微波辅助的功能糖复合物的合成;三氮唑糖配基水溶性荧光探针的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖类是生物体内的三大营养物质之一,参与了生命中新陈代谢的诸多环节。近年来,许多与糖相关的交叉学科如糖化学(Carbohydrate Chemistry)、n糖生物学(Glycobiology)、糖免疫学、糖组学等均得到了迅速发展。联用化学和生物学的方法、手段研究糖的结构与功能、糖与生物分子间的相互作用,探明糖类物质在生命过程中发挥作用的机制,进而以糖分子为“载体”或“探针”,将对生命过程的调控发挥重大作用。本文主要基于单糖在糖骨架药物及糖分子探针两个方面的应用对其进行拓展探究,按学术内容分为两个章节:
     第一章节蛋白酪氨酸磷酸酯酶(PTP)是一类信号传导调节酶,通过调节细胞内的酪氨酸磷酸化水平来控制细胞的成长、分化和代谢,其调节紊乱可导致多种疾病的发生,如糖尿病、肥胖症、癌症和骨质疏松症等。PTP1B和CDC25B是PTP家族的重要成员,已经成为了Ⅱ型糖尿病、肥胖症及恶性肿瘤潜在的治疗靶点。发展具有高催化活性、高生物利用度和高选择性的小分子抑制剂,近年来已成为一种良好的药物研发策略。
     本章在单糖这一核心骨架基础上,结合模块化、专一性的点击化学(铜催化的叠氮与炔1,3-偶极环加成反应),并引入微波辅助合成手段成功构建了两个系列三氮唑连接的功能糖复合物,对部分目标化合物进行了PTP族多种酶靶点的生物活性筛选,得到了一系列活性数据,并对部分化合物进行计算机辅助docking对接模拟,根据得到的构效关系信息,提出了合理的活性分析,为后续的研究和结构修饰提供了一定的参考价值:
     1、将C1-炔基化的苄基糖和叠氮化的天然氨基酸经点击化学构建第一系列糖氨基酸系列衍生物。所合成的三氮唑糖基氨基酸衍生物均具有微摩尔级别的PTP1B和CDC25B抑制活性,并显示了一定的同源PTP选择性。化合物27对于PTP1B的抑制效果最佳(IC50=5.1μM),而28则显示了更好的CDC25B抑制活性(ICso=3.9μM)。其中16个化合物未见文献报道。
     2、将C1-炔基化的五乙酰基糖和叠氮化的极性(羟基)苯甲酸衍生物经点击化学构建了第二系列糖水杨酸系列衍生物。化合物41对于PTP1B的IC50值为36.6μM,显示了比其余同源PTP至少4倍的抑制活性(IC50>160μM)。而化合物51(50.5μM,98.4%抑制率)也对其C-4位差向异构体54(35.3%抑制率)显示了良好的选择性。其中21个化合物未见文献报道。
     第二章节荧光探针技术在重金属离子、有毒有害气体及有机化学污染物的检测方面具有广泛的应用,并越来越多的应用于水环境及生物体内的离子和小分子探测。糖类以其独特的立体结构、灵活的可修饰性、良好的生物利用度和强大的水溶性成为了研究者在构建水溶性或生物性荧光探针分子时经常用到的结构骨架。
     本章利用单糖这一核心骨架,将C2,3-或4,6-双炔基化的1-甲氧基葡萄糖、半乳糖和甘露糖与荧光淬灭的3-叠氮香豆素衍生物经由微波辅助的双点击化学以较高的反应转化率和收率构建了一系列荧光恢复的双齿型糖三氮唑香豆素复合物。随后将脱去糖环苄基保护的具良好水溶性的化合物84、85在纯水中做了初步的紫外和荧光检测,得到了一些有意义的结果,为后续的深入光学测试提供了一定的数据基础,期待将其用于水环境中的选择性离子探测;同时设计了基于半乳糖的环氨氧基肽模拟物荧光探针分子,得到了一些初步的结果。其中18个化合物未见文献报道。
Carbohydrate is one of the three nutriments in organism attending many parts of metabolism. Recently, varieties of interdisciplines related with carbohydrate have being rapidly developed including glycochemistry, glycobiology, glycoimmunology and glycomics. It would be critical for regulation in life process to use carbohydrate molecules as carrier or probe through studying structure and function of carbohydrate and molecular interactions combining chemical approaches and biological approaches and proving up the mechanism of carbohydrate in life process, and then,. This thesis is based on exploring of application of monosaccharide on both of drugs of carbohydrate as skeleton and sugar probe, it could be divided into two parts:
     Part1
     Protein Tyrosine Phosphatase (PTP) is an important regulator of signal transduction which control growth, differentiation and metabolism of cells by regulating tyrosine phosphorylation level. Varieties of diseases including diabets, obesity, cancer and osteoporosis may happen because of improper regulating. PTP1B and CDC25B are two important members in PTP family who have been potential therapeutic targets of type2diabets, obesity and cancer. Development of smaller molecular inhibitors with high catalytic activity, higher bioavailability and high selectivity has been positive strategy of drug discovery.
