绿色化学电源镍基正极材料的合成、结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,电动车在未来的绿色交通系统中扮演着重要角色,而与之配套的动力电池能否做到高性能低成本是制约其发展的关键。镍氢电池由于具有容量大、高功率、充放电性能优良、对环境友好等一系列独特的优点,而被认为是最具发展潜力的电动车动力电池之一。尽管氢镍电池现在早已成功商业化生产,但随着电动自行车,电动汽车等市场的日益扩大,对于氢镍电池动力性能的要求越来越高,其动力性能的改善成为越来越多研究工作者研究的焦点。同时,为了进一步拓展氢镍电池的使用领域,有必要不断地降低氢镍电池的成本。氢氧化镍由于具有优异的电化学性能而已被广泛地用作氢镍电池的正极活性物质。然而,目前被广泛使用的球形氢氧化镍难以满足动力电池高温和高倍率性能的要求。
     近年来,各种类型的数码产品如雨后春笋般不断出现,对电池的大电流放电性能提出了更高的要求,传统的碱锰电池已无法满足这样的需求,一种新型的以NiOOH为正极活性物质的锌镍电池由于具有比能量大、比功率大、大电流放电性能好、工作电压高和环境友好等优点,引起了越来越多研究者的关注。随着羟基氧化镍在碱性电池正极中的应用越来越多,研究羟基氧化镍的合成工艺对于绿色化学电源的技术改进和创新具有重要的实质性意义。通常,羟基氧化镍通过化学方法合成。然而,这些化学方法有非常多的反应步骤,生产过程需要消耗大量氧化剂;同时使用强碱溶液,不仅会产生大量废水会对环境造成污染而且产品不容易过滤和洗涤。因此,为了促进锌镍电池的发展非常有必要去改进羟基氧化镍的合成方法和材料性能。
     本论文是为了解决上述这些问题而展开的,有关研究内容和结果如下:
     1、碱性氢镍电池非球形Ni(OH)2正极材料
     采用PAM辅助二次干燥法成功制备出振实密度达到2.32g cm3的非球形氢氧化镍材料。采用XRD、IR、SEM、TG-DTA、Brunauer–Emmett–Teller (BET)测试、激光粒度分析、敲实密度测试、CV、EIS和充放电测试等多种测试方法对样品进行了表征,详细考察了振实密度对于非球形氢氧化镍的物理和电化学性能的影响规律。
     研究结果表明,采用PAM辅助二次干燥法可以成功制备出振实密度比传统共沉淀法制备的高的多的非球形氢氧化镍样品。随着振实密度的不同,氢氧化镍的物理性能和电化学性能均有较大变化。具有更高密度的氢氧化镍具有更好的电化学活性。新方法制备的样品比传统方法制备的样品具有更高的反应可逆性、更大的质子扩散系数、更低的电荷转移阻抗、更高的放电容量和体积比容量、更好的循环稳定性。这些性能的改善主要归因于高密度非球形材料具有更致密的固态结构、较大的比表面积、更多的结构缺陷、更低的阴离子含量。
     此外,首次采用PAM辅助二次干燥法制备出Co和Zn共掺杂的高密度非球形氢氧化镍,与具有相同的化学成分和振实密度的商业化的球形氢氧化镍进行了物理性能和化学性能的对比,对氢氧化镍的微结构和表面特性对电化学性能的影响情况进行了研究。研究结果表明,同球形氢氧化镍相比,制备的非球形样品具有不规则的形貌,具有更多的结构缺陷和更大的比表面积,其致密的固态微结构由许多层状的纳米级晶粒组成,从而表现出更优异的电化学性能,包括更高的放电容量和体积比容量、更好的高倍率放电性能。该非球形样品的质子扩散系数达到4.26×109cm2s1。我们相信高密度非球形氢氧氧化镍是一种新的非常有潜力的氢镍电池正极材料。
     2、碱性锌镍电池NiOOH正极材料
     对一种在弱碱性溶液(pH=8-13)中电解氧化制备高纯度球形羟基氧化镍的绿色合成方法的反应机理和反应条件进行了探讨,优化了电解工艺,对包括KCl溶液的浓度、pH值、电解电压、温度以及电解时间等工艺参数的影响进行了系统研究。研究结果表明,优化后的电解工艺电解效率高,氧化速度快,而且电解液可以重复使用。即使电解时间充分延长,新方法制备的NiOOH仍是是纯β相。样品不仅拥有良好的电化学性能,而且还有高达2.44g cm3的振实密度。样品在0.2C和3C分别放出256.5,199.1mAh g1的容量,显示出该样品具有的体积比能量可以达到625.86(0.2C),485.80(3C)mAh cm3。
     在以上实验的基础上,首次采用PAM辅助二次干燥法,传统共沉淀法,控制结晶法三种方法制备出不同的前躯体,然后以其为原料采用电解氧化法制备出羟基氧化镍样品,对不同前躯体对于羟基氧化镍微结构和电化学性能的影响也进行了探索。实验结果表明,采用PAM辅助二次干燥法制备出的前躯体经电解氧化可以成功制备出高密度的非球形羟基氧化镍。该样品的振实密度可以达到2.65g cm3,是目前所知最高的。同球形羟基氧化镍相比,制备的的非球形样品表现出更优异的电化学性能,包括更高的放电容量和体积比容量以及更好的高倍率放电性能。结果还显示,氢氧化镍前躯体的物理性能例如形貌、微结构、振实密度、比表面积等,都极大的影响最终产品的物理和电化学性能。实验结果也表明,高密度非球形羟基氧化镍是一种新的有潜力的锌镍电池正极材料。
     3、碱性氢镍电池负极放电储备的调整
     首次提出了一个新颖的使用Ni(OH)x(x=2.1)和γ-CoOOH联合调整氢镍电池负极放电储备的方法。对调整过放电储备的电池进行了系统的测试,同时对Ni(OH)x(x=2.10)和γ-CoOOH对镍电极的电化学性能的影响进行了研究。实验结果表明,Ni(OH)x(x=2.1)和γ-CoOOH的联合使用,不仅可以调整氢镍电池中负极的放电储备到合适的量,极大地减少了负极中合金粉的用量,而且电池的电化学性能得到了明显的改善,尤其是大电流放电性能。具有比较低的放电储备的电池具有较高的放电容量,较好的高倍率放电性能和更稳定的循环寿命。结果显示,这是一个非常有发展潜力地降低氢镍电池的成本和改善氢镍电池性能的新方法。
It is well known that the availability of high performance and low cost batteries is an essential factorfor the widespread diffusion of electric vehicles in the mobility system, with important environmentalbenefits. Ni–MH batteries is considered as one of the most promising devices for electric vehicle (EV) andhybrid electric vehicle (HEV) applications because of its high specific energy power and specific energydensity, fast charge and discharge capabilities, environment-friendly characteristics, long cyclic stabilityand good security. Although Ni–MH batteries are commercially available, further research is still requiredto improve their power performance for applications in electric vehicles and hydride vehicles. It is alsonecessary to reduce the cost of Ni–MH batteries in order to further expand their application fields, such asa replacement for nickel–cadmium (Ni–Cd) batteries in power tools. As a result of excellentelectrochemical properties, nickel-based electrode materials have been used in many importantapplications. For example, Ni(OH)2has been intensively studied and used in commercial alkalinerechargeable batteries. However, the common spherical Ni(OH)2can not well meet the demand in electricvehicle battery such as high temperature and current charge and discharge, etc.
