多像机视场拼接测量系统标定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
着陆是飞机飞行安全的一个关键环节,在降落过程中,飞机需要外测设备来辅助其安全着陆,而首要的就是要测量飞机的位置参数。基于视觉的测量方法近年来在航空航天及武器研制、试验中应用越来越多。由于飞机运动速度快、范围大,要求视觉测量设备的视场能够覆盖其运动空间,传统的双像机测量系统已经不能满足要求。对此,采用多摄像机通过视场拼接组成测量系统来完成整个运动场景的观测,实现对飞行降落全程测量,具有重要的应用价值。
     摄像机标定一直是计算机视觉中的一个重要课题,也是各种基于视觉测量的基础和关键步骤。本文对多摄像机测量系统的标定技术作了重点研究,提出采用预先标定同现场标定相结合的“两步”标定方法,实验证明本文方法正确有效,精度较高,满足测量要求。
     本文的主要工作有:
     1.研究多摄像机测量系统的结构特性,建立了视觉测量系统简易模型,并分析了影响视觉测量精度的因素,对视觉测量系统的结构布置具有一定指导意义。
     2.介绍了摄像机的聚焦和景深问题,研究了构成多像机视场拼接测量系统中的各像机的景深特性。
     3.重点研究了大视场远距离成像系统的标定技术,并利用本文的方法对单个像机进行了实验验证,同时还探讨了一种基于角度的摄像机标定方法,进行了仿真实验验证。
     4.推导了多个摄像机之间的位姿关系,提出建立参考像机坐标系的方法,在实验环境较好的情况下预先标定出各摄像机同参考像机的关系,然后在测量现场利用适量合作标志标定出参考像机的外参数,进而得到所有摄像机的外参数,有效克服了多像机现场标定的限制。
     5.根据测量系统中各个摄像机的物理参数特性,计算像机的视场范围,设计标定靶标和标定方案,利用前面研究的摄像机标定方法以及多像机位姿关系求解方法完成测量系统的标定工作,并进行现场测量验证,方法正确可行,精度满足要求。
Landing is a key link of flight safety, aircraft need exterior trajectory measurement equipment to assist it landing safely in the process of landing, and it is first to get the aircraft’s location parameter. Vision-based measurement method is more and more applied in aerospace, weapon development and test recently. Because of high speed and long range capabilities, the visual field of vision-based measurement equipment should cover the aircraft’s moving spaces, the traditional double CCD cameras system already can't meet the demands. Thus, use measuring system based on multiple camera by field stitching to observe the whole motion and measure the whole range of landing has important application value.
     Camera calibration is one of the important subject of Computer Vision, and it is also the basis and key step of kinds of vision-based measurement. This paper mainly studies calibration technology for multiple camera measuring system, a two step method combined with calibration in advance and in-situ is proposed. The experimental evidence obtained has shown that the method is correct and effective, which has high accuracy and satisfies the requirements of the measurement.
     The key work of the paper includes:
     1. The structural characteristics of multiple camera measuring system is researched, the model of vision-based measuring system is also build, and the accuracy influence factors are analyzed, which has some meaning for the structural arrangement of vision-based measuring system.
     2. Problem of camera focusing and depth of field is introduced, and characteristics of field depth of each camera which constitute the multiple camera measuring system is also researched.
     3. The dissertation mainly studies calibration technology for large field and long range imaging system, and give the experimental verification of single camera using suggested method. Also a camera calibration method based on angle is investigated and simulation experimental verification is given.
     4. Pose between cameras is derived in this paper, and reference camera coordinate system is established. The relationship between each camera and reference camera is calibrated in advance while the experimental environment is in a better situation, then the reference camera's external parameter is calibrated by proper cooperative markers in measuring field, furthermore all camera's external parameter is obtained, which effectively overcome the limitation of multiple cameras' calibration in field.
     5. According to each camera's physical parameters in measuring system, camera's field range is calculated, then calibration targets and calibration scheme are designed, and then the calibration work of measuring system is completed using the camera calibration method on the previous study and the solving method of multiple camera's relationship, the verification implementation in field proves that this method is feasible and meets request of precision.
引文
[1]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社, 2002.
    [2]何照才,胡保安.光学测量系统[M].北京:国防工业出版社, 2002.
    [3]王之卓.摄影测量学[M].北京:测绘出版社, 1982.
    [4]Wong KW. Mathematical foundation and digital analysis in dose-range photo grammetry[C]. 13th Congress of the hat Society for Photogrammetry. 1976: 1355-1373.
    [5]Ito M. Robot vision modelling-camera modelling and camera calibration[J]. Advanced robotics, 1991, 5(3): 321-335.
    [6]Penna M. A. Camera calibration: a quick and easy way to determine the scale factor[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(12):1240-1245.
    [7]Liu Y., Huang T. S., Faugeras O. D. Determination of Camera Location from 2-D to 3-D Line and Point Correspondences[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1):28-37.
    [8]Wang C. C. Extrinsic calibration of a vision sensor mounted on a robot[C]. IEEE Transactions on Robotics and Automation, 1992, 8(2):161-175.