     In this part, two series of compounds of triazole-linked functional glycosyl have been constructed on the basis of monosaccharide as skeleton combining with both modularized specific'Click'(Cu-catalyzed cycloaddition reactions between azides and alkynes) and microwave-assisted synthesis, a set of activity data obtained by selecting bioactivity of enzyme targets in PTP family of some target compound and reasonable activity analysis resulting from structure-activity relationship gained through computer-assisted docking all contributing to reference of following research and structural modification:
     1. The1st series of glycosyl amino acid derivatives were generated by'click'chemistry between C1-propargyl benzyl sugar and azido natural amino acid. The synthesized glycosyl triazoloamino acid derivatives all have inhibition activity of PTP IB and CDC25B with micro-mole level and show specified selectivity of homologous PTP.27has the best PTP1B inhibitory effect (IC50=5.1μM),while28shows better CDC25B inhibitory effect (IC50= 3.9μM).16compounds among them have not yet been reported in the literature so far.
     2. The2nd series of glycosyl salicylic acid derivatives was generated by'click'reactions between C1-propargyl acetyl sugar and azido polar(hydroxy)benzoates. IC50value to PTP1B of41was36.6μM demonstrating4-time inhibitory activity of other homologous PTP(IC50>160μM).51(50.5μM,98.4%inhibition rate) shows better selectivity comparing with it's epimer54(35.3%inhibition rate).21compounds among them have not yet been reported in the literature.
     Part2
     Fluorescence probe technique is widely used in detecting heavy metal ions, toxic gases and organic contaminants and is applied in detecting aquatic environmental, iron and smaller molecules in creatures more and more. Carbohydrate has been usually used as structural skeleton when generating water-soluble and biological fluorescence probe molecule because of it's unique stereochemical structure, flexible bioavailability and strong water solubility.
     In this part, monosaccharide was used as key skeleton to synthesize a series of fluorescent recovering bis-triazolocoumarin glycosyl conjugates by microwave-assisted dual click chemistry between C2,3-or4,6-bis-propargyl1-methoxy glucose, galactose and mannose with fluorescence quenched3-azido coumarin derivative with high conversion and yield. Then, benzyl dropped84and85which have good water-solubility were initially tested by UV and fluorescence in pure water resulting in some significative conclusions providing basic data for further optical test, and it would be used to detect ion-selecting in aquatic environmental; on the other side, galactose-based aminoxy peptide analog fluorescence probe molecule was successfully designed and some preliminary results were presented.16compounds among them have not yet been reported in the literature.
引文
[1]滕业方.微波技术在化学领域中的应用及其机理探讨.广西羟工业.2007.5.5.
    [2]Nadege Ferlin, Laetitia Duchet, Jose Kovensky, Eric Grand. Microwave-assisted synthesis of long-chain alkyl glucopyranosides. Carbohydrate Research.2008,343(16), 2819-2821.
    [3]Guisheng Zhang, Qingfeng Liu, Lei Shi, Jiuxia Wang. Ferric sulfate hydrate-catalyzed O-glycosylation using glycols with or without microwave irradiation. Tetrahedron. 2008,64,339-344.
    [4]Y. Lakhrissi, C. Taillefumier, M. Lakhrissi and Y. Chapleur. Efficient conditions for the synthesis of C-glycosylidene derivatives:a direct and stereoselective route to C-glycosyl compounds. Tetrahedron:Asymmetry.2000,11,417-421.
    [5]Hui-Chang Lin, Chih-Chun Chang, Jia-Yi Chena and Chun-Hung Lina*. Stereoselective glycosylation of exo-glycals by microwave-assisted Ferrier rearrangement. Tetrahedron:Asymmetry.2005,16,297-301.