     In recent years, with increasing type and amount of digital products, a new type of alkalineZn-NiOOH battery, which contains NiOOH as the positive electrode material, has attracted worldwideresearch interest because of its high practical specific energy, excellent specific power, high workingvoltage and low toxicity. As a result, there is substantial scientific and technological interest in the study ofNiOOH synthesis due to its extended application in the positive electrodes of alkaline batteries.Conventionally, NiOOH can be easily prepared by a chemical synthetic method. However, the chemicaloxidization method contains many reaction steps, consumes a great deal of reagent, and generates a largeamount of waste effluents. In addition, the products are inconvenient to filtrate and launder due to the useof the strong alkali solution. Hence, it is necessary to improve the synthetic method and performanceimprovement of NiOOH, which are keys for the production of this new type of battery.
     This thesis is in order to solve the above problems and the results are following:
     1) Non-spherical Ni(OH)2as positive electrode materials for alkaline Ni-MH batteries
     Positive electrode active materials of non-spherical nickel hydroxide powders with a high tap-densityfor alkaline Ni-MH batteries have been successfully synthesized using a polyacrylamide (PAM) assistedtwo-step drying method. In this work, we have also studied the effect of tap-density on the electrochemicalperformance of non-spherical Ni(OH)2electrodes. The tap-density of the powders reaches2.32g cm3,which is significantly higher than that of nickel hydroxide powders obtained by the conventionalco-precipitation method. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electronmicroscopy (SEM), Thermogravimetric/differential thermal analysis (TG-DTA), Brunauer–Emmett–Teller(BET) testing, laser particle size analysis, tap-density testing, cyclic voltammetry (CV), electrochemicalimpedance spectroscopy (EIS), and a charge-discharge test were used to characterize the physical andelectrochemical properties of the synthesized material. The results show that the as-prepared nickelhydroxide materials have an irregular tabular shape, a high density of structural disorder, and a highspecific surface area. The charge-discharge tests indicate that nickel hydroxide powders synthesized by thenew method have better electrochemical performance than those obtained by the conventionalco-precipitation method. This performance improvement could be attributable to a more compact electrodemicrostructure, a lower amount of intercalated anions, better reaction reversibility, a higher protondiffusion coefficient, and lower electrochemical impedance. The results clearly show that betterelectrochemical activity can be achieved using nickel hydroxide that has a higher tap-density.
     Moreover, we compare the behavior of non-spherical and spherical β-Ni(OH)2as cathode materialsfor Ni–MH batteries in an attempt to explore the effect of microstructure and surface properties ofβ-Ni(OH)2on their electrochemical performances. Non-spherical β-Ni(OH)2powders with a high-densitywere synthesized using a simple polyacrylamide (PAM) assisted two-step drying method. The resultsshow that the non-spherical β-Ni(OH)2materials exhibit an irregular tabular shape and a dense solidstructure, which contains many overlapped sheet nano crystalline grains, and have a high density ofstructural disorder and a large specific surface area. Compared with the spherical β-Ni(OH)2, thenon-spherical β-Ni(OH)2materials have an enhanced discharge capacity, higher discharge potentialplateau and superior cycle stability. This performance improvement could be attributable to a higherproton diffusion coefficient (4.26×109cm2s1), better reaction reversibility, and lower electrochemicalimpedance of the synthesized material. Therefore, it is believed that the non-spherical Ni(OH)2 synthesized by the new method is a promising positive electrode active material for Ni–MH batteries.
     2)NiOOH as positive electrode materials for alkaline Zn-NiOOH batteries
     We propose a novel electrolysis method to prepare NiOOH by oxidizing spherical Ni(OH)2in adilute alkaline solution (pH=8-13). The effects of preparation conditions, including KCl concentration, PH,constant voltage, temperature and oxidation time, on the synthesis of NiOOH were systematicallyinvestigated. The results show that the electrolytic efficiency and reaction rate are superior and theelectrolyte can be conveniently re-utilized. The results also show that the NiOOH prepared by thiselectrolysis method is with a pure β phase, even if the electrolysis duration is fully prolonged. Thespherical NiOOH sample not only possesses excellent electrochemical activities and provides a dischargecapacity of256.5and199.1mAh g1, and a volume capacity of625.86and485.80mAh cm3at rates of0.2C and3C, respectively, but also has a high tap density of2.44g cm3.
     Following upon our previous work, nickel oxyhydroxide was synthesized by electrolysis oxidationof different Ni(OH)2precursors, which were prepared by three methods: polyacrylamide (PAM) assistedtwo-step drying (PTSD), conventional co-precipitation (CCP), and “controlled crystallization”(CC). Theeffects of different precursors on the microstructure and electrochemical properties of NiOOH arediscussed in detail. The results demonstrate that the physical and electrochemical properties of NiOOH arestrongly dependent on the properties of the Ni(OH)2precursor, such as its morphology, microstructure, tapdensity, and specific surface area. The results of the electrochemical studies also show that the sampleprepared by the PTSD method is superior to the others in electrochemical performance. The as-prepared,high-density, non-spherical NiOOH is a promising active material for the positive electrode in Zn-NiOOHbatteries.
