SBR系统中好氧颗粒污泥的培养及脱氮除硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米、大豆、小麦、薯类等农产品加工利用过程中,会产生大量废水,这类废水不仅有机物浓度高,而且还含有高浓度硫酸盐和氨氮。研究人员对高硫酸盐废水的厌氧处理工艺和设备进行了广泛研究,但在厌氧处理过程中,硫酸盐会转化成有毒且对设备腐蚀性强的硫化物,氨氮也不能有效去除,需经过进一步处理才能有效解决农产品加工废水污染问题。目前采用的传统好氧生物脱氮除硫工艺,存在着工艺复杂、投资和运行费用高等缺点。寻求低成本、高效率的先进废水处理工艺,对农产品加工企业的发展具有重要意义。
     好氧颗粒污泥工艺是近年来发展起来的污水处理新工艺,与传统的絮状活性污泥相比,具有容积负荷高、沉降性能好、占地小、投资低等优点。由于颗粒污泥对溶解氧传质的限制,使好氧颗粒污泥内部形成好氧区、缺氧区和厌氧区,可使好氧和厌氧微生物在颗粒内部共存,实现多种污染物的同步去除,具有良好的发展前景。
     本研究利用好氧颗粒污泥的特点,进行了脱氮除硫好氧颗粒污泥的培养及特性研究,并重点对其脱氮除硫的过程及影响因素进行了研究,为好氧颗粒污泥在农产品加工废水处理中的应用提供理论依据。
     主要研究结果如下:
     (1)在SBR反应器中对脱氮除硫好氧颗粒污泥的培养和污泥特性进行了研究。以厌氧颗粒污泥为接种污泥,采用人工配制的含硫化物和氨氮的有机废水,通过控制运行条件,在21d内可培养出脱氮除硫好氧颗粒污泥。好氧颗粒污泥粒径以1~1.5mm为主,SVI为30~40mL/g,微生物组成以短杆菌为主,外部包裹大量丝状菌。进水硫化物、COD和NH_4~+-N浓度分别保持在50mg/L、550mg/L和55mg/L时,好氧颗粒污泥对硫化物、COD和NH_4~+-N的去除率分别达到99%、80%和99%以上。
     (2)研究了硫化物对好氧颗粒污泥脱氮除硫效果和污泥稳定性的影响。当进水COD和NH_4~+-N浓度分别保持在550mg/L和55mg/L时,硫化物浓度从50mg/L逐步提高到300mg/L时,硫化物去除率一直保持在99%以上,COD和NH_4~+-N的去除率在提高浓度初期略有下降,但下降幅度不大,经过一周左右的恢复,COD和NH_4~+-N去除率又可分别达到80%和99%以上。但硫化物浓度超过100mg/L时,引起丝状菌过度繁殖,SVI大于100mL/g,系统变得不稳定。
     (3)对脱氮除硫好氧颗粒污泥的微生物种群进行了研究。PCR-DGGE分析结果表明,稳定运行期,脱氮除硫好氧颗粒污泥中微生物种群比较丰富,其结构也比较稳定。微生物群落以β-变形菌(β-proteobacterium)和拟杆菌(Uncultured Bacteroidetes bacterium)为主,分别占总数的27.27%和18.18%。优势菌群有反硝化细菌(Thauera sp.)、异氧硝化反硝化细菌(pseudomonas alcaligenes)及发硫菌属(Uncultured Thiothrix sp.)等。
     (4)对好氧颗粒污泥的脱氮除硫过程及影响因素进行了研究。SBR反应系统中的脱氮途径包括硝化反硝化、同步硝化反硝化和异养硝化反硝化;硫化物主要是通过发硫菌属(UnculturedThiothrix sp.)的生物氧化作用去除的。DO对好氧颗粒污泥脱氮除硫的效果有显著影响。
     (5)对高硫化物浓度下,好氧颗粒污泥仍能高效脱氮的原因进行了分析。硫化物的氧化去除主要发生在反应开始前30min,而氨氮的去除主要发生在30~120min。在高进水硫化物浓度下,SBR系统仍表现出良好的脱氮效果,是由硫化物比氨氮快速氧化的特点及好氧颗粒污泥的层状结构决定的。
     (6)对好氧颗粒污泥的传质及动力学进行了研究。DO和硫化物的传质对硝化反硝化脱氮影响较大,而氨氮的传质对其去除速率影响较小。好氧颗粒污泥对COD和NH_4~+-N去除的动力学模型分别为:
The processing and utilization of agricultural products such as maize, soybean, wheat and potato can generate a large amount of organic wastewater which contains high concentrations of sulfate and ammonia. Researchers conducted an extensive investigation of the technologies and equipments of anaerobic biological treatment of sulfate-rich wastewater, However, in the process of anaerobic treatment, sulfate changed into a kind of toxic sulfide that was highly corrosive to the equipments, besides, the ammonia could not remove effectively,it required a further treatment to resolve the problem of wastewater pollution from agricultural products processing. There are several defects in the currently-adopted aerobic sulfide and ammonium removal technology, namely, complex processing, big investment and high operating cost. Therefore, to seek an advanced, low-cost and highly-efficient wastewater treatment is of great significance to the development of agricultural products processing business.
