电力系统网络拓扑结构分析及运行方式组合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂、多变的电网拓扑结构及运行方式,给电力系统带来了许多新的问题及安全运行隐患。分析和利用电网拓扑结构、研究不同运行方式及电网拓扑结构变化组合,对于电力系统分析计算及电网安全运行具有重要的意义。本文致力于电力系统网络拓扑结构分析及运行方式组合方法的研究。研究成果已成功应用于多家省、区域电网继电保护整定计算系统,有效提高了整定计算的效率及保护定值的准确性,确保了保护装置在各种可能运行方式下的动作可靠性。
     提出了一种利用电力系统物理网络拓扑分析其几何网络拓扑结构特点的新思路。基于节点阻抗矩阵元素能够反映在系统全局范围内节点间所有电气耦合的特性,利用其蕴含的物理网络拓扑连接关系,引入了两个简单的数学等式判据,得出了一种新颖的辨识割支路和割节点的物理拓扑分析算法。相对于传统的几何拓扑分析算法,文中提出的辨识算法简单、直观,具有明确的物理意义。
     针对现代电网具有的交错嵌套、纷繁复杂的环网结构特征,分析了对保护定值影响较大的典型环网拓扑结构变化,借助于局部节点及其阻抗矩阵元素构成的等值网络所反映的电气耦合物理意义,提出了一种基于环网电气耦合分析的运行方式组合方法。该方法定义了两个环网电气耦合指标,能够有选择性、快速准确地确定对保护定值影响较大的环网开断线路。
     分析了高压电网整定计算中所关心的厂站拓扑结构及运行方式变化特点,提出将其内部元件方式的变化看作为一个整体单元的参数切换,根据整定计算所需要的故障计算量,引入了两类厂站方式灵敏系数。通过预先确定对故障电流和配合系数影响较大的厂站及其方式,能够有选择性地考虑厂站方式变化对保护定值的影响,从而有效减少了不必要的组合方式及故障计算。
     为了适应运行方式组合带来的网络拓扑结构变化,采用基于节点阻抗矩阵的故障计算数学模型,通过预先形成不同方式下的厂站单点或两点Π型等值网络参数,将厂站方式的切换转变为等效的简单网络操作。同时,对支路追加的顺序和故障计算相关涉及节点的修改次数进行了优化,提出了一种分层降阶的涉及节点阻抗矩阵修改方式,有效减少了涉及节点阻抗矩阵元素修改的次数,大大提高了计及运行方式组合的故障计算速度。
     提出了一种母线综合阻抗计算时的网络拓扑分析算法。该算法结合了物理网络拓扑和几何网络拓扑分析,通过电气物理路径判断,剔除了无效的几何路径搜索方向,保证搜索方向始终指向系统侧,从而有效避免了辐射分岔支路的深度搜索以及回溯的复杂性。
     研究了现代电网复杂环网拓扑结构所带来的整定计算断点求取问题。根据环状网络解开为无环辐射网络分析,得出了基于网络拓扑节点度数的快速解环方法。在此基础上提出了一种适合于反时限方向过流保护整定计算的断点求取算法。随后,结合国内阶段式定时限方向保护整定计算普遍采用逐段整定及配合原则的特点,对其中的配合死锁环网及其断点进行了分析讨论,并同反时限方向过流保护进行了比较。通过预整定形成死锁环网,提出了一种用于定时限方向保护整定计算的断点计算算法。
Complicated operation mode and changeful power network topology brings some hidden trouble to power system’s safety. It is very significative to analyze and make use of the network topology, and to study the combination of different operation modes and power network topology configurations, for power system analysis and safe operation. This dissertation devotes to the study of operation modes’combination and network topology analysis. The research productions have been applied in the relay coordination softwares for many provincial and regional power networks. And they improve the veracity of setting, the efficiency of relay coordination software and the reliability of relay equipments’action.
     Firstly, this paper exploits a novel physical topology analysis method to analyze the characteristic of corresponding geometrical topology. The elements of impedance matrix (Z-matrix) can concentratedly reflect all the electrical coupling of different buses in the systematic scale. Recurring to the global topological attributes concealed in Z-matrix, a new physical topology analysis algorithm to identify cut edges and vertices is presented, it introduces two simple equality criterions derived from the reduced Z-matrix elements. This novel algorithm adequately utilizes the physical topological properties concealed in the Z-matrix of power system. The improvement over existing graph-theoretical approaches is in that this new algorithm has more direct-viewing, simplicity, specific and important physical significance, which can borrow ideas to insight and research the topology configuration in power network.