     3)Regulation the discharge reservoir of negative electrodes for Ni–MH batteries
     A novel strategy to regulate the discharge reservoir of negative electrodes in Ni–MH batteries isinvented by using Ni(OH)x(x=2.10) and γ-CoOOH. The electrochemical measurements of these batteriesdemonstrate that the use of Ni(OH)x(x=2.10) and γ-CoOOH can not only successfully regulate thedischarge reservoir of negative electrodes in Ni–MH batteries to an adequate quantity, but also effectivelyimprove the electrochemical performance of the batteries. Compared with normal batteries, the in-houseprepared batteries with a lower discharge reservoir exhibit an enhanced discharge capacity, improved high-rate discharge ability, higher discharge potential plateau and superior cycle stability. The effect ofNi(OH)x(x=2.10) and γ-CoOOH on the electrochemical performance of nickel electrode is alsoinvestigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The resultssuggest that the new method is simple and effective for cost reduction of Ni–MH batteries with improvedelectrochemical performance.
引文
[1]查全性.化学电源选论[M].武汉:武汉大学出版社,2005.
    [2]常照荣.化学电源用氢氧化镍以及相关化合物的合成、结构和性能研究[D].北京;北京理工大学,2007.
    [3]郭炳煜,李新海,杨松青.化学电源一电池原理及制造技术[M].长沙:中南工业大学出版社,2001.
    [4]雷永泉.新能源材料[M].天津:天津大学出版社,2000.
    [5]吴锋.绿色二次电池材料的研究进展[J].中国材料进展,2009,28(7):41-49.
    [6]余成洲,赖为华.氢镍电池的现状与发展方向[J].电池,2001,31(2):58-61.
    [7]张文保.密封锌镍电池发展评述[J].电源技术,2000,24(3):178-80.
    [8]费锡明,汪继红.锌镍电池研究进展[J].电池,2002,32(6):361-363.
    [9] Peng B., Chen J.. Functional materials with high-efficiency energy storage and conversion for batteriesand fuel cells [J]. Coordination Chemistry Reviews,2009,253(23-24):2805-2813.
    [10]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学化工出版社,2002.
    [11]马荣骏.锂离子电池及其正极材料的研究进展[J].有色金属,2008,60(1):1-6.
    [12] Barnard R., Randell C. F., Tye F. L.. Studies concerning charged nickel hydroxide electrodes I.Measurement of reversible potentials [J]. Journal of Applied Electrochemistry,1980,10(1):109-125.
    [13] Oliva P., Leonardi J., Laurent J. F., et al. Review of the structure and the electrochemistry of nickelhydroxides and oxy-hydroxides [J]. Journal of Power Sources,1982,8(2):229-255.
    [14] Armstrong R. D., Sood Anil K., Moore M.. Studies on the lithium and potassium uptake of nickelhydroxide electrodes [J]. Journal of Applied Electrochemistry,1985,15(4):603-607.
    [15] Indira L., Dixit Mridula, Kamath P., et al. Electrosynthesis of layered double hydroxides of nickel withtrivalent cations [J]. Journal of Power Sources,1994,52(1):93-97.
    [16] Bode H., Dehmelt K., Witte J.. Zur kenntnis der nickelhydroxidelektrode—I. über das nickel(II)-hydroxidhydrat [J]. Electrochimica Acta,1966,11(8):1079-1087.
    [17] Bahne C.,Cornilsen, Shan X. Y., et al. Structural comparison of nickel electrodes and precursor phases[J]. Journal of Power Sources,1990,29(3-4):453-466.
    [18] Barnard R., Randell C. F. Studies concerning charged nickel hydroxide electrodes. VIII. The relativepotentials of the β-/γ-nickel oxy hydroxide reduction processes [J]. Journal of AppliedElectrochemistry,1983,13(1):97-101.
    [19] Masahiko Oshitani, Takayama Takashi, Takashima Koichiro, et al. A study on the swelling of asintered nickel hydroxide electrode [J]. Journal of Applied Electrochemistry,1986,16(3):403-412.
    [20] Alexis Bienvenu Béléké, Mizuhata Minoru. Electrochemical properties of nickel-aluminum layereddouble hydroxide/carbon composite fabricated by liquid phase deposition [J]. Journal of PowerSources,2010,195(22):7669-7676.
    [21] Nethravathi C., Ravishankar N., Shivakumara C., et al. Nanocomposites of α-hydroxides of nickel andcobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium andelectrochemical behaviour [J]. Journal of Power Sources,2007,172(2):970-974.
    [22]余国华,张士杰.我国镉镍电池的电极制造技术及发展[J].电源技术,1998,22(2):79-85.
    [23]倪佩,覃奇贤. NiOOH/Ni(OH)2电极的发展历程及前景[J].电池,1996,26(1):35-37.
    [24]达索扬著,吴寿松等译.化学电源[M].北京:国防工业出版社,1965.
    [25]刘寿长,崔恒欣.氢氧化镍和粘结式氢氧化镍电极[J].电池,1995,25(1):14-17.
    [26]王建都,建方方,贺立三.粘结式密封Cd-Ni蓄电池镍电极性能研究[J].电源技术,1993,4(17):30-32.
    [27]贺广胜,阳孟春,陈名才,等.烧结式镍电极[J].电池,2000,30(6):279-281.
    [28]李勇,刘光明,林满春.助动车用镉镍密封蓄电池的研究[J].电源技术,2000,24(6):345-355.
    [29]谢德明,刘昭林. MH/Ni电池用泡沫镍电极的进展[J].电池,1998,28(3):135-138.
    [30]陈常德,刘卫民,李报厚,等.复合镍纤维的制造[J].电源技术,1998,22(4):179-181.
    [31]夏保佳,张全生,尹鸽平,等.纤维镍电极的电化学浸渍[J].电源技术,1994,19(1):4-9.
    [32] MacArthur D. M.. The Proton Diffusion Coefficient for the Nickel Hydroxide Electrode [J]. Journal ofThe Electrochemical Society,1970,117(6):729-33.
    [33] Zhang C. J., Park Su-Moon. The Anodic Oxidation of Nickel in Alkaline Media Studied bySpectroelectrochemical Techniques [J]. Journal of The Electrochemical Society,1987,134(12):2966-2970.
    [34] Xu P., Han X. J., Zhang B., et al. Characterization of an ultrafine β-nickel hydroxide from supersonicco-precipitation method [J]. Journal of Alloys and Compounds,2007,436(1-2):369-374.
    [35] Han X. J., Xu P., Xu C. Q., et al. Study of the effects of nanometer β-Ni(OH)2in nickel hydroxideelectrodes [J]. Electrochimica Acta,2005,50(14):2763-2769.
    [36] Cao X. Y., Wei J. P., Luo Y. J., et al. Spherical nickel hydroxide composite electrode [J]. InternationalJournal of Hydrogen Energy,2000,25(7):643-647.