    [9]Hall E. L., Tio J. B. K., McPherson C. A., et al. Measuring Curved Surfaces for Robot Vision[J]. Computer,1982, 15(12):42-54.
    [10]Batista J, Araujo H, de Almeida A T. Iterative Multistep Explicit Camera Calibration[C]. IEEE Transactions On Robotics And Automation, 1999, 15(5):897.
    [11]Wei G. Q., De Ma S. Implicit and explicit camera calibration: theory and experiments[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5):469-480.
    [12]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报, 2000, 26(11): 43-55.
    [13]马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京:科学出版社, 1997.
    [14]Faig W. Calibration of close-range photogrammerty systems: mathematical formation[J]. Photogramm. Eng. Remote Seris, 1975, 41(12): 1479-1486.
    [15]B.Hallert. Notes on calibration of cameras and photographs in photogram metry[J].Photogrametria, 1968(23): 163-178.
    [16]Y. I. Abdel-Aziz, H. M. Karara. Direct linear transformation into object space coordinates in close-range photogrammetry[C]. Urbana: Proceeding Symp Close-Range Photogrammetry, 1971: 1-18.
    [17]Tsai R. An efficient and accurate camera calibration technique for 3D machine vision[C]. Proceedings of Computer Vision and Pattern Recognition, 1986, 364-374.
    [18]Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation[J]. IEEE Transactions on Pattern Analysis And Machine Intelligence, 1992, 14(10): 965-980.
    [19]Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations[C]. Proceedings of the 7th International Conference on Computer Vision. Greece Corfu , 1999. 666-673.
    [20]Hartley R. I. Estimation of relative camera positions for uncalibrated cameras[C]. 1992,579-587.
    [21]Faugeras O. D, Maybank S. Motion from point matches: multiplicity of soluti ons[J]. International Journal of Computer Vision,1990, 4(3):225-246.
    [22]Maybank S. J., Faugeras O. D. A theory of self-calibration of a moving cam era[J]. International Journal of Computer Vision,1992, 8(2):123-151.
    [23]S. D. Ma. A self-calibration technique for active vision system[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 114-120.
    [24]吴福朝,于洪川,袁波等.摄像机内参数自标定.理论与算法[J].自动化学报, 1999, 11, 11(6): 769-775.
    [25]杨长江,孙风梅,胡占义.基于平面二次曲线的摄像机标定[J].计算机学报,2000. 5, 23(5): 541-547.
    [26]杨长江,孙凤梅,胡占义.基于二次曲线的纯旋转摄像机自标定.自动化学报, 2001. 5, 27(3): 310-317.
    [27]李华,吴福朝,胡占义.一种新的线性摄像机自标定方法[J].计算机学报,2000. 11, 23(11):1121-1129.
    [28]张广军.机器视觉[M].北京:科学出版社, 2005.
    [29]Z. Y Zhang. A Flexible New Technique for Camera Calibration[J]. IEEE Tram on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
    [30]Z. Y Zhang. Camera Calibration With One-Dimensional Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7):892-899.
    [31]I. Kitahara, H. Saito, S. Akimichi, T. Onno, Y. Ohta, T. Kanade. Large-scale virtualized reality[A]. Proc. of IEEE. Computer Society Conference onComputer Vision and Pattern Recognition[C], Technical Sketches, June 2001.
    [32]L. Lee, R. Romano, G Stein. Monitoring activities from multiple video streams: establishing a colnnlon coordinate frame[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2000: 22: 758-767.
    [33]刘震,张广军,魏振忠.一维靶标的多视觉传感器全局校准[J].光学精密工程, 2008, 16(11): 2274-2280.
    [34]王亮,吴福朝.基于一维标定物的多摄像机标定[J].自动化学报, 2007, 33(3): 225-231.
    [35]张灵飞,陈刚,叶东,车仁生.用自由移动的刚性球杆校准多摄像机内外参数[J].光学精密工程, 2009, 17(8):1943-1946.
    [36]何昕,魏仲慧,郝志航.基于单心球面系统的九块面阵CCD数字拼接[J].光学精密工程, 2003, 11(4): 421-424.
    [37]李朝辉,王肇勋,武克用.空间相机CCD焦平面的光学拼接[J].光学精密工程, 2000, 8(3): 213-216.
    [38]刘罡,高晓东,曹学东.大视场光电测量系统实时测量精度的综合标定[J].光电工程, 2001, 28(6): 10-13.
    [39]兰海滨,王平,龙腾.图像拼接中相机镜头非线性畸变的校正[J].光学精密工程, 2009, 17(5): 1196-1202.
    [40]张广军.视觉测量[M].科学出版社.
    [41]原育凯.光学系统的自动调焦方法[J].红外, 2004(7), 15-21.
    [42]马敢干.基于光测的飞机着陆引导方法研究与实现[D].国防科学技术大学硕士学位论文. 2007.
    [43]邹艺方.王艳平.摄像机景深及其运用[J].影像技术. 2008(3).