    [6]Hartmuth, C. K.; M. G. Finn, Sharpless, K. B. Click chemistry:diverse chemical function from a few good reactions [J]. Angew. Chem. Int. Ed.2001,40(11), 2004-2021.
    [7]Saxon E, Bertozzi C R. Cell surface engineering by a modi-fled staudingerreaction. Science.2000.287(5460),2007-2010.
    [8]Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective "ligation" of azides and terminal alkynes [J]. Angew. Chem. Int. Ed.2002,41(14),2596-2599.
    [9](a) Fan, W.-Q. Katritzky, A. R. in Comprehensive heterocyclic chemistry Ⅱ, vol.4 (Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.), Pergamon, Oxford,1996, pp.101-126. (b) R. N. Butler, in Comprehensive heterocyclic chemistry Ⅱ, vol.4 (Eds.:Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.), Pergamon, Oxford,1996, pp.621-678.
    [10](a) Sustmann, R. Simple model for substituent effects in cycloaddition reactions. I.1,3-Dipolar cycloadditions. Tetrahedron Tett.1971,29,2717-20; (b) Brase, S., Gil, C., Knepper, K., and Zimmermann, V., Organic Azides:An Exploding Diversity of a Unique Class of Compounds Angew. Chem. Int. Ed.2005,44(33),5188-5240.
    [11]Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides [J]. J. Org. Chem.2002,67(9):3057-3064.
    [12](a) Himo, F., Lovell, T., Hilgraf, R, Rostovtsev, V. V., Noodleman, L., Sharpless, K. B., Fokin, V. V. Copper(Ⅰ)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc.2005,127(1),210-216; (b) Bock, V. D., Hiemstra, H., van Maarseveen, J. H., Cul-Catalyzed Alkyne-Azide "Click" Cycloadditions from a Mechanistic Perspective Eur. J. Org. Chem.2006, 51-68.
    [13](a) Kolb, H. C, Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003, 8(24),1128-1136; (b) Roper, S., Kolb, H. C. Click Chemistry for Drug Discovery. In Fragment-based Approaches in Drug Discovery. Jahnke, W., Erlanson, D. A. Eds. Wiley-VCH Verlag Gmbh & Co. KGaA, weinheim, Germany,2006, pp.313-339.
    [14]Weber, L. In vitro combinatorial chemistry to create drug candidates. Drug Disc. Today 2004,1(3),261-267.
    [15](a) Oh, K., Guan, Z. A convergent synthesis of new [3-turn mimics by click chemistry. Chem. Commun.2006,29,3069-3071; (b) Home, W. S., Yadav, M. K., Stout, C. D., Ghadiri, M. R. Heterrocyclic Peptide Backbone Modifications in an r-Helical Coiled Coil. J. Am. Chem. Soc.2004.126(47).15366-15367.
    [16]Guest editors Professors M.G. Finn and Valery Fokin. Applications of click chemistry themed issue. Chem. Soc. Rev.,2010,39,1233-1405
    [17](a) C. O. Kappe, Chem. Soc. Rev.,2008,37,1127; (b) C. O. Kappe and D. Dallinger, Mol. Diversity,2009,13,71, and references therein; S. Caddick and R. Fitzmaurice, Tetrahedron,2009,65,3325, and references therein; P. Appukkuttan and E. Van der Eycken, Eur. J. Org. Chem.,2008,1133, and references therein.
    [18]J. Lietard, A. Meyer, J.-J. Vasseur and F. Morvan, J. Org. Chem.,2008,73,191.
    [19]M. Munteanu, S. Choi and H. Ritter, Macromolecules,2008,41,9619.
    [20]L. K. Rasmussen, B. C. Boren and V. V. Fokin, Org. Lett.,2007,9,5337.
    [21]P. Appukkuttan, W. Dehaen, V. V. Fokin and E. Van der Eycken, Org. Lett.,2004,6, 4223.
    [22]H. S. G. Beckmann and V. Wittmann, Org. Lett.,2007,9,1.
    [23]I. Dijkgraaf, A. Y. Rijnders, A. Soede, A. C. Dechesne, G. W. van Esse, A. J. Brouwer, F. H. M. Corstens, O. C. Boerman, D. T. S. Rijkers and R. M. J. Liskamp, Org. Biomol. Chem.,2007,5,935.