     Secondly, based on the electrical coupling paths described by physical parameters of equivalent network derived from the reduced impedance matrix, this paper analyzes the representative dynamic change of mesh network topology which has an influence on the calculation of setting, a new method in combination of operation mode is presented. It introduced electric coupling of loops which cake care of the influence of mesh network selectively based on two criterions.
     Furthermore, according to the topology characteristic of power substations or plants considered in relay coordination, the operation mode change of elopements in the power substations or plants can be thought as a whole unit with different impedance parameters. Two types of sensitivity factors are derived that demonstrate the relationship between the fault current or coordination coefficients and different operation modes of different substations or plants. The operation mode of substations or plants which have great impact on the setting of relays will be taken into account selectivity in the relay coordination.
     The speed of fault calculation for relay coordination will decrease remarkably when considering varying of operation conditions including the switching of operation conditions of substations or plants and line outages simultaneously. Two methods are presented to improve the arithmetic of fault calculation based on the impedance matrix: 1) the substations and plants in various operation conditions are reduced into a single-bus or two-bus equivalence networks in advance, the switching of which are substituted by the change of the equivalence networks; 2) the elements of the partial impedance matrix for fault calculation are classified, the number of the elements need to be modified decreases gradually according to their necessary and the optimum sequence of modification. These improved methods decrease the modification of the impedance matrix and quicken the speed of fault calculation remarkably.
     Next, a new algorithm of network topology analysis for equivalent impedance calculation is presented. This proposed algorithm combines the physical topology and geometrical topology. Ineffective directions of geometrical path search are excluded through the judgment of electric physical paths, which ensure the search direct to the power system all along, and the complex back-tracing and the depth search of radial branches are avoided.
     Finally, this paper studies the determination of minimum break point set (MBPS) owning the intersectant and complicated meshed power network. Based on the of mesh network being transformed into radiate network theoretic analysis, the fastest loop opening analysis criterion principle is obtained. And an algorithm to determine MBPS for inverse-time directional overcurrent relay setting coordination grounded on analysis of opening loop is brought forward. The definition of coordination deadlock meshnetwork is analyzed according to the property of relay coordination of definite-time relays in power systems, and this paper discusses the difference between the break point set in the definite-time relay coordination and inverse-time relay coordination. By obtaining the coordination deadlock meshnetwork loop through pre-coordination, the paper improves the functional dependency methodology and proposes a new method to determine the minimal breakpoint set which is used to break the obtained deadlock loop.
引文
[1]谭跃进.系统学原理.长沙:国防科技大学出版社,1996.
    [2]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社, 1995.
    [3]沈根才.正确规划电网结构、重视电网稳定性.电力系统自动化. 2001, 25(9):38-41.
    [4]郑美特.电网结构规划原则的研究.中国电力,1999, 32(6): 9-12.
    [5]张伯明.高等电力网络分析.北京:清华大学出版社,1996.
    [6]栾军,张智刚,寇惠珍,等.提高500kV电网输电能力的技术研究.电网技术, 2005, 29(19):15-17.
    [7]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究.中国电机工程学报, 2003, 23(10): 109-113.
    [8]张勇军,任震.无功电压动态控制的分布式协同优化.中国电机工程学报, 2004, 24(4): 34-38.
    [9]王雨蓬,马昭彦.电力系统的动态分割.中国电机工程学报, 2001, 21(12): 45-49.
    [10] T.Bi, Y. Ni, C.M.Shen, et al. Efficient multiway graph partitioning method for fault section estimation in large-scale power networks. IEE Proceedings on Generation, Transmission and Distribution, 2002, 149(3):289-294.
    [11]岳程燕,周孝信,李若梅.电力系统电磁暂态实时仿真中并行算法的研究.中国电机工程学报, 2004, 24(12): 1-7.
    [12] H.B.Elrefaie, M.R.Irving, S.Zitouni. A parallel processing algorithm for co-ordination of directional overcurrent relays in interconnected power systems. IEE Proceedings on Generation, Transmission and Distribution, 1994, 141(5):514-520.
