刘海鸥.铝基复合材料研究的进展,轻合金加工技术.Vol.33(8),2005:10-12,52
    [30]樊建中,桑吉梅,石力开,颗粒增强铝基复合材料的研制、应用与发展,材料导报,2001,Vol.15(10):55-57,49.
    [31]张大童,李元元,龙雁.铝基复合材料研究进展,轻合金加工技术,Vol.28(1)2000:5-10
    [32]Tadashi Matsunaga, Kenji Matsuda, Tomei Hatayama, et al. fabrication of continuous carbon fiber-reinforced aluminum-magnesium alloy composite wires using ultrasonic infiltration method, Composites Part A, Vol.38, (2007):1902-1911
    [33]A. Daoud, Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration, Materials Science and Engineering A, Vol.391, (2005):114-120
    [34]E. Hajjari, M. Divandari, A.R. Mirhabibi, the effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting, Materials & Design, Vol.31,(2010): 2381-2386
    [35]S.M. Seyed Reihani, Processing of squeeze cast A16061-30vol% SiC composites and their characterization, Materials & Design, Vol.27, (2006):216-222
    [36]M. Kok, Abrasive wear of A12O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method, Composites Part A, Vol.37, (2006):457-464
    [37]W. D. Fei, M. Hu, C. K. Yao, thermal expansion and thermal mismatch stress relaxation behaviors of SiC whisker reinforced aluminum composite, Materials Chemistry and Physics, Vol.77 (2003):882-888
    [38]J. Hu, R. S. Luo, C. K. Yao, L. C. Zhao, Effect of annealing treatment on the stress corrosion cracking behavior of SiC whisker reinforced aluminum composite, Materials Chemistry and Physics, Vol.70, (2001):160-163
    [39]Yoshiro Iwai, Hidetomo Yoneda, Tomomi Honda, Sliding wear behavior of SiC whisker-reinforced aluminum composite,Wear, Vol.181-183, Part 2, (1995):594-602
    [40]W. D. Armstrong, T. Lorentzen, P. Br(?)ndsted, P. H. Larsen, An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a NiTi actuated aluminum metal matrix composite, Acta Materialia, Vol.46, (1998):3455-3466
    [41]B. Torres, M. Lieblich, A. Garcia-Escorial, Effect of heat treatments at 520℃ on an aluminium alloy matrix composite reinforced with Ni3Al powder particles, Scripta Materialia, Vol.54, (2006):1485-1489
    [42]W. Sha, Application of simple practical models for early stage ageing precipitation kinetics and hardening in aluminium and magnesium composites, Materials & Design, Vol.28,(2007):1524-1530
    [43]Deo Nath, Vakil Singh, Ageing characteristics of aluminium alloy aluminosilicate discontinuous fibre reinforced composites, Scripta Materialia, Vol.40,(1999):791-794
    [44]G. Leisk, A. Saigal, Taguchi analysis of heat treatment variables on the mechanical behavior of alumina/aluminum metal matrix composites, Composites Engineering, Vol.5, (1995):129-142
    [45]A. Daoud, W. Reif, Influence of A12O3 particulate on the aging response of A356 Al-based composites, Journal of Materials Processing Technology, Vol.123,(2002): 313-318
    [46]董尚利,杨德庄.碳化硅晶须和颗粒增强铝基复合材料的时效行为.材料工程.1996,8:45-49
    [47]V.K. Varma, Y.R. Mahajan, V.V. Kutumbarao, Ageing behaviour of Al-Cu-Mg alloy matrix composites with SiCp of varying sizes, Scripta Materiallia,1997.37(4):485-489