    [24]N. G. Angelo and P. S. Arora, J. Org. Chem.,2007,72,7963.
    [25]M. Munteanu, S. Choi and H. Ritter, Macromolecules,2008,41,9619.
    [26]I. Mallard-Favier, P. Blach, F. Cazier and F. Delattre, Carbohydr. Res.,2009,344,161.
    [27]R. Hoogenboom, B. C.Moore and U. S. Schubert, Chem. Commun.,2006,4010.
    [28]Camille Bouillon, Albert Meyer, Se'bastien Vidal,Anne Jochum, Yann Chevolot, Jean-Pierre Cloarec,Jean-Pierre Praly,Jean-Jacques Vasseur, and Francuois Morvan*. Microwave Assisted "Click" Chemistry for the Synthesis of Multiple Labeled-Carbohydrate Oligonucleotides on Solid Support. J. Org. Chem.2006,71, 4700-4702.
    [29]U. Pradere, V. Roy, T. R. McBrayer, R. F. Schinazi and L. A. Agrofoglio, Tetrahedron, 2008,64,9044.
    [30]Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome[J]. Cell,2004,117(6),699-711.
    [31](a) Almo, S. C. et al. Structural genomics of protein phosphatases [J]. J. Struct. Funct. Genomics 2007,8(2-3),121-140. (b) Zhang, Z.-Y. Protein tyrosine phosphatases: prospects for therapeutics [J]. Curr. Opin. Chem. Biol.2001,5(4),416-423.
    [32]White M F, Kahn C R. The insulin signaling system. J. Biol. Chem,1996,269(1),1-4.
    [33]Ottana, R.; Maccari, R.5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors [J]. Bioorg. Med. Chem.2009,17,1928-1937.
    [34]Sheng Zhang, Zhong YZ. PTP1B as a drug target:recent developments in PTP1B inhibitor discovery. Drug Discovery Today,2007,12,9-10.
    [35]Van Huijsduijnen R H, Bombm A. Swinnen D, etal. Selecting protein tyrosine phosphatases as drug targets. Drug Discov Today,2002,7(19),1013-1019.
    [36](a) Elchebly et al. Science,1999,83,1544-1548; Klaman et al. Mol Cell Biol,2000,20, 5479-89.
    [37]Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo [J]. Dev. Cell 2002,2(4),489-495.
    [38]Barford, D.; Flint, A. J.; Tonks, N. K. Crystal structure of human protein tyrosine phosphatase 1B [J]. Science 1994,263(5152),1397-1404.
    [39](a) Barford, D.; Flint, A. J.; Tonks, N. K. Crystal structure of human protein tyrosine phosphatase 1B [J]. Science 1994,263(5152),1397-1404. (b) Combs, A. P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity and cancer [J]. J. Med. Chem.2010,53(6), 2333-2344.
    [40]Zhang, Z.-Y. Protein tyrosine phosphatases:structure and function, substrate specificity, and inhibitor development [J]. Annu. Rev. Pharmacol. Toxicol.2002,42,209-234.
    [41]Y. A. Puius, Y. Zhao, M. Sullivan, D. S. Lawrence, S. C. Almo, Z.-Y. Zhang. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B:A paradigm for inhibitor design. Proc. Natl. Acad. Sci.1997,94,13420-13425.
    [42]Liu, G.; et al. Selective protein tyrosine phosphatase 1B inhibitors:targeting the second phospho tyro sine binding site with non-carboxylic acid-containing ligands [J]:J. Med. Chem.2003,46(16),3437-3440.
    [43]Shrestha S, Bhattarai BR, Chang KJ et al. Methylenedisalicylic acid derivatives:new PTP1 B inhibitors that confer resistance to dietinduced obesity [J]. Bioorg Med Chem Lett,2007,17(10),2760-2764.
    [44]Van Zandt, M. C. Preparation of pyridinyl biphenyl derivatives useful in the treatment of metabolic disorders related to insulin resistance, leptin resistance, or hyperglycemia. PCT Int, Appl. QO 2008033455,2008; 221 pp (The Institutes for Pharmaceutical Discovery, LLC).
    [45]Wiesmann, C.; et al. Allosteric inhibition of protein tyrosine phosphatase 1B [J]. Nat. Struct. Mol. Biol.2004,11(8),730-737.
    [46]Liu, S.; et al. Targeting inactive enzyme conformation:aryl diketoacid derivatives as a new class of PTP1B inhibitors [J]. J. Am. Chem. Soc.2008,130(50),17075-17084.