    [37]刘建化,杨敬武.掺杂Ni(OH)2的质子扩散系数[J].应用化学,2000,17(4):387-391.
    [38]徐艳辉,陈猛.不同荷电状态下α-Ni(OH)2的质子扩散系数[J].中国有色金属学报,2000,10(5):656-658.
    [39]杨庆霞,黄晓曦,姚金环,等.层间阴离子对铝代Ni(OH)2质子扩散系数的影响[J].广东化工,2010,1:109-111.
    [40]孙杨,邵忠才,翟玉春,等.氧化法制备正极材料Ni(OH)2的试验研究[J].无机材料学报,1997,12(6):867-870.
    [41] Subbaiah T., Mallick S. C., Mishra K. G., et al. Electrochemical precipitation of nickel hydroxide [J].Journal of Power Sources,2002,112(2):562-569.
    [42] Song Q. S., Tang Z. Y., Guo H. T., et al. Structural characteristics of nickel hydroxide synthesized by achemical precipitation route under different pH values [J]. Journal of Power Sources,2002,112(2):428-434.
    [43] Sanyo Electric Co LTD. Manufacture of alkaline battery positive electrode.[P]. JP61-181074,1986-8-13.
    [44] Matsushita Electric Ind Co LTD. Nickel hydroxide active material power and nickel positiveelectrode and alkali storage battery using them.[P]. EP0523284,1993-01-20.
    [45]汪锦瑞,陈自江.国内球形Ni(OH)2的生产研究现状[J].金川科技,2010,4:20-24.
    [46] Chang Z. R., Li G. A., Zhao Y. J., et al. Influence of preparation conditions of spherical nickelhydroxide on its electrochemical properties [J]. Journal of Power Sources,1998,74(2):252-254.
    [47]贺万宁,覃事彪.高密度球形Ni(OH)2工艺开发研究[J].电源技术,1995,19(5):1-3.
    [48] H.C.施塔克公司.制备金属氢氧化物的工艺[P]. CN1107440,1999-08-30.
    [49]杨长春,陈鹏磊.氢氧化镍电解一步制备法[P]. CN1210153,1999-03-10.
    [50]彭成红,刘澧浦,李祖鑫.纳米氢氧化镍材料的研制[J].电池,2001,4:175:177.
    [51]赵力,周德瑞,等.碱性电池用纳米氢氧化镍的研制[J].电池,2000,30(6):244-245.
    [52]周根陶,刘双怀.沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉末的研究[J].无机化学学报,1997,13(1):43-47.
    [53]魏莹,夏熙.纳米级电极材料的制备及其电化学性质研究(Ⅳ):纳米级β-Ni(OH)2正极材料[J].电源技术,1998,22(4):139-141.
    [54]夏熙,魏莹.纳米级β-Ni(OH)2的制备和放电性能[J].无机材料学报,1998,13(5):764-768.
    [55] Zhu Y. J., Liang Z. H., Hu X. L.. β-Nickel Hydroxide Nanosheets and Their Thermal Decompositionto Nickel Oxide Nanosheets [J]. J phys Chem B,2004,108,3488-3491.
    [56] Wang Y. G., Cheng L., Xia Y. Y.. Electrochemical profile of nano-particle CoAl doublehydroxide/active carbon supercapacitor using KOH electrolyte solution [J]. Journal of Power Sources,2006,153(1):191-196.
    [57]沈晓斐,祝洪良,姚奎鸿.氢氧化镍纳米薄片的水热合成及其表征[J].浙江理工大学学报,2005,22(3):237-240.
    [58]常照荣,吴锋,程迪,等.化学电源用氢氧化镍的制备及表面修饰[J].材料导报,2007,21(11):41-45.
    [59] Chen H., Wang J. M., Zhao Y. L., et al. Electrochemical performance of Zn-substituted Ni(OH)2foralkaline rechargeable batteries [J]. Journal of Solid State Electrochemistry,2005,9(6):421-428.
    [60] Zallen A., Fierro C., Koch J., et al. The Influence of Nickel Hydroxide Composition andMicrostructure on the High Temperature Performance of nickel metal hydride batteries [J]. JElectrochemical Society,2006,153(3): A492-496.
    [61] Zhu W. H., Ke J. J., Yu H. M., et al. A study of the electrochemistry of nickel hydroxide electrodeswith various additives [J]. Journal of Power Sources,1995,56(1):75-79.
    [62] Li J., Li R., Wu J. M., et al. Effect of cupric oxide addition on the performance of nickel electrode [J].Journal of Power Sources,1999,79(1):86-90.
    [63]赫文秀,张永强,蒋文全,等.球形覆Co氢氧化镍的合成及性能研究[J].硅酸盐通报,2008,27(2):276-280.
    [64]张文广,蒋文全,于丽敏,等.氢氧化镍表面包覆Co(OH)2及其大电流充放电性能[J].稀有金属,2007,31(6):784-789.
    [65] Fan J., Yang Y. F., Yu P., et al. Effects of surface coating of Y(OH)3on the electrochemicalperformance of spherical Ni(OH)2[J]. Journal of Power Sources,2007,171(2):981-989.
    [66] Ren J. X., Yan J., Zhou Z., et al. High-temperature electrochemical performance of spherical Ni(OH)2coated with Lu(OH)3[J]. International Journal of Hydrogen Energy,2006,31(1):71-76.
    [67] He X. M., Ren J. G., Li W., et al. Ca3(PO4)2coating of spherical Ni(OH)2cathode materials for Ni-MHbatteries at elevated temperature [J]. Electrochimica Acta,2006,51(21):4533-4536.
    [68]潘铮铮,王荣,周震,等.球型氢氧化镍表面包履CoOOH的研究[J].电源技术,2001,25(3):200-202.
    [69] Jeong Woo Lee, Ko Jang Myoun, Kim Jong-Duk. Hierarchical Microspheres Based on α-Ni(OH)2Nanosheets Intercalated with Different Anions: Synthesis, Anion Exchange, and Effect of IntercalatedAnions on Electrochemical Capacitance [J]. The Journal of Physical Chemistry C,2011,115(39):19445-19454.
    [70] Xu L. P., Ding Y. S., Chen C. H., et al.3D Flowerlike α-Nickel Hydroxide with EnhancedElectrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method [J]. Chemistry ofMaterials,2007,20(1):308-316.
    [71] Li Y. W., Yao J. H., Liu C. J., et al. Effect of interlayer anions on the electrochemical performance ofAl-substituted α-type nickel hydroxide electrodes [J]. International Journal of Hydrogen Energy,2010,35(6):2539-2545.