     Compared to the conventional activated sludge flocs, the newly-developed aerobic granular sludge technology have Several advantages,such as high volumetric loading, good settling ability, small occupying space, low investment and so on. Owing to the restrict mass transfer of the dissolved oxygen in granules, so inside the aerobic granules it form Aerobic zone, Anoxic zone and anaerobic zone, which enables the co-existence of aerobic and anaerobic microorganism and realizes simultaneous removal of many kinds of pollutant. The aerobic granular sludge technology has a good prospect.
     Drawing on the properties of aerobic granular sludge, this research investigated the cultivation and characters of the aerobic granules for ammonium and sulfide removal, especially the removal process and influencing factors, which will provide theoretical basis for the application of aerobic granules in agricultural products processing wastewater treatment.
     The main results are as follows:
     (1) Cultivation and characters of the aerobic granules for ammonium and sulfide removal in a sequencing batch reactor were studied. Using anaerobic granular sludge as seed sludge, the aerobic granules for ammonium and sulfide removal were cultivated fed with synthetic ammonia and sulfide-rich wastewater under controlled operational conditions in 21 days. The diameter of most of the aerobic granules was about 1-1.5 mm and the SVI was 30-40 mL/g. The granule was dominated by Brevibacterium, and wrapped by a large number of filamentous bacteria. When the sulfide influent, COD and NH_4~+-N concentration were 50mg/L,550mg/L and 55mg/L, the removal efficiencies of S~(2-), COD and NH_4~+-N were >99%, >80% and >99%, respectively.
     (2) The influence of sulfide on removal effect and sludge stability was investigated. When the COD and NH_4~+-N concentration were 550mg/L and 55mg/L and the S~(2-) concentration increased from 50mg/L to 300mg/L, the removal efficiency of S~(2-) maintained above 99%, and the removal efficiencies of COD and NH_4~+-N were slightly decreased at the early stage of concentration increase, but after one week, they could reach above 80% and 99% respectively. However, when the S~(2-) concentration exceeded 100mg/L, filamentous bacteria would overgrowth and SVI >100mL/g, so the system would become instable.
     (3) The microbial population of aerobic granules for ammonium and sulfide removal was also studied. The PCR-DGGE analysis showed that: during stable operation, the microbial population of aerobic granules was comparatively rich and their structures were steady. The population mainly includedβ-proteobacterium and Uncultured Bacteroidetes bacterium, which accounted for 27.27% and 18.18%, respectively. Dominant consortium in granules were denitrifying bacteria (Thauera sp.), Heterotrophic Nitrification Bacteria (pseudomonas alcaligenes)and Uncultured Thiothrix sp..
     (4) The removal process and influencing factors were studied. The nitrogen removal pathways including nitrification and denitrification, Simultaneous nitrification and denitrification and heterotrophic nitrification and denitrification in the SBR system. Sulfide was removed mainly through the biological oxidation processes of Uncultured Thiothrix sp.. DO had a great impact on the removal efficiency of ammonium and sulfide.
     (5) The reason why aerobic granules could keep a highly-efficient ammonium removal performance under high concentration of sulfide was also discussed. The sulfide removal mainly took place in the first 30 minutes of the cycle of the SBR, while ammonium removal in the range of 30-120min.The SBR reactor showed high removal capacity of NH_4~+-N under the high S~(2-) concentration, which was possible due to the layered structure of aerobic granules or the characteristics that sulfide could be fast oxidized prior to the ammonium.
     (6) The mass transfer and kinetics of aerobic granules were also considered. The mass transfer of DO and sulfide showed more influence on nitrification and denitrifying, while the mass transfer of ammonium showed little. The kinetic models of aerobic granules for COD and NH4+-N removal were as follows:
引文
[1]邱玉杰.我国农产品加工业的现状及发展方向[J].农业科技与装备,2009,181(1):71-75.