    [48]王祝堂,田荣璋.铝合金及其加工手册.中南大学出版社2000
    [l]艾利君 颗粒增强 Al基复合材料的研究[D],兰州大学,2007年5月
    [2]王文明,siCp/6061Al铝基复合材料工艺优化及弹性模量的数值模拟[D],重庆大学,2006年11月
    [3]Zhongliang Shi, J.-M. Yang, J. C. Lee, et al, The interfacial characterization of oxidized SiC(p)/2014 Al composites, Materials Science and Engineering A, Vol.303,(2001):46-53
    [4]Mingyuan Gu, Yanping Jin, Zhi Mei, Zengan Wu, Renjie Wu, Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites, Materials Science and Engineering A, Vol.252,(1998):188-198
    [5]A. Urena, E. E. Martinez, P. Rodrigo, L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Composites Science and Technology, Vol.64,(2004):1843-1854
    [6]高嵩,姚广春,化学镀铜前碳纤维预处理的研究,2005,Vol.38(7):43-45
    [7]Jinhai Gu, Xiaonong Zhang, Mingyuan Gu,et al. The damping capacity of aluminum matrix composites reinforced with coated carbon fibers, Materials Letters, Vol. 58,(2004):3170-3174
    [8]H. Naji, S.M. Zebarjad, S.A. Sajjadi, The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites, Materials Science and Engineering:A, Vol.486, (2008):413-420
    [9]王云英,孟江燕,陈学斌,白杨,复合材料用碳纤维的表面处理,表面技术,Vol.36(3),(2007):53-57
    [10]高嵩,张文婷,碳纤维表面化学镀铜工艺研究,材料保护,Vol.42(10),(2009):29-32
    [11]邹柳娟,范志强,朱孝谦,碳纤维增强铜基(碳/铜)复合材料的研究现状与展望,材料导报,1998,12(3):56-60
    [12]于辉,短碳纤维增强镍基复合材料的制备及其力学性能的研究[D],兰州大学,2004年5月
    [13]杨迪,杨辉其,周培贤等.金属硬度实验[M].北京:计量出版社,1983
    [14]姚启均编.金属硬度实验数据手册[M].机械工业出版社.1992
    [15]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨工业大学出版社,2002
    [16]四川五局编写组.金属材料机械性能测试[M].国防工业出版社,1983
    [17]徐金城,邓小燕, 夏龙,赵亮.炭纤维增强铜锡锌基复合材料的摩擦磨损性能研究,摩擦学学报.Vol.25(6),2005:588-592
    [1]樊建中,桑吉梅,石力开,颗粒增强铝基复合材料的研制、应用与发展,材料导报,2001,Vol.15(10):55-57,49
    [2]Mingyuan Gu, Yanping Jin, Zhi Mei, Zengan Wu, Renjie Wu, Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites, Materials Science and Engineering A, Vol.252, (1998):188-198
    [3]S.M. Seyed Reihani, Processing of squeeze cast A16061-30vol% SiC composites and their characterization, Materials & Design, Vol.27, (2006):216-222
    [4]M. Kok, Abrasive wear of A12O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method, Composites Part A, Vol.37, (2006):457-464
    [5]Naiqin Zhao, Philip Nash, Xianjin Yang, The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite, Journal of Materials Processing Technology, Vol.170, (2005):586-592
    [6]刘智雄,刘荣佩,张国强.颗粒增强铝基复合材料的研究与发展,昆明冶金高等专科学校轻学报.Vol.24(5),2008:5-10
    [7]才庆魁,贺春林,赵明久,毕敬,刘常升,亚微米SiC颗粒增强铝基复合材料的拉伸性能与强化机制,金属学报,2003,Vol.39(8):865-869
    [8]武高辉,赵永春,马森林,亚微米级Al203颗粒增强LD2铝合金复合材料的拉伸性能与强化机制,复合材料学报,1998,Vol.15(3):21-26
    [9]田晓风,肖伯律,樊建中,万志永,左涛,张维玉,纳米SiC颗粒增强2024铝基复合材料的力学性能研究,稀有金属,2005,Vol.29(4):521-525
    [10]余志恿,郝斌,崔华,周香林,张济山,纳米SiC颗粒增强铝基复合材料制备工艺进展,材料导报,2006 Vol20,206-208,218
    [11]侯丽丽,尹志新,樊新波.铝基复合材料的研究现状及发展.热处理技术.2008Vol.37(10):84-88
    [12]郝斌,崔华,余志恿,罗海荣,纳米SiC颗粒增强铝基复合材料制备工艺研究,材料工程,2006,增刊1,489-491