    [72] Xia X. H., Tu J. P., Zhang Y. Q., et al. Three-Dimentional Porous Nano-Ni/Co(OH)2NanoflakeComposite Film: A Pseudocapacitive Material with Superior Performance [J]. The Journal ofPhysical Chemistry C,2011,115(45):22662-22668.
    [73] Junaid S., Qazi S., Rennie Adrian R., et al. Alignment of Dispersions of Plate-Like Colloidal Particlesof Ni(OH)2Induced by Elongational Flow [J]. The Journal of Physical Chemistry B,2011,115(13):3271-3280.
    [74]赵力,盛军,范小平,等. Co掺杂对纳米Ni(OH)2高倍率放电性能的影响[J].中国有色金属学报,2010,20(4):718-723.
    [75]闫岩,李海波,李敬发,等. L-脯氨酸协助合成β-氢氧化镍和氧化镍花球及纳米三角片(英文)[J].无机化学学报,2010,7:1141-1146.
    [76]孙德慧,崔振峰,张吉林,等.氢氧化镍纳米粒子的水热合成与表征[J].长春工程学院学报:自然科学版,2010,3:171-174.
    [77] Wang H. L., Casalongue Hernan Sanchez, Liang Y. Y., et al. Ni(OH)2Nanoplates Grown on Grapheneas Advanced Electrochemical Pseudocapacitor Materials [J]. Journal of the American ChemicalSociety,2010,132(21):7472-7477.
    [78] Sun D. H., Zhang J. L., Ren H. J., et al. Influence of OH and SO24Anions on Morphologies of theNanosized Nickel Hydroxide [J]. The Journal of Physical Chemistry C,2010,114(28):12110-12116.
    [79] Li Q. Y., Wang R. N., Nie Z. R., et al. Preparation of three-dimensional flower-like Ni(OH)2nanostructures by a facile template-free solution process [J]. Journal of Alloys and Compounds,2010,496(1-2):300-305.
    [80] Yuan G. X., Huang K. L., Liu S. Q., et al. Synthesis and characterization of spherical nonstoichiometricNi(OH)x (x=2.03-2.10) as electrode materials [J]. Journal of Power Sources,2010,195(15):5094-5100.
    [81] Jung Kwan-Woo, Yang Dong-Cheol, Park Choong-Nyeon, et al. Effects of the addition of ZnO andY2O3on the electrochemical characteristics of a Ni(OH)2electrode in nickel-metal hydride secondarybatteries [J]. International Journal of Hydrogen Energy,2010,35(23):13073-13077.
    [82]李晓峰,李顺阳,夏同驰.球磨法制备表面包覆CoOOH的氢氧化镍及其电化学性能研究[J].郑州轻工业学院学报:自然科学版,2009,24(5):16-18.
    [83] Chen W. H., Yang Y. F., Shao H. X.. Cation-exchange induced high power electrochemical propertiesof core-shell Ni(OH)2@CoOOH [J]. Journal of Power Sources,2011,196(1):488-494.
    [84] Xia Y., Yang Y. F., Shao H. X.. Differences in the effects of Co and CoO on the performance ofNi(OH)2electrode in Ni/MH power battery [J]. Journal of Power Sources,2011,196(1):495-503.
    [85] Zhang W. G., Jiang W. Q., Yu L. M., et al. Effect of nickel hydroxide composition on theelectrochemical performance of spherical Ni(OH)2positive materials for Ni-MH batteries [J].International Journal of Hydrogen Energy,2009,34(1):473-480.
    [86]刘澧浦,周震涛.羟基氧化镍的研究进展[J].电源技术,2004,28(8):520-524.
    [87] Mcewen R. S.. Crystallographic studies on Nickel hydroxide and the higher Nickel oxides [J]. TheJournal of Physical Chemistry A,1971,75(12):1782-1789.
    [88] Munehisaic. Self-discharge mechanism of sealed type nickel/metal-hydride battery [J]. J ElectrochemSoc,1996,143:1904-1907.
    [89]王新,陈忠,廖代伟.镁掺杂羟基氧化镍的制备、结构和电化学性能[J].电源技术,2009,33(1):33-36.
    [90] Fu X. Z., Xu Q. C., Hu R. Z., et al. β-CoOOH coated spherical β-NiOOH as the positive electrodematerial for alkaline Zn-NiOOH battery [J]. Journal of Power Sources,2007,164(2):916-920.
    [91] Takeychis Satoy, Kobayakawk. Cause of the memory effect observed in alkaline secondary batteriesusing nickel electrode [J]. J Power Sources,2001,93:20-24.
    [92] O'Grady W. E., Pandya K. I., Swider K. E., et al. In Situ X-Ray Absorption Near-Edge StructureEvidence for Quadrivalent Nickel in Nickel Battery Electrodes [J]. Journal of The ElectrochemicalSociety,1996,143(5):1613-1617.
    [93]夏熙,龚玉良.纳米β-NiOOH的固相合成及其性能[J].电池,2002,32(1):6-9.
    [94] Bardé F., Palacín M. R., Beaudoin B., et al. Ozonation: A Unique Route To Prepare NickelOxyhydroxides. Synthesis Optimization and Reaction Mechanism Study [J]. Chemistry of Materials,2005,17(3):470-476.
    [95] Usui Takeshi Shimakawa Mamorn, Genda Giichi et al. Method for manufacturing Nickeloxyhydroxide[P]. JP Pat:2003-146663,2003.
    [96] Fu X. Z., Zhu Y. J., Xu Q. C., et al. Nickel oxyhydroxides with various oxidation states prepared bychemical oxidation of spherical β-Ni(OH)2[J]. Solid State Ionics,2007,178(13-14):987-993.
    [97]潘军青,万平玉,孙艳芝,等.低钴羟基氧化镍的合成、结构表征和电化学性能[J].中国有色金属学报,2005,15(9):1384-1389.
    [98] Pan J. Q., Sun Y. Z., Wan P. Y., et al. Synthesis, characterization and electrochemical performance ofbattery grade NiOOH [J]. Electrochemistry Communications,2005,7(8):857-862.
    [99] Wang J. M., Chen H., Zhao Y. L., et al. Electrochemical performance of Zn-substituted Ni(OH)2foralkaline rechargeable batteries [J]. J solid state electrochem,2005,9:421-428.