    [13]李银红,段献忠.继电保护整定计算中形成简单回路的方法.中国电机工程学报, 2003, 23(2): 21-25.
    [14]李晨光,汤涌,李柏青.川电东送通道的电压水平对系统稳定性的影响.电力系统自动化. 2003, 27(9):62-65.
    [15]陈永琳.电力系统继电保护的计算机整定计算.北京:中国电力出版社,1994.
    [16]崔家佩.电力系统继电保护与安全自动装置整定计算.北京:中国电力出版社,2000.
    [17]国家电力调度通信中心.电力系统继电保护规定汇编.北京:中国电力出版社,1997.
    [18]李银红.超高压电力系统继电保护整定计算理论研究及系统开发[博士学位论文].华中科技大学, 2003.
    [19]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探.电力系统自动化, 2001, 25(15): 25-28.
    [20]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术,2005,29(13): 1-9.
    [21]鲁宗相,蒋锦峰,袁德,等.从“8.14”美加大停电思考电力可靠性.中国电力,2003, 36(12): 1-6
    [22]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训.电网技术, 2003,27(10):8-11,16.
    [23]陈竟成,张学松,汪锋,等.配电网络建模与网络结线分析.电网技术, 1999,23(5):52-54.
    [24]储俊杰.变电所一次主接线电气连通性分析的数学模型.电力系统自动化,2003, 27(1): 31-33, 48.
    [25]罗日成,李卫国.配电网电气连通性分析的快速算法研究.电网技术, 2004, 28(24): 52-55.
    [26] P.D.Yehsakul, I.Dabbaghchi. A topology-based algorithm for tracking network connectivity. IEEE Transactions on Power Systems, 1996, 10(1): 339-346.
    [27]王湘中,黎晓兰.基于关联矩阵的电网拓扑辨识.电网技术, 2001,25(2): 10-16.
    [28]万华,李乃湖,陈珩,等.用于培训仿真的快速网络拓扑形成与跟踪、修正算法.电力系统自动化, 1995, 19(5):12-16.
    [29]朱文东,刘广一,于尔铿,等.电力网络局部拓扑的快速算法.电网技术, 1996, 20(3): 30-33.
    [30]陈星莺,孙恕坚,钱峰.一种基于追踪技术的快速电力网络拓扑分析方法.电网技术, 2004, 28(5): 22-24.
    [31]魏萍,倪以信,吴复立,等.基于图论的输电线路功率组成和发电机与负荷间功率输送关系的快速分析.中国电机工程学报, 2000, 20(6): 21-25.
    [32]王锡凡,王秀丽.电流追踪问题.中国科学E辑, 2000, 30(3):265-270.
    [33]谢开贵,周家启.基于有向通路的潮流跟踪新方法.中国电机工程学报, 2001, 21(11): 87-95.
    [34]谢开贵,周家启.自环流网络潮流跟踪算法.中国科学E辑, 2003, 33(1):74-81.
    [35]束洪春,刘宗兵,朱文涛.基于图论的复杂配电网可靠性评估方法.电网技术, 2006, 30(21): 46-49.
    [36]李晨光,李柏青,汤涌.电磁环网线路无故障跳线和单永故障稳定性分析.电力系统自动化, 2003, 27(1):53-56.
    [37]张兴民,毛玉华,朱剑峰,等.利用图论方法进行多不良数据检测与辨识.中国电机工程学报,1997,17(1):69-72.
    [38]汤振飞,单渊达.线性相关环及其在电力系统可观察性分析中的应用.电力系统自动化, 1994, 23(8): 35-38.
    [39]洪元瑞,康重庆,夏清,等.基于图论的电网动态分区定价方法.中国电机工程学报, 2005, 25(3): 1-7
    [40]董昕,唐国庆,王磊.故障恢复过程中最大供电功率的标号法求解.电力系统自动化, 1995, 19(11): 24-28
    [41]戴雯霞,吴捷.基于最小路的配电网可靠性快速评估法.电力系统自动化设备,2002, 22(7):29-31.
    [42]余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构.中国电机工程学报, 2000, 20(9): 44-49.
    [43]韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合.电网技术, 1994, 18(6): 11-16.
    [44]王志强,刘文霞.应用图论分析阻波器拆除对高频保护通道影响.电力系统自动化,2006, 30(24): 57-61.