    [13]柏振海,SiCp/6061Al复合材料弹性模量、内耗及加工制备的研究[C],中南大学,2006年3月
    [14]王文明,SiCp/6061A1铝基复合材料工艺优化及弹性模量的数值模拟[C],重庆大学,2006年11月
    [15]刘向东,王莹,Ce及Mg对SiCp/Al复合材料界面湿润性的影响,铸造技术,2004,Vol.25:58-60
    [16]B. Revzin, D. Fuks, J. Pelleg, Influence of alloying on the solubility of carbon fibers in aluminium-based composites:Non-empirical approach, Composites Science and Technology, Vol.56,(1996):3-10
    [16]陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究现状[J].兵器材料科 学与工程,vol.22(4)(1999):53-58
    [17]徐金城,邓小燕,张成良,田亮亮.碳化硅增强铝基复合材料界面改善对力学性能的影响.材料导报,2009,Vol.23(1):25-27
    [18]李云平,涂覆颗粒增强耐热铝基复合材料的性能[J],中南工业大学学报,2001,32(6):612-616
    [19]艾利君颗粒增强Al基复合材料的研究[C],兰州大学,2007年5月
    [20]Mingyuan Gu, Yanping Jin, Zhi Mei, Zengan Wu, Renjie Wu, Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites, Materials Science and Engineering A, Vol. 252, (1998):188-198
    [21]A. Urena, E. E. Martinez, P. Rodrigo, L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Composites Science and Technology, Vol.64, (2004):1843-1854
    [22]王文明,潘复生,孙旭炜,曾苏民,等,SiCp/Al复合材料界面反应研究现状,重庆大学学报,2004,Vol.27(3):108-113
    [23]稀土表面改性Al203/6061Al复合材料组织与界面分析,稀有金属材料与工程,2004,Vol.33(2):183-186
    [24]亚微米Al203颗粒表面稀土改性与其对6061Al复合材料时效行为的影响,金属学报,2003,Vol.39(8):870-874
    [25]P. Bertrand, M.H. Vidal-Setif, R. Mevrel, The CVD of pyrolytic carbon and titanium diboride coatings on carbon fibre yarns for use in aluminium-based.composites, Surface and Coatings Technology, Vol.96,(1997):283-292
    [26]朱心昆,林实秋,陈铁力,等.机械合金化的研究及进展[J],粉末冶金技术,1999,17(4): 291-295
    [27]张先胜,冉广,机械合金化的反应机制研究进展,金属热处理,2003,Vol 28(6): 28-32
    [28]M. Sugamata, K. Shiina, M. Kubota, J. Kaneko, Properties of mechanically alloyed P/M composites of Al-Mg2Si-oxide systems, Journal of Alloys and Compounds, Vol. 483 (2009):350-354
    [29]肖伯律,左涛,张维玉,田晓风,樊建中,石力开,高能球磨制备15%SiC/2009Al复合材料的微观组织与断裂行为,稀有金属,2005,Vol 29(1):1-5
    [30]R. Sankar, Paramanand Singh, Synthesis of 7075 Al/SiC particulate composite powders by mechanical alloying, Materials Letters, Vol.36,(1998):201-205
    [31]J. B. Fogagnolo, F. Velasco, M. H. Robert, J. M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Materials Science and Engineering A, Vol.342,(2003):131-143
    [32]Naiqin Zhao, Philip Nash, Xianjin Yang, The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite, Journal of Materials Processing Technology, Vol.170,(2005):586-592
    [33]黄永攀,李道火,黄伟,纳米Al203p/6061铝基复合材料时效硬化特性的研究,热加工工艺,2004,No.8:13-14
    [34]G. Leisk, A. Saigal, Taguchi analysis of heat treatment variables on the mechanical behavior of alumina/aluminum metal matrix composites, Composites Engineering, Vol. 5,(1995):129-142
    [35]S. Szczepanik, T. Sleboda, The influence of the hot deformation and heat treatment on the properties of P/M Al-Cu composites, Journal of Materials Processing Technology, Vol.60, (1996):729-733