    [100] Usui Takeshi Shimakawa Mamoru, Honma Hideo et al. Mamufacturing method of Nickeloxy-hydroxide by electrolytic oxidation[P]. JP Pat:2003-346795,2003.
    [101]郭彩峰.球形羟基氧化镍的制备工艺研究[D].郑州;郑州大学,2005.
    [102] Sun Y. Z., Pan J. Q., Wan P. Y., et al. Study on preparation of NiOOH by a new catalytic electrolysismethod [J]. Materials Research Bulletin,2009,44(4):943-946.
    [103] Liu L. P., Zhou Z. T., Peng C. H.. Sonochemical intercalation synthesis of nano γ-nickeloxyhydroxide: Structure and electrochemical properties [J]. Electrochimica Acta,2008,54(2):434-441.
    [104] Pan J. Q., Sun Y. Z., Wang Z. H., et al. Nano-NiOOH prepared by splitting method as superhigh-speed charge/discharge cathode material for rechargeable alkaline batteries [J]. Journal ofPower Sources,2009,188(1):308-312.
    [105] Yasuhiko Takahashi, Akimoto Junji, Gotoh Yoshito, et al. Single Crystal Growth and StructuralChemistry of Li1zNi1+zO2with z=0.075[J]. Journal of Solid State Chemistry,2001,160(1):178-183.
    [106] Delmas C., Pérès J. P., Rougier A., et al. On the behavior of the LixNiO2system: an electrochemicaland structural overview [J]. Journal of Power Sources,1997,68(1):120-125.
    [107] Shuji Yamada, Fujiwara Masashi, Kanda Motoya. Synthesis and properties of LiNiO2as cathodematerial for secondary batteries [J]. Journal of Power Sources,1995,54(2):209-213.
    [108] Myoung Youp Song, Lee Ryong. Synthesis by sol–gel method and electrochemical properties ofLiNiO2cathode material for lithium secondary battery [J]. Journal of Power Sources,2002,111(1):97-103.
    [109] He P., Wang H. R., Qi L., et al. Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2andwith different synthesis conditions [J]. Journal of Power Sources,2006,160(1):627-632.
    [110] Liang H. Y., Qiu X. P., Zhang S. C., et al. High performance lithium cobalt oxides prepared in moltenKCl for rechargeable lithium-ion batteries [J]. Electrochemistry Communications,2004,6(5):505-509.
    [111] Kim Jung-Min, Kumagai Naoaki, Komaba Shinichi. Improved electrochemical properties ofLi1+x(Ni0.3Co0.4Mn0.3)O2δ(x=0,0.03and0.06) with lithium excess composition prepared by a spraydrying method [J]. Electrochimica Acta,2006,52(4):1483-1490.
    [112] Rojas R. M., Amarilla J. M., Pascual L., et al. Combustion synthesis of nanocrystallineLiNiYCo12YMn1+YO4spinels for5V cathode materials: Characterization and electrochemical properties [J].Journal of Power Sources,2006,160(1):529-535.
    [113] Yang S. T., Yue H. Y., Yin Y. H., et al. Microwave-assisted synthesis of LiNi0.5Co0.5O2cathodematerial for lithium batteries using PAM as template [J]. Electrochimica Acta,2006,51(23):4971-4976.
    [114]袁荣忠,瞿美臻,于作龙.锂离子电池镍系正极材料的热稳定性研究进展[J].无机材料学报,2003,18:973-979.
    [115] Saadounne I., Delmas C., Rougier A.. The cycling properties of the LixNi1-yCoyO2electrode [J].Journal of Power Sources,1993,44(3):595-602.
    [116] Jeong W. T., Oh S. H., Cho W., et al. Electrochemical characterization of high-performanceLiNi0.8Co0.2O2cathode materials for rechargeable lithium batteries [J]. Journal of Power Sources,2005,140(1):145-150.
    [117] Nieto S., Majumder S. B., Katiyar R. S.. Synthesis and electrochemical properties ofLiNi0.80(Co0.2-xAlx)O2(x=0.0and0.05) cathodes for Li ion rechargeable batteries [J]. Journal ofPower Sources,2006,154(1):262-267.
    [118] Fey G. T. K., Chen J. G., Subramanian V.. Electroanalytical and thermal stability studies ofmulti-doped lithium nickel cobalt oxides.[J]. Journal of Power Sources,2003,119:658-663.
    [119]樊永利,唐致远,王瑞忠,等.锂离子电池正极材料Li-Ni-Co-Mn-O化合物研究[J].电源技术,2006,30(5):414-418.
    [120] Ekaterina Zhecheva, Stoyanova Radostina, Tyuliev Georgi, et al. Surface interaction ofLiNi0.8Co0.2O2cathodes with MgO [J]. Solid State Sciences,2003,5(5):711-720.
    [121] Omanda H., Brousse T., Marhic C., et al. Improvement of the Thermal Stability of LiNi0.8Co0.2O2Cathode by a SiOxProtective Coating [J]. Journal of The Electrochemical Society,2004,151(6):A922-A929.
    [122] Reddy M. V., Tan K. S., Subba G. V., et al. Effect of AlPO4-coating on cathodic behaviour ofLi(Ni0.8Co0.2)O2[J]. Journal of Power Sources,2005,141(1):129-142.
    [123] Fujita Y., Amine K., Maruta J., et al. LiN1xCoxO2prepared at low temperature using β-Ni1xCoxOOH and either LiNO3or LiOH [J]. Journal of Power Sources,1997,68(1):126-130.
    [124] Sun Y. Z., Wan P. Y., Pan J. Q., et al. Low temperature synthesis of layered LiNiO2cathode materialin air atmosphere by ion exchange reaction [J]. Solid State Ionics,2006,177(13-14):1173-1177.
    [125] Junichi Maruta, Yasuda Hideo, Yamachi Masanori. Low-temperature synthesis of lithium nickelatepositive active material from nickel hydroxide for lithium cells [J]. Journal of Power Sources,2000,90(1):89-94.
    [126] Palacin M. R., Larcher D., Audemer A., et al. Low-Temperature Synthesis of LiNiO2.ReactionMechanism, Stability, and Electrochemical Properties [J]. Journal of The Electrochemical Society,1997,144(12):4226-4236.
    [127]许淳淳.锂离子电池正极材料LiNiO2及前驱体NiOOH的制备与性能研究[D].北京;北京化工大学,2007.
    [128] Tong D. G., Lai Q. Y., Wei N. N., et al. Synthesis of LiCo0.3Ni0.7O2by using β-Co0.3Ni0.7OOH andLiOH·H2O as starting materials [J]. Materials Chemistry and Physics,2006,96(1):124-128.