    [2]郑铭,李林华,徐玮,等.农产品加工废水的处理技术研究[J].农业机械学报,2003,34(3):82-85.
    [3] Hulshoff Pol LW, Lens PNL, Stams AJM, et al. Anaerobic treatment of sulphate-rich wastewaters[J]. Biodegradation,1998, 9(3-4):213-224.
    [4] Isa MH, Anderson GK. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion[J]. Process Biochem, 2005,40(6):2079-2089.
    [5] O'flanerty V, Lens P, Leahy B, et al. Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater [J].Wat Res, 1998, 32(3): 815-825.
    [6]王伟,韩洪军,赵萌,等.味精废水处理工艺改造工程[J].环境工程, 2007,25(6):94-95.
    [7]潘登,文志军,董新华,等. UASB/生物接触氧化工艺处理豆制品废水[J].中国给水排水, 2007,23(18):59-62.
    [8] Reyes-Avilla J, Razo-Flores E, Gomez J. Simultaneous Biological Removal of Nitrogen,Carbon and Sulfur by Denitrification [J]. Wat Res,2004, 38(14-15): 3313-3321.
    [9] Vaiopoulou E, Melidis P, Aivasidis A. Sulfide Removal in Wastewater from Petrochemical Industries by Autotrophic Denitrificafion [J].Wat Res, 2005, 39(17):4101-4109.
    [10] de Lomas J G, Corzo A, Genzalez J M. Nitrate Promotes Biological Oxidation of Sulfide in Wastewaters: Experiment at Plant-scale [J].Biotechnol Bioeng, 2006, 93(4): 801-811.
    [11] Lens PNL, Sipma J, Hulshoff Pol LW, et al. Effect of nitrate on acetate degradation in a sulfidogenic staged reactor[J]. Water Res, 2000, 34(1):31–42
    [12] Wang Aijie, Du Dazhong, Ren Nanqi.An Innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrifican[J]. J Environ Sci Health,2005, 40A(10):1939-1950
    [13] Mahmood Q, Zheng P, Cai J, et al. Anoxic sulphide biooxidation using nitrite as electron acceptor[J]. J Hazard Mater, 2007,147(1-2):249-256.
    [14]邓旭亮,王爱杰,荣丽丽,等.硫自养反硝化技术研究现状与发展趋势[J].工业水处理, 2008, 28(3):13-16.
    [15] Mishima K, Nakamura M. Self-immobilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Sci Technol,1991, 23(4/6):981– 990.
    [16]朱亮,徐向阳,罗伟国,等.废水生物处理好氧污泥颗粒化研究进展[J].环境科学, 2007, 28(11): 2657-2664.
    [17] de Bruin LM M,de KreukM K, van der Roest H F R,et al. Aerobic granular sludge technology:analternative to activated sludge?[J].Water Sci Technol,2004,49(11-12):1-7.
    [18]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [19]钱易,米祥友.现代废水处理新技术[M].北京:中国科学技术出版社,1993.
    [20]叶建峰.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [21]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999.
    [22]王志平,好氧颗粒污泥脱氮特及其过程研究[D].哈尔滨:哈尔滨工业大学,2006.
    [23]苟莎,黄钧.异养硝化细菌脱氮特性及研究进展[J].微生物学通报,2009,36(2):255-260.
    [24] Takayuki N, Taro Y, Hirosugu M, et al. Conditions for nitrification and denitrification by an immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK17[J]. J Ferment Bioeng, 1998,86(4):351-356.
    [25] Jetten MSM, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds[J].Antonie van Leeuwenhoek, 1997,71(1-2):75-93.
    [26] Pedersen H, Dunkin KA, Firestone MK. The realtive importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by N-15 tracer and pool dilution techniques[J]. Biogeochem, 1999, 44(2):135-150.
    [27]张彤,庞金钊,杨宗政,等.异养硝化菌的脱氮研究[J].水科学与工程技术,2006,6:41-42.
    [28]温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用[J].环境污染与防治,2003,25(5):283-285.
    [29] Bertanza G. Simultaneous nitrification-denitrification Process in extended aeration Plants:Pilot and real scale experiences[J].Water Sci Technol,1997,35(6):53-61.
    [30] Baek S H, Pagilla K R. Simultaneous nitrification and denitrification of municipal wastewater in aerobic membrane bioreactors[J]. Water Environ Res, 2008, 80(2): 109-117.