    [47]Galaktionov, K.; Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins:evidence for multiple roles of mitotic cyclins [J]. Cell 1991,167, 1181-1194.
    [48]Lavecchia, A.; Giovanni, C. D.; Novellino, E. Inhibitors of cdc25 phosphatases as anticancer agents:a patent review [J]. Expert. Opin. Ther. Patents 2010,20(3), 405-425.
    [49]CHENG Jing. FU Qiang. WU Gang. Progress of research on CDC25B in cancer. Chin J Cancer Prev Treat,2007,14 (11),872-875.
    [50]Lavecchia, A.; Giovanni, C. D.; Novellino, E. Inhibitors of cdc25 phosphatases as anticancer agents:a patent review [J]. Expert. Opin. Ther. Patents 2010,20(3), 405-425.
    [51]Rudolph, J. Targeting the neighbor's pool [J]. Mol. Pharmacol.2004,66,780-782.
    [52]Wells, J. A.; et al. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces [J]. Nature 2007,450(7172),1001-1009.
    [53]Sohn, J.; et al. Remote hot spots mediate protein substrate recognition for the Cdc25 phosphatase [J]. Proc. Natl. Acad. Sci. U. S. A.2004,101(47),16437-16441.
    [54]Garuti, L.; et al. Synthetic small molecule Cdc25 phosphatases inhibitors [J]. Curr. Med. Chem.2008,15,573-580.
    [55]Brohm, D.; et al. Natural products are biologically validated starting points in structural space for compound library development:solid-phase synthesis of dysidiolide-derived phosphatase [J].Angew. Chem. Int. Ed. Engl.2002,41(2):307-311.
    [56]HAM S W, PARK J, LEE S J, et al. Naphthoquinone analogs as inactivators of Cdc25 phosphatase[J]. Bioorg Med Chem Lett,1998,8(18),2507-2510.
    [57](a) Lazo, J. S.; et al. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors [J]. Mol. Pharmacol.2002,61(4),720-728. (b) Lazo J S, Aslan D C, Southwick E C, et al. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase CDC25[J]. J Med Chem,2001,44(24),4042-4049.
    [58]Sodeoka M, Sampe R, Kojima S, et al. Synthesis of a tetronic acid library focused on inhibitors of tyrosine and dual specificity protein phosphatases and its evaluation regarding VHR andCDC25B inhibition[J]. Med Chem,2001,44(20),3216-3222.
    [59]Guo J, Kleeff J, Li J, et al. Expression and functional significance of CDC25B in human pancreatic ductal adenocarcinoma[J]. Oncogene,2004,23(1),71-81.
    [60]Vintonyak, V. V.; Antonchick, A. P.; Rauh, D.; Waldmann, H. The therapeutic potential of phosphatase inhibitors [J]. Curr. Opin. Chem. Biol.2009,13,272-283.
    [61]Y. A. Puius, Y. Zhao, M. Sullivan, D. S. Lawrence, S. C. Almo, Z.-Y. Zhang. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase IB:A paradigm for inhibitor design. Proc. Natl. Acad. Sci.1997,94,13420-13425.
    [62]Li Lin, Qiang Shen, Guo-Rong Chen, Juan Xie. Synthesis of triazole-linked β-C-glycosyl dimers as inhibitors of PTP1B. Bioorganic & Medicinal Chemistry.2008, 16,9757-9763.
    [63]Kuijpers, B. H. M.; et al. Expedient synthesis of triazole-linked glycosyl amino acids and peptides [J]. Org. Lett.2004,5(17),3123-3126.
    [64]Dondoni, A., et al. Assembling heterocycle-tethered C-glycosyl and a-amino acid residues via 1,3-dipolar cycloaddition reactions [J]. Org. Lett.2004,6(17),2929-2932.
    [65]Mereyal, H. B.; et al. Study of metal and acid catalysed deprotection of propargyl ethers of alcohols via their allenyl ethers [J]. Tetrahedron.1999,55(37),11331-11342.
    [66]Ke Jiang, Dongmei Fan, et al. Medicinal Surface Modification of Silicon Nanowires: Impact on Calcification and Stromal Cell Proliferation [J]. ACS pplied Materials & Interfaces,2009,1(2),266-269.