    [129] Fu X. Z., Wang X., Peng H. F., et al. Low temperature synthesis of LiNiO2@LiCoO2as cathodematerials for lithium ion batteries [J]. Journal of Solid State Electrochemistry,2010,14(6):1117-1124.
    [130] Geng M., Northwood D. O.. Development of advanced rechargeable Ni/MH and Ni/Zn batteries [J].International Journal of Hydrogen Energy,2003,28(6):633-636.
    [131] Wu J. B., Tu J. P., Wang X. L., et al. Synthesis of nanoscale CoO particles and their effect on thepositive electrodes of nickel-metal hydride batteries [J]. International Journal of Hydrogen Energy,2007,32(5):606-610.
    [132] Nathira Begum S., Muralidharan V. S., Ahmed Basha C.. The influences of some additives onelectrochemical behaviour of nickel electrodes [J]. International Journal of Hydrogen Energy,2009,34(3):1548-1555.
    [133] Reisner David E., Alvin J., Salkind, et al. Nickel hydroxide and other nanophase cathode materialsfor rechargeable batteries [J]. Journal of Power Sources,1997,65:231-233.
    [134] Bradhurst D. H., Chen J., Dou S., et al. Nickel hydroxide as an active material for the positiveelectrode in rechargeable alkaline batteries [J]. Journal of The Electrochemical Society,1999,146:3606-3612.
    [135] Yang C. C.. Synthesis and characterization of active materials of Ni(OH)2powders [J]. InternationalJournal of Hydrogen Energy,2002,27(10):1071-1081.
    [136] Chen H., Wang J. M., Pan T., et al. Effects of high-energy ball milling (HEBM) on the structure andelectrochemical performance of nickel hydroxide [J]. International Journal of Hydrogen Energy,2003,28(1):119-124.
    [137] Song Q. S., Chiu C. H., Chan S. L. I. Performance improvement of pasted nickel electrodes with anaddition of ball-milled nickel hydroxide powder [J]. Electrochimica Acta,2006,51(28):6548-6555.
    [138] Chiu C. H., Song Q. S., Chan S. L.. Ball-milling processing of nanocrystalline nickel hydroxide andits effects in pasted nickel electrodes for rechargeable nickel batteries [J]. J Solid State Electrochem,2008,12:133-141.
    [139]常照荣,齐霞,吴锋,等.高密度非球形β-Ni(OH)2的制备研究[J].稀有金属,2006,30(3):291-294.
    [140] Dixit M., Indira L., Kamath P.V.. Electrosynthesis of layered double hydroxides of nickel withtrivalent cations [J]. Journal of Power Sources,1994,52(1):93-97.
    [141] Cortes R., Bernard M. C., Keddam M., et al. Structural defects and electrochemical reactivity ofβ-Ni(OH)2[J]. Journal of Power Sources,1996,63(2):247-254.
    [142] Deabate S., Fourgeot F., Henn F.. X-ray diffraction and micro-Raman spectroscopy analysis of newnickel hydroxide obtained by electrodialysis [J]. Journal of Power Sources,2000,87(1-2):125-136.
    [143] Haumesser P. H., Tessier C., Bernard P., et al.The structure of Ni(OH)2: from the ideal material to theelectrochemically active one [J]. J Electrochem Soc,1999,146(6):2059-2067.
    [144] K hler U., Antonius Christina, B uerlein Peter. Advances in alkaline batteries [J]. Journal of PowerSources,2004,127(1-2):45-52.
    [145] Delmas C., Demourgues-Guerlou L.. Structure and properties of precipitated nickel-iron hydroxides[J]. J Power Sources,1993,45(3):281-289.
    [146] Zhao Y. L., Wang J. M., Chen H., et al. Al-substituted [alpha]-nickel hydroxide prepared byhomogeneous precipitation method with urea [J]. International Journal of Hydrogen Energy,2004,29(8):889-896.
    [147] Koltypin Y.,Jeevanandam P., Gedanken A.. Synthesis of nanosized α-nickel hydroxide by asonochemical method.[J]. Nano Lett,2001,1(5):263-326.
    [148] Kosova N. V., Devyatkina E. T., Kaichev V. V.. Mixed layered Ni-Mn-Co hydroxides: Crystalstructure, electronic state of ions, and thermal decomposition [J]. Journal of Power Sources,2007,174(2):735-740.
    [149] Delahaye-Vidal A., Portemer F., Figlarz M.. Characterization of active material deposited at thenickel hydroxide electrode by electrochemical impregnation [J]. J Electrochem Soc,1992,139(3):671-678.
    [150] Jayashree R. S., Ramesh T.N., Vishnu Kamathz P.. The effect of the moisture content on thereversible discharge capacity of nickel hydroxide [J]. Journal of The Electrochemical Society,2003,150:520-524.
    [151] Effa P. K., Zimmerman A.H.. Discharge kinetics of the nickel electrode [J]. Journal of TheElectrochemical Society,1984,131(4):709-713.
    [152] Mancier V., Métrot A., Willmann P.. Ac impedance modelling of nickel hydroxide electrodes viewedas mixed protonic-electronic conductors [J]. Electrochimica Acta,1996,41(7-8):1259-1265.
    [153] Liu B., Yuan H. T., Zhang Y. S.. Impedance of Al-substituted α-nickel hydroxide electrodes [J].International Journal of Hydrogen Energy,2004,29(5):453-458.
    [154] Chang Z. R., Li H. J., Tang H. W., et al. Synthesis of γ-CoOOH and its effects on the positiveelectrodes of nickel batteries [J]. International Journal of Hydrogen Energy,2009,34(5):2435-2439.
    [155] Ramesh T. N.. The effect of tap density on the reversible charge storage capacity of nickel hydroxideelectrodes [J]. Journal of Alloys and Compounds,2009,478(1-2): L12-L5.
    [156] Zhang W. K., Xia X. H., Huang H., et al. High-rate discharge properties of nickel hydroxide/carboncomposite as positive electrode for Ni/MH batteries [J]. Journal of Power Sources,2008,184(2):646-651.
    [157] Cheng S. A., Leng W. H., Zhang J. Q., et al. Electrochemical properties of the pasted nickel electrodeusing surface modified Ni(OH)2powder as active material [J]. Journal of Power Sources,2001,101(2):248-252.
    [158] Shen X. Q., Peng M. X.. Template growth mechanism of spherical Ni(OH)2[J]. J Cent South UnivTechnol,2007,3:0310-0315.