    [31] Puznava N, Payraudeau M, Thornberg D. Simultaneous nitrification and denitrification in biofilters with real time aeration control[J]. Water Sci Technol,2001, 43(1): 269-276.
    [32] Robertson L A, Cornelisse R, De Vos P, et al. Aerobic denitrification in various heterotrophic nitrifiers[J]. Antonie Van Leeuwenhoek, 1989, 56(4): 289-299.
    [33] Bang D Y, Watanabe Y, Noike T. An experimental study on aerobic denitrification with polyvinyl alcohol as a carbon source biofilms[J]. Water Sci Technol,1995,32(8):235-242.
    [34] Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnol Bioeng, 2003, 83(6): 706-720.
    [35] Furukawa S, Tokimori K, Hirotsuji J, et al. New operational support system for high nitrogen removal in oxidation ditch Process [J]. Water Sci Technol, 1998,37(12):63-68.
    [36] Liu Y, Shi H, Xia L, et al. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment[J]. BioresourTechnol, 2010, 101(3): 901-906.
    [37] Hibiya K, Terada A, Tsuneda S, et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. J Biotechnol, 2003, 100(1): 23-32.
    [38] Voets J P, Vanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewater[J]. JWPCF,1975,47(2):394-398.
    [39]张小玲,彭党聪,王志盈.短程硝化-反硝化技术经济特性分析[J].西安建筑科技大学学报,2002,34(3):239-242.
    [40] Hunik J H. Engineering aspects of nitrification with immobilised cells[D].Wageningen: Hunik,1993.
    [41] Balmelle B, Nguyen K M, Capdeville B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Water Sci Technol, 1992, 26(1-12):1017-1025.
    [42] Jianlong W, Ning Y. Partial nitrification under limited dissolved oxygen conditions[J].Process Biochem, 2004, 39(10): 1223-1229.
    [43] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures[J].Arch Microbiol, 1993, 159(5): 453-459.
    [44] Abeling U, Seyfried CF. Anaerobic-aerobic treatment of high-strength ammonium wastewater - Nitrogen removal via nitrite[J]. Water Sci Technol, 1992,26(1-2):1007-1015.
    [45] Jetten M S M, Horn S J , Vanloosdrecht M C M. Towards a more sustainable municipal wastewater treatment system[J]. Water Sci Technol, 1997 ,35 (9) :171 -180
    [46] Mulder A, de Van G, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol, 1995, 16(3): 177-184.
    [47] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol, 1998, 50(5): 589-596.
    [48] Van D U, Jetten M S, Van L M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Sci Technol, 2001, 44(1): 153-160.
    [49] Van S W, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Wat Res, 2007, 41(18): 4149-4163.
    [50] Dijkman H, Strous M. Process for ammonia removal from wastewater. Patent 1999; PCT/NL99/00446.
    [51] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Appl Environ Microbiol, 1998, 64(11): 4500-4506.
    [52]陈旭良.短程硝化-厌氧氨氧化工艺处理味精废水的研究[D].杭州:浙江大学, 2006.
    [53]王爱杰,王丽燕,任南琪,等.硫酸盐废水生物处理工艺研究进展[J].哈尔滨工业大学学报,2004(11): 1446-1449.
    [54]缪应祺.废水生物脱硫机理及技术[M].北京:化学工业出版社,2004.
    [55] Oh S E,Yoo Y B,Young J C,et a1.Efect of Organics on Sulfur-utilizing Autotrophic Denitrlfication under Mixotrophic Conditions[J].Biotechnol,2001,92(1):1-8.
    [56]左剑恶,袁琳.利用无色硫细菌氧化废水中硫化物的研究[J].环境科学, 1995, 16(6): 7-10.
    [57]张克强,黄文星,季民,等.含硫化物废水生物处理过程中单质硫的形成特性[J].农业环境科学学报,2006, 25(2): 522-526.
    [58] Buisman CJN, Bert G. Geraats, Peter ljspeert et al.Optimization of Sufur Production in a Biotechnological Sulfide-Removing Reactor[J]. Biotechnol Bioeng,1990,35(1):50-56.
    [59] Buisman CJN,Lettinga G.Sulfide removal from anaerobic waste treatment effluent of a paper mill [J].Wat Res,1990,24(3):313-319.
    [60]王爱杰,杜大仲,任南琪,等.脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用[J].哈尔滨工业大学学报, 2004, 36(4): 423-425.