    [36]M. Gupta, S. Qin, L. W. Chin, Effect of particulate type on the microstructure and heat-treatment response of Al-Cu-based metal-matrix composites, Journal of Materials Processing Technology, Vol.65, (1997):245-251
    [37]Soon-Jik Hong, Hong-Moule Kim, Dae Huh, C. Suryanarayana, Byong Sun Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Materials Science and Engineering A, Vol.347, (2003):198-204
    [38]D.P. Mondal, S. Das, K.S. Suresh, N. Ramakrishnan, Compressive deformation behaviour of coarse SiC particle reinforced composite:Effect of age-hardening and SiC content, Materials Science and Engineering:A, Vol.460-461, (2007):550-560
    [39]J. H. Shyong, B. Derby, The deformation characteristics of SiC particulate-reinforced aluminium alloy 6061, Materials Science and Engineering A, Vol.197, (1995): 11-18
    [40]Shuqi Guo, Yutaka Kagawa, Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties, Journal of the European Ceramic Society, Vol.22, (2002): 2349-2356
    [41]Min Song, Yue-hui He, Effects of die-pressing pressure and extrusion on the microstructures and mechanical properties of SiC reinforced pure aluminum composites, Materials & Design, Vol.31, (2010):985-989
    [42]Y. Sahin, Preparation and some properties of SiC particle reinforced aluminium alloy composites, Materials & Design, Vol.24, (2003):671-679
    [43]I. Estrada-Guel, C. Carreno-Gallardo, D.C. Mendoza-Ruiz, M. Miki-Yoshida, E. Rocha-Rangel, R. Martinez-Sanchez, Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying, Journal of Alloys and Compounds, Vol.483, (2009):173-177
    [44]Joao B. Fogagnolo, Elisa M. Ruiz-Navas, Maria H. Robert, Jose M. Torralba, The effects of mechanical alloying on the compressibility of aluminium matrix composite powder, Materials Science and Engineering A, Vol.355, (2003):50-55
    [45]Shaoyang Zhang, Fuping Wang, Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles, Journal of Materials Processing Technology, Vol.182,(2007): 122-127
    [46]Yusuf Sahin, Abrasive wear behaviour of SiC/2014 aluminium composite, Tribology International, Vol.43,(2010):939-943
    [1]徐金城;邓小燕;夏龙;赵亮.炭纤维增强铜锡锌基复合材料的摩擦磨损性能研究摩擦学学报.Vol.25(6),2005:588-592
    [2]贺福,王茂章.碳纤维及其复合材料[M].科学出版社,1995
    [3]钏厉,韩西,周上祺,纤维增强铝基复合材料研究进展.2002,Vol.26,(12):12-14
    [4]H. Naji, S.M. Zebarjad, S.A. Sajjadi, The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites, Materials Science and Engineering:A, Vol.486, (2008):413-420
    [5]R. S. Bushby, V. D. Scott, Evaluation of aluminium-copper alloy reinforced with pitch-based carbon fibres, Composites Science and Technology, Vol.57,(1997):119-128
    [6]H. Naji, S.M. Zebarjad, S.A. Sajjadi, The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites, Materials Science and Engineering:A, Vol.486, (2008):413-420
    [7]Lei Liu, Weiwei Li, Yiping Tang, Bin Shen, Wenbin Hu, Friction and wear properties of short carbon fiber reinforced aluminum matrix composites, Wear, Vol. 266,(2009):733-738