    [44]林家明.面阵CCD摄像机光学镜头参数及其相互关系[J]光学技术. 2000.26(2): 1-5.
    [45]杨金峰.大视场单摄像机立体视觉测量技术研究[D].天津大学硕士学位论文. 2007.
    [46] Pappa R S, Ciersch L R, Jessica M Q. Photogrammetry of a 5m inflatable space antenna with consumer digital cameras[R]. 2000, NASA/TM-2000-210627.
    [47]徐巧玉,姚怀,车仁生.立体视觉测量系统现场校准技术[J].光学学报,2009,29(6):1546-1551.
    [48]孙军华,吴子彦,刘谦哲等.大视场双目视觉传感器的现场标定[J].光学精密工程, 2009,17(3):633-640.
    [49]李为民,孟昊,王建平等.单场景摄像机的大视场标定[J].中国科学技术大学学报, 2007, 37(6): 627-630.
    [50]全厚德,王建华,赵波.大视场远距离摄像机外部参数标定算法研究[J].电光与控制, 2009, 16(11): 38-40.
    [51]姜大志,郁倩,王冰洋等.计算机视觉成像的非线性畸变研究与综述[J].计算机工程, 2001, 27(12): 108-110.
    [52]Tsai R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3(4): 323-344.
    [53]O. D. Faugeras , G. Toseani. Camera calibration for 3D computer vision[C]. Pro of Intemational workshop on industrial application of machine vision and machine intelligence, Japan, 1987:240-247.
    [54]周国清.论CCD相机标定的内外因素畸变模型与信噪比[J].电子学报, 1996(11).
    [55]吴福朝.计算机视觉中的数学方法[M].
    [56]M. A. Fishler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[C]. Communications of the ACM, 1981, 24(6): 381-395.
    [57]于起峰,尚洋.摄像测量学原理与应用研究[M].科学出版社. 2009.
    [58]Y. Shang, Y. Li, Y. He, W. Wang, Q. Yu. Simplification of Camera Models without Loss of Precision[C]. SPIE Fifth International Symposium on Multispectral Image Processing and Pattern Recognition, 2007.
    [59]James Samuel Goddard,Pose and Motion Estimation From Vision Using Dual Quaternion-Based Extended Kalman Filtering, Ph. D. Dissertation, The University of Tennessee, Knoxville, Oet.1997.
    [60]Stefan Winkler, Modcl-Based Pose Estimation of 3-D Objects from Camera Image Using Neural Networks, M.S.Thesis, University of Technology in Vienna,Austria,July 1996.
    [61]钟玉琢,机器人视觉技术[M],国防工业出版社, 1994.
    [62]Yuan J S C, A general photogrammetric method for determining object position and orientation[C], IEEE Transactions on Robotics and Automation, 1989, 5(2):129-142.
    [63]Schweighofer G; Pinz. A robust pose estimation from a planar target[J] 2006(12). [ 64 ]Clipp B, Jaehak K, Frahm J M. Robust 6DOF motion estimation for non-overlapping multi-camera systems[J]. 2008.
    [65]Zhang Chao, LI. Dong-xiao, Zhang Ming. Multi-camera calibration based on iterative factorization of measurement matrix[J]. 2009.
    [66]Aric D, Lyutskanov A, Rigoll G. Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework[J] 2009.
    [67]T.Q.Phong, R.Horaud, A.Yassine, et al. Object pose from 2-D to 3-D point and line correspondences [J]. International Journal of Computer Vision, 1999, 15(3): 225-243.
    [68]Zhi guang. Zhong, Jian qiang Yi, Dong bin Zhao. Pose Estimation and Structure Recovery form Points Pairs [A]. In.Proceedings of the 2005 IEEE International Conference on Robotics and Automation [C]. Barcelona, Spain, 2005.
    [69]L. Lucchese. Closed-form pose estimation from metric rectification of coplanar points [A]. In.IEE Proc.-Vis. Image Signal Process [C]. 2006. 364-378.
    [70]Adnan Ansar, Kostas Danilidis. Linear pose estimation from points or lines [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2003, 25(5): 578-589.
    [71]Long Quan,Zhongdanlan. Linear n-point camera pose determination [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 1999, 21(8): 774-780. [ 72 ]Paul D.Flore. Efficient linear solution of exterior orientation [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2001, 23(2): 140-148.
    [73]钟志光,易建强,赵冬斌.一种基于点对的深度和运动估计方法[J].机器人, 2005, 27(2).
    [74]Omar Tahri, Francois Chaumette. Complex objects pose estimation based on image moment invariants [A]. In. Proceedings of the 2005 IEEE International Conference on Robotics and Automation [C]. Barcelona, Spain, 2005. 436-441.
    [75]Gerald Schweighofer, Axel Pinz. Robust Pose Estimation from a Plannar Target [J]. IEEE Tranctions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2024-2030.
    [76]Chien-Ping Lu, Gregory D.Hager,Eric Mjolsness. Fast and globally convergent pose estimation from video images [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2000, 22(6): 610-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700