    [45]刘健,杨文宇.基于最小生成树算法的配电网架扩展规划.电力系统自动化,2005, 29(17): 34-38.
    [46]刘健,杨文宇,余健明,等.一种基于改进最小生成树算法的配电网架优化规划.中国电机工程学报, 2004, 24(10): 103-108.
    [47]周念成,钟岷秀,徐国禹,等.基于电压相量的电力系统电压稳定指标.中国电机工程学报, 1997, 17(6): 425-428.
    [48]李敏,陈金富,陈海焱,等.一类潮流计算无解的实用性调整研究.电力系统自动化. 2006, 30(8):11-15.
    [49]苏盛, K.K.Li, W.L.Chan,等.广域电流差动保护区划分专家系统.电网技术, 2005, 29(3): 55-58, 63.
    [50]熊虎岗,程浩忠,孔涛.基于免疫_中心点聚类算法的无功电压控制分区.电力系统自动化. 2007, 31(2):22-26.
    [51]陈中,杜文娟,王海风,等.电压稳定后紧急控制重要区域分层布防.电力系统自动化. 2006, 30(19):23-27.
    [52]刘科研,盛万兴,李运华.互联电网的直流最优潮流分解算法研究.中国电机工程学报, 2006, 26(12): 21-25.
    [53]李亚楼,周孝信,吴中习.一种可用于大型电力系统数字仿真的复杂故障并行计算方法.中国电机工程学报, 2003, 23(12): 1-5.
    [54]毕天姝,焦连伟,严正,等.用于分布式故障诊断系统的新型网络分割法.电力系统自动化,2001, 8(1): 16-21.
    [55]段振国,高曙,杨以涵,等.基于图论理论的电力系统解列策略生成方法.中国电力, 1998, 31(3): 7-9.
    [56] Kai Sun, Da-Zhong Zheng, Qiang Lu. Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods. IEEE Transactions on Power Systems, 2003, 18(4): 912-923.
    [57] A.H.Knable. Electrical power systems engineering. Mc Graw Hill, 1967.
    [58] A.H.Knable. A standardized approach to relay coordination. IEEE Winter Power Meeting, 69 CP 58, 1969.
    [59] M.H. Dwarakanath, L.Nowtiz. An application of linear graph theory for coordination of directional overcurrent relays. In Electric Power Problems: The Mathematical Challenge, A.M. Erisman, K.W. Neves and M.H. Dwarakanath eds., SIAM, 1980.
    [60] V.V.Bapeswara Rao, K.Sankara Rao. Computer aided coordination of directional relays: determination of break points. IEEE Transactions on Power Delivery, 1988, 3(2): 545-548.
    [61] V.C.Prasad, K.S.Prakasa Rao.Coordination of Directional Relays without Generating All Circuits. IEEE Transactions on Power Delivery, 1991, 6(2): 584-590.
    [62] R.Ramaswami, M.J.Damborg, S.S.Venkata, et al. Enhanced algorithms for transmission protective relay coordination. IEEE Transactions on Power Delivery, 1986, 1(1): 280-287
    [63]吕飞鹏,李华强,李兴源等.多环复杂电网方向保护全网最优配合的研究第1部分确定所有有向基本回路矩阵.电力系统自动化, 1998, 22(3): 33-37.
    [64]陈允平,王旭蕊,邵秋晓,等.继电保护机辅整定中形成简单回路的新方法.电网技术, 1993(3): 28-34.
    [65]陈允平,周泽昕,李强.继电保护定值计算机计算中的图论新算法.电网技术, 1995, 19(4): 31-37.
    [66]乐全明,郁惟镛,吕飞鹏等.多环电网方向保护整定计算中形成有向简单回路的新方法.中国电机工程学报, 2005, 4(8): 36-40
    [67]吕飞鹏,米麟书,姜可薰.环网方向保护配合最小断点集的神经计算方法.中国电机工程学报, 1997, 17(3): 184-189.
    [68]吕飞鹏,米麟书,姜可薰.基于ANN的环网方向保护配合最小断点集的计算-第一部分数学模型.电力系统自动化. 1997, 6(21): 30-33.
    [69]吕飞鹏,米麟书,姜可薰.基于ANN的环网方向保护配合最小断点集的计算-第二部分算法及仿真研究.电力系统自动化. 1997, 8(21): 19-22.