    [67]Goddard-Borger, E. D.; Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent:imidazole-1-sulfonyl azide hydrochloride [J]. Org. Lett.2007, 9(19),3797-3800.
    [68]Shrestha, S.; et al. Mono-and disalicylic acid derivatives:PTP1B inhibitors as potential anti-obesity drugs [J]. Bioorg. Med. Chem.2007,15(20),6535-6548.
    [69]Seo, C.; et al. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060 [J]. Bioorg. Med. Chem. Lett. 2009,19(21),6095-6097.
    [70]Changon Seo, Jae Hak Sohn; et al. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorganic & Medicinal Chemistry Letters.2009,19,6095-6097.
    [71]Ke Jiang.; et al. Medicinal Surface Modification of Silicon Nanowires:Impact on Calcification and Stromal Cell Proliferation [J]. Applied Materials & Interfaces,2009, 1(2),266-269.
    [72]Goddard-Borger, E. D.; Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent:imidazole-1-sulfonyl azide hydrochloride [J]. Org. Lett.2007, 9(19),3797-3800.
    [73]Zhang, W.; et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake [J]. Biochim. Biophys. Acta 2006,1760,1505-1512.
    [74]Shi, L.; et al. Discovery of a novel competitive inhibitor of PTP1B by high-throughput screening [J]. Acta Pharmacol. Sin.2008,29(2),278-284.
    [75]Adinolfi Matteo, Iadonisi Alfonso, Schiattarella Marialuisa. An approach to the highly stereocontrolled synthesis of □-glycosides. Compatible use of the very acid labile dimethoxytrityl protecting group with Yb (OTf) 3-promoted glycosidation. Tetrahedron Letters.2003,44(34),6479-6482.
    [76]Belot Frederic, Costachel Corina, Wright Karen, Phalipon Armelle, Mulard Laurence A. Synthesis of the methyl glycoside of a branched octasaccharide fragment specific for the Shigella flexneri serotype 2a O-antigen. Tetrahedron Letters.2002,43(46), 8215-8218.
    [77]Appukkuttan, P.; et al. A microwave-assisted click chemistry synthesis of 1, 4-disubstituted 1,2,3-triazoles via a copper(Ⅰ)catalyzed three-component reaction [J]. Org. Lett.2004,6(23),4223-4225.
    [78]Khanetskyy, B.; et al. Combining Biginelli multicomponent and click chemistry: generation of 6-(1,2,3-triazol-1-yl)-dihydropyrimidone libraries [J]. J. Comb. Chem. 2004, 6(6),884-892.
    [79]Mindt, T. L.; Schibli, R. Cu(Ⅰ)-catalyzed intramolecular cyclization of alkynoic acids in aqueous media:a "click side reaction" [J]. J. Org. Chem.2007,72(26),10247-10250.
    [80]Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ:acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks [J]. Angew. Chem. Int. Ed.2002,41,1053-1057.
    [81]Zhang, S.; Zhang, Z. Y. Drug Discovery Today.2007,12,373.
    [82]Seo, C.; Sohn, J. H.; Oh, H.; Kim, B. Y.; Ahn, J. S. Bioorg. Med.Chem. Lett.2009,19, 6095.
    [83]Wang X C, Wang S J, Ma H M. Analyst,2008,133,478.
    [84]Wang J. B., Qian X. H., Cui J. N. Detecting Hg2+Ions with all ICT Fluorescent Sensor Molecule:Remarkable Emission Spectra Shift and Unique Selectivity [J]. Journal of Organic Chemistry,2006,71,4308.
    [85]Sungho Yoon; Evan W. Miller; Qiwen He; Patrick H. Do; Christopher J. Chang. Angew. Chem. Int. Ed.2007,46,6658-6661.
    [86]Roland Kramer. Angew. Chem. Int. Ed.1998,37,772-773.
    [87]Hong Yang; Zhi-Qiang Liu; Zhi-Guo Zhou; En-Xian Shi; Fu-You Li; Yu-Kou Du; Tao Yi; Chun-Hui Huang. Tetrahedron Letters.2006,47,2911-2914.
    [88]Cho, E.J.; Moon, J.W.; Ko, S.W.; Lee, J.Y.; Kim, S.K.; Yoon, J.; Nam, K.C. J. Am. Chem. Soc.2003,125,12376-12377.
    [89]Julia L. Bricks; Anton Kovalchuk. J. Am. Chem. Soc.2005,127,13522-13529.