    [8]L. H. Dai, Y. L. Bai, S.-W. R. Lee, Experimental Investigation of the Shear Strength of a Unidirectional Carbon/Aluminum Composite under Dynamic Torsional Loading, Composites Science and Technology, Vol.58,(1998):1667-1673
    [9]J. Hooker, P J Doorbar, Metal matrix composites for aeroengines, Materials Science and Technology,2000,16:725-731
    [10]杨永岗,贺福,王茂章,张碧江,碳纤维表面处理及其评价,材料研究学报,1996 Vol 10(5):460-466
    [11]M. Lancin, C. Marhic, TEM study of carbon fibre reinforced aluminium matrix composites:influence of brittle phases and interface on mechanical properties, Journal of the European Ceramic Society, Vol.20, (2000):1493-1503
    [12]S. Payan, Y. Le Petitcorps, J.-M. Olive, H. Saadaoui, Experimental procedure to analyse the corrosion mechanisms at the carbon/aluminium interface in composite materials, Composites Part A:Applied Science and Manufacturing, Vol.32, (2001): 585-589
    [13]J. Rams, A. Urena, M.D. Escalera, M. Sanchez, Electroless nickel coated short carbon fibres in aluminium matrix composites, Composites Part A:Applied Science and Manufacturing, Vol.38, (2007):566-575
    [14]A. Urena, J. Rams, M.D. Escalera, M. Sanchez, Effect of copper electroless coatings on the interaction between a molten Al-Si-Mg alloy and coated short carbon fibres, Composites Part A:Applied Science and Manufacturing, Vol.38,(2007): 1947-1956
    [15]B. Bhav Singh, M. Balasubramanian, Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites, Journal of Materials Processing Technology, Vol.209,(2009):2104-2110
    [16]陶宁,查正根,张良,凤仪,碳纤维表面电镀铜的研究,表面技术,2001,Vol 30(4):1,2,5
    [17]杨连威,刘振刚,姚广春,碳纤维镀铜的研究,材料科学与工艺。2005,Vol.13(6):620-622
    [18]王济国,碳纤维表面的化学镀铜,新型碳材料,1996,Vol.11(4):44-48
    [19]姜晓霞,《化学镀理论与实践》,国防工业出版社,2000,112-115
    [20]王晓华,短碳纤维增强铝基复合材料的制备及性能研究[C],兰州大学,2007年5月
    [21]王祝堂,田荣璋.铝合金及其加工手册.中南大学出版社2000
    [22]B. Bhav Singh, M. Balasubramanian, Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites, Journal of Materials Processing Technology, Vol.209 (2009):2104-2110
    [23]曾庆敦,复合材料的细观破坏机制与强度,科学出版社,2002
    [24]孙训方,方孝淑,关来泰,材料力学,高等教育出版社,1993(8):40-41
    [25]温诗铸,摩擦学原理[M],清华大学出版社,2008
    [26]黄平,摩擦学教程[M],高等教育出版社,2008
    [27]高彩桥,摩擦金属学[M].哈尔滨工业大学出版社,1990
    [28]K H哈比希著.材料的磨损与硬度[M].北京:机械工业出版社,1987.
    [29]徐金城,李晓龙,夏龙,等.短碳纤维增强铜基复合材料的制备及摩擦学性能的研究,兰州大学学报(自然科学版)Vol.40,(2004):29-32
    [30]翟秋亚,徐锦锋,Al203纤维增强铝基复合材料干滑动磨损机制的研究,摩擦学学报,2005,Vol.25(6):535-539
    [31]Eeliezer, Z., Friction and Wear of Metal-Matrix Graphite Fiber Composites, Comp. Mater. Sci.,1986(1),15
    [32]Lei Liu, Weiwei Li, Yiping Tang, Bin Shen, Wenbin Hu, Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear,2009, Vol.266:733-738
    [33]H. Chen, A.T. Alpas Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres Wear,1996, Vol.192:186-198
    [34]A. P. Sannino, H. J. Rack, Dry sliding wear of discontinuously reinforced aluminum composites:review and discussion. Wear,1995, Vol.189:1-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700