    [70]乐全明,顾永朋,吕飞鹏.基于GA的环网方向保护配合最小断点集的计算.继电器.2002, 8(30): 23-26.
    [71] S.M.Madani, H.Rijanto. Protection coordination: determination of the break point set. IEE Proceedings Generation, Transmission and Distribution, 1998, 145(6): 717-721.
    [72] S.M.Madani, H.Rijanto. A new application of graph theory for coordination of protective relays.IEEE Power Engineering Review, 1998,6(18): 43-45.
    [73] S. Jamali, H. Shateri. A branch-based method to break-point determination for coordination of over-current and distance relay. 2004 International Conference on Power System Technology, 2004, 1857-1862.
    [74] L. Jenkins, H.P. Khincha, S. Shivakumart. An application of functional dependencies to the topology analysis of protection schemes. IEEE Transaction on Power Delivery, 1992, 7(1): 77-83.
    [75]乐全明,郁惟镛,肖燕.一种计算环网方向保护配合最小断点集的实用算法.电力系统自动化, 2004, 28(7):71-74.
    [76]王锡凡.现代电力系统分析.北京:科学出版社, 2003.
    [77]吴际舜.电力系统静态安全分析.上海:上海交通大学出版社,1988.
    [78]邹森.电力系统安全分析与控制.北京:水利电力出版社.
    [79] Les Pereira. Double contingency transmission outages in generation and reactive power deficient area. IEEE transaction on power system, 2000, 15(2):416-426.
    [80] Neal Balu, Timothy Bertram. On-line power system security analysis. Proceedings of the IEEE, 1992, 80(2): 262-279.
    [81] P. W. Sauer. On the formulation of power distribution factors for linear load flow methods. IEEE Transactions on Power Apparatus & Systems, 1981, 100(2): 764-770.
    [82] W.Y.Ng. Generalized generation distribution factors for power system security evaluations. IEEE Transactions on Power Apparatus & Systems, 1981,100(3):1001-1005.
    [83] F. D. Caliana. Bound estimates of the severity of line outages in power system contingency analysis and ranking. IEEE Transactions on Power Apparatus & Systems, 1984, 103(9):.2612-2624.
    [84] C. Lee, N. Chen. Distribution factors of reactive power flow in transmission line and transformer outage studies. IEEE Transactions on Power Systems, 1992, 7(1): 194-200,
    [85] S. N. Singh, S. C. Srivastava. Improved voltage and reactive power distribution factors for outage studies. IEEE Transactions on Power Systems, 1997,12(3): 1085-1093
    [86]李响,郭志忠.基于N-1原则的输电断面传送功率能力分析.电力系统自动化, 2004, 28(9): 28-35.
    [87]李响,张国庆,郭志忠.基于输电断面N-1静态安全潮流约束的联切负荷方案.电力系统自动化, 2004, 28(22): 42-44.
    [88]沈瑜,夏清,康重庆.发电联合转移分布因子及快速静态安全校核算法.电力系统自动化, 2003, 27(18):13 -17.
    [89] V. Brandwajn, Y.Liu, M.G.Lauby. Pre-screening of single contingencies causing network topology changes. IEEE Transaction on Power Systems, 1991, 6(1):30-36.
    [90]王守相,张伯明,郭琦.在线动态安全评估中事故扫描的综合性能指标法.电网技术,2005, 29(1): 60-64.
    [91] H. Glavitsch. Switching as Means of Control in the Power System. International Journal Electrecal Power & Energy System, 1985, 2(7): 92-100.
    [92]李卫东,唐丽艳,宋家弊.电力系统运行模式结构特征提取方法的研究.中国电力, 1998, 31(4):29-31.
    [93] V. Brandwajn, M.G.Lauby. Complete bounding method for AC contingency screening. IEEE Transaction on Power Systems, 1989, 4(2):724-729.
    [94] J. Zaborszky, K. W. Whang, K. Prasad. Fast contingency evaluation using concentric relaxation. IEEE Transactions on Power Apparatus & Systems, 1980, 99(1):28-36.
    [95] R.Bacher, W.F. Tinney. Faster local power flow solutions: the zero mismatch approach. IEEE Transaction on Power Systems, 1989, 4(4):1345-1354.