    [90]Ma, L.; Luo, W.; Quinn, P.J.; Liu, Z.; Hider, R. C. J. Med. Chem.2004,47,6349.
    [91]Yu Xiang; Aijun Tong. Org. Lett.2006,8,1549-1552.
    [92]Fengling Song; Amanda L. Garner; Kazunori Koide. J. Am. Chem. Soc.2007,129, 12354-12355.
    [93]Xu Sheng; Li Wei; Chen Kong-Chang. Chinese Journal of Chemistry,2007,25, 778-783.
    [94]Fengling Song; Amanda L. Garner; Kazunori Koide. J. Am. Chem. Soc.2007,129, 12354-12355.
    [95]Jong Seung Kim; Duong Tuan Quang. Chem. Rev.2007,107,3780-3799.
    [96]Rong-Hua Yang; Wing-Hong Chan; Albert W. M. Lee; Ping-Fang Xia; Hong-Kui Zhang; Ke'An Li. J. Am. Chem. Soc.2003,125,2884-2885.
    [97]Yuasa, H.; Miyagawa, N.; Izumi, T. Hinge Sugar as a Movable Component of an Excimer Fluorescence Sensor [J]. Org. Lett.2004,6,1489-1492.
    [98]Ludivine Garcia, Juan Xie. Intrinsically Fluorescent Glycoligands To Study Metal Selectivity. Inorg. Chem.2011,50,11353-11362.
    [99]Le Droumaguet, C.; Wang, C.; Wang, Q. Fluorogenic click reaction [J]. Chem. Soc. Rev. 2010,39(4),1233-1239.
    [100]K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill and Q. Wang, Org. Lett., 2004,6,4603-4606.
    [101]Zhou, Z.; Fahrni, C. J. A fluorogenic probe for the copper(Ⅰ)-catalyzed azide-alkyne ligation reaction:modulation of the fluorescence emission via 3(n,π*)-i(π,π*) Inversion [J]. J. Am. Chem. Soc.2004, 126(29),8862-8863.
    [102]K. E. Beatty, F. Xie, Q. Wang and D. A. Tirrell. Selective Dye-Labeling of Newly Synthesized Proteins in Bacterial Cells. J. Am. Chem. Soc.,2005,127,14150-14151.
    [103]K. E. Beatty, J. C. Liu, F. Xie, D. C. Dieterich, E. M. Schuman,Q. Wang and D. A. Tirrell. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew. Chem., Int. Ed.,2006,45,7364-7367.
    [104]J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond and T. Carell. Click Chemistry as a Reliable Method for the High-Density Postsynthetic Functionalization of Alkyne-Modified DNA. Org. Lett.,2006,8,3639-3642.
    [105]A. J. Dirks, J. J. L. M. Cornelissen and R. J. M. Nolte. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition [J].Bioconjugate Chem.,2009,20,1129-1138.
    [106]Schweizer, F.; Glycoamino Acids:Building Blocks for Combinatorial Synthesis-Implications for Drug Discovery [J]. Angew. Chem. Int. Ed.2002,41, 230-252.
    [107]Gong, Y.; Sun, H.; Xie, J. Synthesis of Oligosaccharide Mimetics with Glycoaminoxy Acids [J]. Eur. J. Org Chem.2009,6027-6033.
    [108]Wu, Y.-D.; Wang, D.-P.; Chan, K. W. K. Theoretical Study of Peptides Formed by Aminoxy Acids [J].J.Am. Chem. Soc.1999,121,11189-11196.
    [109]Yang, D.; Li, X.; Sha, Y. A Cyclic Hexapeptide Comprising Alternating a-Aminoxy Acids and α-Amino Acids is a Selective Anion Recepter [J]. Chem. Eur. J.2005,11, 3005-3009.
    [110]Yang, D.; Qu, J.; Li, W. A Cyclic Hexapeptide of D, L-a-Aminoxy Acids as A Selective Receptor for Chloride Ion [J]. J. Am. Chem. Soc.2002,124,12410-12411.
    [111]Varki, A. Biological roles of oligosaccharides:all of the theories are correct [J]. Glycobiology 1993,3,97-130.
    [112]a) Hintermann, T.; Seebach, D. The Biological Stability of P-Peptides:No Interactions between α-and β-Peptide structures [J] Chimia 1997,51,244-247; b) Seebach, D.; Abele, S.; Schreiber, J. V. Biological and Pharmacokinetic Studies with β-Peptides [J]. Chimia 1998,52,734-739.