    [159] Bernard M. C., Cortes R., Keddam M., et al. Structural defects and electrochemical reactivity ofβ-Ni(OH)2[J]. Journal of Power Sources,1996,63(2):247-254.
    [160] Kikuoka T., Watanabe K., Kumagai N.. Physical and electrochemical characteristics of nickelhydroxide as a positive material for rechargeable alkaline batteries [J]. Journal of AppliedElectrochemistry,1995,25:219-226.
    [161] Kiani M. A., Mousavi M. F., Ghasemi S. Size effect investigation on battery performance:Comparison between micro-and nano-particles of β-Ni(OH)2as nickel battery cathode material [J].Journal of Power Sources,2010,195(17):5794-5800.
    [162] Albrecht S., Gille G., Meese-Marktscheffel J., et al. Cathode materials for rechargeablebatteries-preparation, structure-property relationships and performance [J]. Solid State Ionics,2002,148:269-282.
    [163] Tu J. P., Yuan Y. F., Wu H. M., et al. Electrochemical performance and morphology evolution ofnanosized ZnO as anode material of Ni-Zn batteries [J]. Electrochimica Acta,2006,51:3632-3636.
    [164]常照荣,上官恩波,程迪,等. NiOOH调节MH/Ni电池负极放电储备容量的研究[J].电池,2007,37(5):367-369.
    [165] Sun Y. Z., Pan J. Q., Wan P. Y., et al. Electrolytic preparation, structure characterization andelectrochemical performance of NiOOH [J]. Chinese Journal of Chemical Engineering,2007,15(2):262-267.
    [166]常照荣,上官恩波,吴锋,等.钛基二氧化铅作为阳极电解制备羟基氧化镍的研究[J].功能材料,2007,38(5):816-818.
    [167]常照荣,李云平,李苞,等.氢氧化镍中3价镍含量的测定[J].电源技术,2004,28(6):376-377.
    [168] Sun Y. Z., Pan J. Q., Wan P. Y., et al. The proton exchange chemistry of layered Ni(OH)2for twotypes of high-capacity cathode materials in rechargeable batteries [J]. Materials Research Bulletin,2009,44(1):227-330.
    [169]杨文静,黎学明,牛丽丹,等. γ-NiOOH的制备及在碱锰电池中的应用[J].电池,2009,39(5):269-271.
    [170]张爱勤,王力臻,李晓峰,等.合成方法对NiOOH电化学性能的影响[J].电池工业,2007,12(6):376-378.
    [171]杨建锋,周震涛. Al、Zn掺杂γ-NiOOH的制备、结构与电化学性能[J].合成化学,2007,15(B11):201-202.
    [172] Ewen Skipworth, Donne Scott W. Role of graphite in self-discharge of nickel(III) oxyhydroxide [J].Journal of Power Sources,2007,174(1):186-190.
    [173]符显珠,李俊,林敬东,等.碱性Zn-NiOOH/MnO2一次电池的性能研究[J].电源技术,2005,29(11):762-764.
    [174]周环波,周震涛.锌镍电池、羟基氧化镍及电极添加剂[J].孝感学院学报,2004,24(3):33-36.
    [175]吴芳芳,王建明,陈惠,等.不同相结构NiOOH的制备及其物理化学性能[J].电源技术,2004,28(11):700-703.
    [176]沙永香,唐琛明,宋美华,等.温度对Zn-Ni一次电池性能的影响[J].电池工业,2004,9(6):297-299.
    [177]于涛,刘岩,翟玉春,等.镍正极掺杂NiOOH的MH/Ni电池性能[J].东北大学学报:自然科学版,2005,26(7):660-662.
    [178] Shangguan E. B., Chang Z. R., Tang H. W., et al. Preparation of nickel oxyhydroxide by a newelectrolysis method using spherical β-Ni(OH)2[J]. International Journal of Hydrogen Energy,2010,35(8):3214-3220.
    [179] Shangguan E. B., Chang Z. R., Tang H. W., et al. Synthesis and characterization of high-densitynon-spherical Ni(OH)2cathode material for Ni-MH batteries [J]. International Journal of HydrogenEnergy,2010,35(18):9716-9724.
    [180] Pan J. Q., Du J. J., Sun Y. Z., et al. The change of structure and electrochemical property in thesynthesis process of spherical NiOOH [J]. Electrochimica Acta,2009,54(14):3812-3818.
    [181] Kober F. P.. Infrared spectroscopic investigation of charged nickel hydroxide electrodes [J]. Journalof The Electrochemical Society,1967,114:215-218.
    [182] Kamath P. V., Rajamathi M., Seshadri R.. Polymorphism in nickel hydroxide: role ofinterstratification [J]. J Mater Chem,2000,10:503-506.
    [183] McEwen R. S.. Crystallographic studies on nickel hydroxide and the higher nickel oxides [J]. J PhysChem,1971,76:1782-1789.
    [184] Jeevanandam P., Koltypin Y., Gedanken A.. Synthesis of Nanosized α-Nickel Hydroxide by aSonochemical Method [J]. Nano Letters,2001,1(5):263-266.
    [185] Wang C. Y., Zhong S., Bradhurst D. H., et al. Ni/Al/Co-substituted α-Ni(OH)2as electrode materialsin the nickel metal hydride cell [J]. Journal of Alloys and Compounds,2002,330-332:802-805.
    [186] Fetcenko M. A., Ovshinsky S. R., Reichman B., et al. Recent advances in NiMH battery technology[J]. Journal of Power Sources,2007,165(2):544-551.
    [187] Wu J. B., Tu J. P., Zhang W. K., et al. Electrochemical investigation on nanoscale CoO as additive tothe positive electrodes for Ni/MH rechargeable batteries [J]. Journal of Alloys and Compounds,2007,431(1-2):321-325.
    [188] Oshitani M., Yufu H., Takashima K., et al. Development of a Pasted Nickel Electrode with HighActive Material Utilization [J]. Journal of The Electrochemical Society,1989,136(6):1590-1593.
    [189] Li X. F., Xia T. C., Li J. Y.. Consumption reduction of AB5alloy in Ni-MH battery by the use ofcobalt oxyhydroxide coated nickel hydroxide [J]. Journal of Alloys and Compounds,2009,477(1-2):836-839.
    [190] Hu W. K., Geng M. M., Gao X. P., et al. Effect of long-term overcharge and operated temperature onperformance of rechargeable Ni-MH cells [J]. Journal of Power Sources,2006,159(2):1478-1483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700