    [96]崔岚,邹森.电力系统预想事故快速分析的一种新算法.电网技术, 1997,21(5):12-15.
    [97]吴际舜,侯志俭,苟北.电力系统预想事故快速分析.电网技术, 1994,18(4):9-12,17.
    [98] B.Stott, O.Alsac. Fast decoupled load flow. IEEE Transactions on Power Apparatus & Systems, 1974, PAS-93:859-869.
    [99] N. M. Peterson, W. F. Tinney, D. W. Bree. Iterative linear ac power flow solution for fast approximate outage studies. IEEE Transactions on Power Apparatus & Systems, 1972. 91(5): 2048-2056.
    [100] W. F. Tinney. Compensation methods with ordered triangular factorization. IEEE Transactions on Power Apparatus & Systems, 1972, PAS-91: 123-127.
    [101] W. F. Tinney, V. Brandwajn, S.M.Chen. Sparse vector methods.IEEE Transaction on Power System, 1985, 2(2):295-301.
    [102]何洋,洪潮,陈昆薇.稀疏向量技术在静态安全分析中的应用.中国电机工程学报, 2003, 23(1): 41-44.
    [103] T.E.Dy Liacco. The adaptive reliability control. IEEE Transactions on Power Apparatus & Systems, 1967, 86(5):517-531.
    [104] R.Bacher, H.Glalitsch. Network topology optimization with security constrains. IEEE Transactions on Power Systems, 1986, 1(4): 103-110.
    [105] R.A.M.Van Amerongen, H.P.Van Meeteren. Security control by real power rescheduling, network switching and load shedding. Proceedings CIGRE Conference. France, 1980, 32(2).
    [106] H. J. Koglin, H. Muller. Overload reduction through corrective switching actions. Proceedings of. IEE International Conference Power System Monitoring Control London, U.K., 1980: 159-164.
    [107] H.J.Kogim, H.Muller. First experiences with computer-aided corrective Switching. Proceedings of the Seventh Power Systems Computer Conference, Lausanne, 1981: 12-17.
    [108] E. B. Makram, K. P. Thornton, H. E. Brown. Selection of lines to be switched to eliminate overload lines using a Z-matrix method. IEEE transactions on power systems, 1989, 4(2): 653-661.
    [109] W.Shao, V. Vittal. Corrective switching algorithm for relieving overloads and voltage violations.IEEE transactions on power systems, 2005, 20(4):1877-1885.
    [110] W.Shao, V. Vittal. LP-based OPF for corrective FACTS control to relieve overloads and voltage violations.IEEE transactions on power systems, 2006, 21(4):1832-1839.
    [111] A. G. Bakirtzis, A. P. S. Meliopoulos. Incorporation of switching operations in power system corrective control computations. IEEE transactions on power systems, 1987, 2(3):.669-676.
    [112] G.Schnyder, H.Glavitsch. Security enhancement using an optimal switching power flow. IEEE transactions on power systems, 1990, 5(2): 674-681
    [113] T.J.Bertram, K.D.Demaree, L.C.Dangelmaier. An integrated package for real-time security enhancement. IEEE transactions on power systems, 1990, 5(2): 592-600.
    [114] H.Glavitsch, H.Kronig, R.Bacher. Combined use of programming and load flow techniques in determining optimal switching sequences. Proc.8th Power Systems Computer Conference, Helsinki, August 1984: 19-24.
    [115] E.Lobato, F.Echavarren, L .Rouco, et al. A mixed-integer LP based network topology optimization algorithm for overload alleviation. Proceedings of IEEE Power Tech Conference. Bologna, June, 2003:23-26.
    [116] H.Kronig, H.Glavitsch. A systematic approach to corrective Switching in power networks. CIGRE-IFAC Symposium, Control Applications for Power System Security, Florence, Sept. 1983, 206(2): 26-28.
    [117] H.H.Koghn, H.Muller. Corrective switching: a new dimension in optimal load flow. International Journal Electrical Power & Energy System, 1982, 4 (2):142-149.
    [118] A.A.Mazi, B.F.Wollenberg, M.H.Hesse. Corrective control of power system flows by line and bus-bar switching. IEEE Transactions on Power Systems, 1986, 1(3):258-265.
    [119] J.N.Wrubel, P.S.Rapcienski, K.L.Lee, et.al. Practical experience with corrective switching algorithm for on-line applications. IEEE Transactions on Power Systems, 1996, 11(1): 415-421.