    [61] Batchelor B,Lawrence A W. Autotrophic Denitrification Using Elemental Sulfur[J]. JWPCF,1978,50(8):1986-2001.
    [62] Darbi A, Viraraghavan T, Butler R, et al. Column Studies on Nitrate Removal from Potable Water[J]. Water Air Soil Pollut, 2003,150(1-4):235-254.
    [63] Zhang T C, Lampe D G.Sulfur:Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-contaminated Water:Batch Experiments[J].Wat Res, 1999,33(3):599-608.
    [64] Koenig A, Liu L H. Kinetic Model of Autotrophic Denitrification in Sulfur Packed-bed Reactors[J]. Wat Res, 2001,35(8):1969-1978.
    [65]邓旭亮.同步脱硫反硝化工艺运行效能及关键影响因素研究[D].哈尔滨:哈尔滨工业大学,2006.
    [66]杜大仲.脱氮硫杆菌的同步脱硫反硝化技术关键因素与运行效果研究[D].哈尔滨:哈尔滨工业大学, 2004.
    [67] Driscoll C.T, Bisogni J J.Use of sulfur and sulfide in packed-bed reactors for autotrophic denitrification[J].J Wat Poll Con Fed,l978,50(3):569-577.
    [68] Wang Aijie, Du Dazhong, Ren Nanqi. An innovative process of simultaneous de-sulfurization and de-nitrification by thiobacillus denitrificans.The 10th Congress on Anaerobic Digestion, Oral presentation, 29 August-2 September 2004-Montreal,Canada
    [69] Deng L, Chen H, Chen Z, et al. Process of simultaneous hydrogen sulfide removal from biogasand nitrogen removal from swine wastewater.[J]. Bioresour Technol, 2009, 100(23): 5600-5608.
    [70] Chen C, Wang A, Ren N, et al. Optimal process pattern for simultaneous sulfur, nitrogen and carbon removal.[J]. Water Sci Technol, 2009, 59(4): 833-837.
    [71]李巍,赵庆良,刘颢,等.缺氧附着生反应器同步脱氮除硫除碳运行效果探讨[J].环境科学, 2008, 29(7):1855-1859.
    [72] Chen C, Ren N, Wang A, et al. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor.[J]. Appl Microbiol Biotechnol. 2008, 78(6): 1057-1063.
    [73] Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.[J]. Water Res. 2006, 40(19): 3637-3645.
    [74] Wang A J,Du D Z,Ren N Q,et a1.Tentative study on new way of simultaneous desulfurization and denification[J]. Chin J Chem Eng,2005,l3(3):422-425.
    [75] Gu J D,Qiu W, Koenig A,et a1.Removal of high NO3- concentrations in saline water through autotrophic denitrification by the bacterium Thiobacillus denitrificans strain MP[J]. Water Sci Technol, 2004,49(5-6):l05-l12.
    [76] Furumai H,Tagui H,Denji F. Efects of pH and alkalinity on sulfur-denitrification in a biological granular filter[J].Water Sci Technol,l996,34(1-2):355-362.
    [77] Shin H S, Lim K H, Park H S. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors[J]. Water Sci Technol, 1992, 26(3-4): 601-605.
    [78] Tijhuis L,van Loosdrecht MCM,Heijnen JJ. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift ractors[J]. Biotechnol Bioeng, 1994, 44(5):595-608.
    [79] van Loosdrecht MCM,Eikelboom D,Gjaltema A,et al. Biofilm structures[J]. Water Sci Technol, 1995,32(8):35-43.
    [80] Morgenroth E, Sherden T, Van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor[J]. Wat Res, 1997, 31(12): 3191-3194.
    [81] Beun J J, Van Loosdrecht M C M, Heijnen J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Wat Res, 2002, 36(3): 702-712.
    [82] Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Wat Res, 2002, 36(7): 1653-1665.
    [83] Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnol Adv, 2004, 22(7): 533-563.
    [84] Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. J Appl Microbiol, 2001, 91(1): 168-175.
    [85] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochem, 2004, 39(5): 579-584.
    [86] Beun J J, Hendriks A, Van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor[J]. Wat Res, 1999, 33(10): 2283-2290.
    [87] Beun J J, Van Loosdrecht M C M, Heijnen J J. Aerobic granulation[J]. Wat Sci Technol, 2000, 41(4-5): 41-48.
    [88] Yi S, Tay J H, Maszenan A M, et al. A culture-independent approach for studying microbial diversity in aerobic granules[J]. Wat Sci Technol, 2003, 47(1): 283-290.