    [113]Frackenpohl, J.; Arvidsson, P. I. The Outstanding Biological Stability of β-and γ-Peptides toward Proteolytic Enzymes:An In Vitro Investigation with Fifteen Peptidases [J]. ChemBioChem.2001,2,445.
    [114]Wu, Y.-D.; Wang, D.-P.; Yang, D. Theoretical Study of Peptides Formed by Aminoxy Acids [J].J.Am. Chem. Soc.1999,121,11189-11196.
    [115]Gong, Y.; Sun, H.; Xie, J. Synthesis of Oligosaccharide Mimetics with Glycoaminoxy Acids [J]. Eur. J. Org Chem.2009,6027-6033.
    [116]Li, X.; Yang, D. Peptides of aminoxy acids as foldamers [J]. Chem. Commun.2006, 3367-3379.
    [117]He, X.-P.; Song, Z.; Wang, Z.-Z. Creation of 3,4-bis-triazolocoumarin-sugar conjugates via flourogenic dual click chemistry and their quenching specificity with silver (Ⅰ) in aqueous media [J]. Tetrahedron 2011,67,3343-3347.
    [118]He, X.-P.; Li, C. et al.Microwave-assisted construction of triazole-linked amino acid-glucoside conjugates as novel PTP1B inhibitors. New J. Chem.2011,35,622-631.
    [119]Krishnamoorthy Sivakumar, Fang Xie, et al. A Fluorogenic 1,3-Dipolar Cycloaddition Reaction of 3-Azidocoumarins and Acetylenes. Org. Lett.2004,6,4603-4606.
    [120]Kim S H, Song K C, Ahn S, et al. Hg2+ selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether [J]. Tetrahedron Letters,2006,47,497-500.
    [121]Yunpeng Ye, Sharon Bloch, Baogang Xu, and Samuel Achilefu*. Novel Near-Infrared Fluorescent Integrin-Targeted DFO Analogue. Bioconjugate Chem.2008,19,225-234.
    [122]Hall, D. M. Carbohydr. Res.1980,86,158.
    [123]Grishkovets, V. I.; Zemlyakov, A. E.; Chirva, V. Y. Chem.Nat. Compd.1982,119.
    [124]Albert, R.; Dax, K.; Pleschko, R.; Stutz, A. E. Carbohydr. Res.1985,137,282-290.
    [125]M. Ortega-Munoz, F. Perez-Balderas, J. Morales-Sanfrutos, F. Hernandez-Mateo, J. Isac-Garcia and F. Santoyo-Gonzalez, Eur. J. Org. Chem.,2009,2454-2473.
    [126]Yan-Hui Tang, Min Hu, Xiao-Peng He, et al. Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry. Bull. Korean Chem. Soc.2011,32,1000-1006.
    [127]S. Liu, L.-F. Zeng, L. Wu, X. Yu, T. Xue, A. M. Gunawan, Y.-Q. Long and Z.-Y. Zhang, J. Am. Chem. Soc.,2008,130,17075-17084.
    [128]Umesh B. Gangadharmath, Alexei V. Demchenko. Nickel (Ⅱ) Chloride-Mediated Regioselective Benzylation and Benzoylation of Diequatorial Vicinal Diols. Synlett. 2004,72,2191-2193.
    [129]Sajal K. Maity, Amarendra Patra, Rina Ghosh, Convergent synthesis of the tetrasaccharide repeating unit related to the O-antigenic polysaccharide of Escherichia coli 78. Tetrahedron.2010,66,2809-2814.
    [130]Suresh S, Ragini. The pechmann reaction in organic reaction[M].1953,7(1).
    [131]Timothy R. Chan, Robert Hilgraf, K. Barry Sharpless, and Valery V. Fokin. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett.,2004,6(17), 2853-2855.
    [132]Le Droumaguet, C.; Wang, C.; Wang, Q. Fluorogenic click reaction [J]. Chem. Soc. Rev. 2010,39(4),1233-1239.
    [133]Aurelie Baron, Yves Bleriot, Matthieu Sollogouband Boris Vauzeilles*. Phenylenediamine catalysis of "click glycosylations" in water:practical anddirect access to unprotected neoglycoconjugates. Org. Biomol. Chem.,2008,6,1898-1901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700