    [120]周德才,张保会,姚峰,等.基于图论的输电断面快速搜索.中国电机工程学报, 2006, 26(12): 32-38.
    [121]李卫东,柳悼,宋家骅.网络拓扑结构校正提高电力系统安全水平综述.电力系统自动化,1998, 22(3): 60-65.
    [122]蔡国伟,孟祥霞,李晓峰,等.基于网络结构及暂态能量的失步解列方案的研究.中国电力, 2006,39(12):7-10.
    [123]李卫东,于继来,宋家骅,等.利用结构改变提高电力系统暂稳水平的研究.电力系统自动化,1997, 21(12): 15-20.
    [124]李卫东,于继来,柳悼,等.输电网络结构改变在提高暂稳传输容量中的效用.中国电力, 1997,30(10):37-39.
    [125]孙国平.电力网络故障结构模式及其在暂态功角预测中的应用[硕士学位论文].哈尔滨工业大学, 2004.
    [126] SCE. The preliminary report on WSCC disturbance, 1996 Aug.
    [127]郭剑波,印永华,姚国灿. 1981~1991年电网稳定事故统计分析.电网技术, 1994, 18(2): 58-61.
    [128] Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations. http://www.nerc.com.
    [129] IEEE committee report: Computer aided coordination of line protection schemes. IEEE Transactions on Power Delivery, 1991, 6(2):575-583.
    [130] A.J.Urdaneta, L.G. Perez, H. Restrepo. Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology. IEEE Transactions on Power Delivery, 1997, 12(4):1458-1463.
    [131] De. Sa. J. Pinto, J.Afonso, R. Rodrigues. A probabilistic approach to setting distance relays in transmission networks. IEEE Transactions on Power Delivery, 1997, 12(2):681-686.
    [132]程小平.配合系数与网络结构关系的研究.电力系统自动化,2000, 27(9):52-55.
    [133]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决对策.中国电机工程学报, 2003, 23(10):51-56.
    [134]曹国臣,李娟,张连斌.继电保护运行整定中分支系数计算方法的研究.继电器, 1999, 27(2): 5-9.
    [135]李冰,赵海鸣,刘健,等.继电保护运行整定中计算分支系数的快速方法.继电器, 2004, 32(1): 21-23.
    [136]刘敏,石东源,柳焕章,等.线路零序电流保护计算机整定中运行方式的选择.继电器, 2002, 28(3): 15-17.
    [137]石东源.数字电力系统的数据建模及应用系统集成研究[博士学位论文].华中科技大学, 2002.
    [138]朱晓华,吴捷.继电保护整定中的短路电流计算问题.电网技术,2000,24(10):19-21.
    [139]陈小平.缩短继电保护整定计算时间的措施.电网技术,2001,25(2):69-71
    [140]西安交通大学等合编.电力系统计算.北京:水利电力出版社, 1978.
    [141]陈亚民.电力系统计算程序及其实现.北京:中国电力出版社, 1995. 29-37.
    [142]王广学,彭丰,俸玲,等.线路零序电流保护整定计算方法.电力系统自动化, 2000, 24(7): 46-50.
    [143]王广学.电力系统接地故障点分析计算方法.电力系统自动化, 1986, (7): 34-39.
    [144]曹国臣.参数保留法及其在复杂电网故障分析中的应用[博士学位论文].哈尔滨工业大学, 1998.
    [145]石东源,李银红,段献忠,等.电力系统故障计算软件实用化研究.电力系统自动化设备, 2001,21(11):44-47.
    [146]石东源,李银红,段献忠等.电力系统故障计算中互感线路的处理.中国电机工程学报,2002,22(7): 58-61
    [147]曹国臣.变结构电力系统任意复杂故障的快速计算.中国电机工程学报,1995,15(5): 354-360.
    [148]曹国臣.继电保护整定计算中故障计算的通用方法.电网技术, 2002, 22(12): 24-29.
    [149]孙鸣,单永梅.补偿法在继电保护整定计算中的应用.电网技术,2003,27(7):28-31.
    [150]何桦,顾全,柴京慧.任意故障设置下的故障补偿电流计算.电力系统自动化, 2005, 29(6): 84-86.