    [89] Moy B Y, Tay J H, Toh S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Lett Appl Microbiol, 2002, 34(6): 407-412.
    [90] Tay J H, Pan S, He Y, et al. Effect of organic loading rate on aerobic granulation. I: Reactor performance[J]. J Environ Eng, 2004, 130(10): 1094-1101.
    [91] Tay J H, Pan S, He Y, et al. Effect of organic loading rate on aerobic granulation. II: Characterisctics of aerobic granules[J]. J Environ Eng, 2004, 130(10): 1102-1109
    [92] Tay J H, Pan S, Tay S T, et al. The effect of organic loading rate on the aerobic granulation: the development of shear force theory [J]. Water Sci Technol, 2003, 47(11) : 235 - 240.
    [93] L iu Q S, Tay J H,L iu Y. Substrate concentration - independent aerobic granulation in sequential aerobic sludge blanket reactor [J]. Environ Technol, 2003, 24 ( 10 ) :1235 - 1242.
    [94]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报, 2009,29 (3) : 449 - 473
    [95] Tay J H,L iu Q S,L iu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors [J]. Environ Technol, 2002, 23(8) : 931 - 936.
    [96]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,20(2):39-41.
    [97] McSwain B S, Irvine R L,Wilderer P A. The influence of settling time on the formation of aerobic granules[J].Water Sci Technol, 2004, 50 (10) : 195 - 202.
    [98] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor[J]. Biochem Eng J, 2004, 21(1): 47-52.
    [99]高景峰.沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响[J].环境科学, 2007, 28(6): 1245-1251.
    [100]王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验[J].环境科学, 2003, 24(4): 99-104.
    [101] Tay J H, Liu Q S, Liu Y. The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor[J]. Water Sci Technol, 2004, 49(11-12): 35-40.
    [102] Tay J H , Liu Q S , Liu Y. The effects of shear force on the formation , structure and metabolism of aerobic granules grown[J] . Appl Microbiol Biotechnol , 2001 , 57(1-2) : 227-233.
    [103] Toh S K, Tay J H , Moy B Y P , et al . Size effect on the physical characteristics of the aerobic granule in a SBR[J]. Appl Microbiol Biotechnol , 2003 , 60 : 687-695.
    [104] Di Iaconi C, Ramadori R, Lopez A, et al. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor [J]. Biochem Eng J, 2006,30(2): 152-157.
    [105] Adav S S, Lee D J, Lai J Y. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances[J]. Appl Microbiol Biotechnol, 2007, 77(1): 175-182.
    [106] Pan S, Tay J H, He Y X, et al. The effect of hydraulic retention time on the stability of aerobically grown microbial granules [J]. Lett Appl Microbiol, 2004, 38 ( 2 ) :158 - 163.
    [107] Wang F, Yang F L, Zhang X W, et al. Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors[J]. World J Microbiol Biotechnol, 2005, 21(8-9): 1379-1384.
    [108] Liu Y Q, Tay J H. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors[J]. Enzyme Microb Technol, 2007, 41(4): 516-522.
    [109] Tay J H, Yang S F, Liu Y. 2002d. Hydraulic selection p ressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 59 (2-3) : 332-337。
    [110] Liu Y Q, Tay J H. Characteristics and stability of aerobic granules cultivated with different starvation time[J]. Appl Microbiol Biotechnol, 2007, 75(1): 205-210.
    [111] Liu Y Q, Tay J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresour Technol, 2008, 99(5): 980-985.
    [112] MartinsA M P, Heijnen J J, van LoosdrechtM C M. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions[J]. Wat Res, 2003, 37(11) : 2555-2570。
    [113] McSwain B S, Irvine R L,Wilderer P A. The effect of intermittent feeding on aerobic granule structure [J].Water Sci Technol, 2004, 49 (11-12): 19 - 25.
    [114] Chiu Z C, Chen M Y, Lee D J, et al. Diffusivity of oxygen in aerobic granules[J]. Biotechnol Bioeng, 2006, 94(3): 505-513.
    [115] Meyer R L, Saunders A M, Zeng J X, et al. Microscale structure and function of anaerobic-aerobic granules containing Glycogen accumulating organisms [J].FEMS Microbiol Ecol , 2003, 45(3): 253-261.
    [116] MartinsA M P, Heijnen J J, van LoosdrechtM C M. Effect of dissolved oxygen concentration on sludge settleability[J]. Appl Microbiol Biotechnol,2003,62 (5-6) : 586-593.
    [117] Mosquera-Corral A , de Kreukb M K, Heijnenb J J , et al . Effects of oxygen concentration on N- removal in an aerobic granular sludge reactor[J]. Wat Res, 2005, 39(12): 2676-2686.
    [118] de Kreuk M K, van Loosdrecht M C M. Selection of slow growing organisms as a means forimproving aerobic granular sludge stability[J]. Water Sci Technol, 2004, 49(11-12): 9-17.
    [119] De Kreuk M K, Heijnen J J, Van Loosdrecht M C M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge[J]. Biotechnol Bioeng, 2005, 90(6): 761-769.
    [120] Dangcong P, Bernet N, Delgenes J P, et al. Aerobic granular sludge - A case report[J]. Wat Res, 1999, 33(3): 890-893.
    [121] Etterer T, Wilderer P A. Generation and properties of aerobic granular sludge[J]. Water Sci Technol, 2001, 43(3): 19-26.
    [122] Linlin H, Jianlong W, Xianghua W, et al. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules[J]. Process Biochem, 2005, 40(1): 5-11.
    [123]阮文权,卞庆荣,陈坚. COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响[J].应用与环境生物学报, 2004, 10(3): 366-369.
    [124]卢然超,张晓健,张悦等. SBR工艺污泥颗粒化对生物脱氮除磷特性的研究[J].环境科学学报, 2001, 21(5): 577-581.
    [125] Zheng Y M, Yu H Q, Liu S J, et al. Formation and instability of aerobic granules under high organic loading conditions[J]. Chemosphere, 2006, 63(10): 1791-1800.
    [126] de Kreuk M K, van Loosdrecht M C M. Formation of aerobic granules with domestic sewage[J]. J Environ Eng, 2006, 132(6): 694-697.
    [127] Osman J J, Birch J, Varley J. N-removal in a granular sludge sequencing batch airlift reactor[J]. Biotechnol Bioeng, 2001, 75(1): 82-92.
    [128] Qin L, Liu Y. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor[J]. Chemosphere, 2006, 63(6): 926-933.
    [129] Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors[J]. Wat Res, 2004, 38(14-15): 3389-3399.
    [130] Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. J Biotechnol, 2003, 106(1): 77-86.
    [131] Peng D C, Bernet N, Delgenes J P, et al. 2001. Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration [J]. J Chem Technol Biotechnol, 76 (6) : 553-558
    [132] Wang F, Yang F, Qi A. Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors[J]. Front. Environ. Sci. Engin. China, 2007, 1(2): 184-189.
    [133] Kishida N, Kim J, Tsuneda S, et al. 2006. Anaerobic /oxic / anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms [J].Wat Res, 40 (12) : 2303-2310.
    [134] Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge[J]. Wat Res, 2005, 39(19): 4817-4823.
    [135] Lu S, Ji M, Wang J F, et al. Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR[J]. Huanjing Kexue, 2007, 28(8): 1687-1692.
    [136] Lin Y M, Liu Y, Tay J H. 2003. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 62 (4) :430- 435.
    [137] Liu Y, Yang S F, Tay J H. 2003e. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios[J]. Appl Microbiol Biotechnol, 61 (5-6) : 556-561.
    [138] Wang J, Wang X, Zhao Z, et al. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor[J]. Appl Microbiol Biotechnol, 2008,79(4): 679-685.
    [139] Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. J Biotechnol, 2004, 108(2): 161-169.
    [140] Wang X H, Zhang H M, Yang F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure[J]. Enzyme Microb Technol, 2007, 41(3): 205-211.
    [141] Jiang H L, Tay J H, Maszenan A M, et al. 2004a. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation [J]. Appl Microbiol Biotechnol,70 (11) : 6767-6775
    [142] Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor[J]. Environ Sci Technol, 2006, 40(7): 2396-2401.
    [143]刘和,李光伟,云娇,等.好氧颗粒污泥和活性污泥细菌种群结构对五氯酚污染的响应研究[J].环境科学学报, 2006,26(9):1445-1450.
    [144]方芳,朱润晔,张丽丽,等.好氧颗粒污泥共代谢降解MTBE及微生物群落研究[J].环境科学学报, 2008, 28 (11) : 2206 - 2212
    [145] Tay S T L, Zhuang W Q, Tay J H. 2005c. Start-up, microbial community analysis and formation of aerobic granules in a tert-butyl alcohol degrading sequencing batch reactor [J]. Environ Sci Technol, 2005,39 (15) : 5774-5780
    [146]竺美,杨平,郭勇,等.一体式厌氧-好氧流化床反应器同步脱氮除硫实验[J].环境科学学报,2008,28(10): 1993-1999.
    [147]国家环境保护局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,1989.
    [148] Laguna A, Ouattara A, Gonzalez R O et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge[J].Water Sci Technol,1999,40(8):1-8
    [149]王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001.
    [150] Ghangrekar M M,Asolekar S R, Ranganathan K R,et al.Experience with UASB reactor start-up under different operating conditions[J].Water Sci Techol,1996,34(5-6):421-428.
    [151]程翔.好氧颗粒污泥同步硝化反硝化处理高浓度氨氮废水研究[D],哈尔滨:哈尔滨工业大学,2006.
    [152] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor[J]. Appl Microbiol Biotechnol, 2005, 66(6): 711-718.
    [153]黄华山,祁佩时,丁雷,等.高硫化物型污泥膨胀的形成机理与控制[J].中国给水排水,2008, 24(5): 65-67.
    [154]无锡中顺生物技术有限公司.养殖环境底质中硫化物的形成、危害及解决方案[J].中国水产,2004(8):85-86.
    [155]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社, 2002.
    [156] Beudeker R F,Gotschall J C,Kuenen J G. Reactivity Versus flexibility in thiobacilli[J].Antonie Van Leeuwenhoek,1982,48(1):39-51
    [157] Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnol Adv, 2006, 24(1): 115-127.
    [158] Amann R I , Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev, 1995, 59 (1) :143-169.
    [159] Muyzer G, Ellen C W, Andre G U. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain amplified reaction genes encoding for 16Sr RNA[J]. Appl Microbiol Biotechnol, 1993 , 59(3):695-700.
    [160]杨长福.基于DGGE技术的好氧脱氮颗粒污泥微生物群落结构和功能分析[D],哈尔滨:东北农业大学, 2007.
    [161]吴高锋.应用PCR-DGGE技术对不同日龄仔猪肠道菌群分布规律的研究[D],郑州:河南农业大学,2009.
    [162]殷峻,陈英旭,刘和,等.应用PCR_DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,25(6):11-15.
    [163]魏群.分子生物学实验指导[M].北京:高等教育出版社,1999.
    [164] Snaidr J, Amann R, Huber I, et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge [J] .Appl Environ Microbiol, 1997, 63(7):2884-2896.
    [165] Manz W, Wagner M , Amann R , et al . In situ characterization of t he microbial consortia active in two waste water treatment plants[J] . Wat Res , 1994 , 28(8): 1715-1723.
    [166]姜昕,马鸣超,李俊,等.污水处理系统中活性污泥细菌多样性研究[J].地学前缘, 2008,15(6):163-168
    [167] Cantafio A W, Hagen K D, Lewis G E, et al. Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis[J]. Appl Environ Microbiol,1996,62(9): 3298-3303.
    [168] Shanghai Jiaotong University. A specificity molecule method on function florae in industrial wastewater treatment. China[S] . 200610116628. 3. Jul 11th , 2007.
    [169] Liu B B , Zhang F , Feng X X , et al . Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison[J] . FEMS Microbiol Ecol , 2006 , 55(2) :274-286.
    [170]傅利剑,郭丹钊,史春龙,等.碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响[J].农村生态环境,2005,21(2):42-45.
    [171]张胜华.水处理微生物学[M].北京:化学工业出版社,2005.
    [172]柯建明,王凯军.采用好氧气提反应器处理含硫化物废水[J].环境科学,1998,19(4): 62-64.
    [173] Buisman C, Uspeert P, Janssen A,et al.Kinetics of chemical and biological sulphide oxidation in aqueous solutions[J].Wat Res, 1990,24(5): 667-671.
    [174]贡俊,张肇铭.脱氮硫杆菌氧化硫化氢过程中的生物氧化和化学氧化[J].环境科学学报,2006,26(3):477-482.
    [175] Zepeda A, Texier A C, Gomez J. Benzene transformation in nitrifying batch cultures[J]. Biotechnol Prog, 2003, 19(3):789–793.
    [176] Anthonisen A C, Loehr R C, Prakasam T B S, Srinarh E G, Inhibition of nitrification by ammonia and nitrous acid[J].Water Pollut Contr Fed,1976, 48(5): 835–852.
    [177]张自杰,周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700