    [151] X. Zhang, F. Soudi, D. Shirmohammadi, C.Cheng. A distribution short circuit analysis approach using hybrid compensation method. IEEE Transactions on Power System. 1995, 10(4): 2053-2059.
    [152] R.Ramaswami, P.F.McGuire. Integrated coordination and short circuit analysis for system protection. IEEE Transactions on Power Delivery, 1992, 7(3): 1112-1120.
    [153]尹建华,江道灼,韩祯祥.电力系统故障分析的一种新型实用计算机分析算法及在BPA暂态程序中的实现.中国电机工程学报,1999,19(3),71-76.
    [154]王朝瑞.图论.北京:人民教育出版社,1981.
    [155] F.Goderya, A. A. Metwally, O.Mansour. Fast detection and identification islands in power networks. IEEE Transactions on Power Apparatus & Systems, 1980, 99(1) :217-221.
    [156] P. Lagonotte, J.C. SabonnadiGre, J.Y. LCost. Structural analysis of the electrical system application to secondary voltage control in France. IEEE Transactions on Power Systems, 1989, 4(2):479-486.
    [157]陈惠开.应用图论-图与电网络.北京:人民邮电出版社,1990.
    [158] Tarjan R. Depth-First Search and Linear Graph Algorithms. S IAM J. Compute. 1972, 1: 146- 160.
    [159] Men-ShenTsai. Development of islanding early warning mechanism for power systems. Power Engineering Society Summer Meeting, 2000, 1(1):22-26.
    [160] Xu Cheng, T.J.Overbye. PTDF-based power system equivalents. IEEE Transactionson Power Systems, 2005, 20(4):1868-1876.
    [161] M.Bertran, X.Corbella. On the validiation and analysis of a new method for power network connectivity determination. IEEE Transactions on Power Apparatus & Systems, 1982, 101(2):316-324.
    [162] M.Montagna, G P.Granelli. Detection of jacobian singularity and network islanding in power flow computations.IEE Proceedings-Generation, Transmission and Distribution, 1995, 142(6):589-594.
    [163] Sung-Il Jang, Kwang-Ho Kim. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE transaction on power delivery, 2004, 19(2):745-75.
    [164] K.W.Chan, R.W.Dunn, A.R.Daniels. Efficient heuristic partitioning algorithm for parallel processing of large power systems network equations. IEE Proceedings- Generation, Transmission and Distribution, 1995, 142(6): 625– 630.
    [165] J.D.F. McDonald, T.K.Saha. Analytical representation of the relationship between generator design and system fault behavior. IEEE Transactions on Power Systems, 2005, 20(3):1215-1223.
    [166] P.N.Vovos, J.W. Bialek.Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis. IEEE Transactions on Power Systems, 2005, 20(4): 2125-2134.
    [167] P.N.Vovos, J.W. Bialek. Impact of fault level constraints on the economic operation of power systems. IEEE Transactions on Power Systems, 2006, 21(4): 1600-1607.
    [168]何仰赞,温增银,汪馥瑛,等.电力系统分析(第二版).武汉:华中理工大学出版社, 1998.
    [169]米麟书,刘芳宁.电力系统故障的计算机辅助分析.重庆:重庆大学出版社, 1990.
    [170]姜彤.电力系统故障分析及其多态计算方法的研究. [博士学位论文].哈尔滨工业大学, 2002.
    [171]柳焕章,段献忠,李银红,等.电力系统继电保护数据交换标准的探讨.电力系统自动化, 2002, 26(7): 41-44.
    [172]俸玲,王广学,李昌喜.上下级电网保护配合分析计算.继电器, 2001, 28 (11):17-19.
    [173]常风然,张洪,赵春雷,等.单电源辐射线路保护若干问题分析.电力系统自动化,2000,24(13):48-50.
    [174] IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays. IEEETransactions on Power Delivery, 1999, 14(3):868-872.
    [175] C. F. Henville. B. C. Hydro, B.C.Vancouver. Combined use of definite and inverse time overcurrent elements assists in transmission line ground relay coordination. IEEE Transactions on Power Delivery, 1993, 8(7):925-932.
    [176] J.L.J. Lewis Blackburn, Protective relaying principles and applications. New York: Marcel Dekker, 1987.
    [177] S.S.Tarlochan, S.B. David, M.P. Ricardo, et al. A new approach for calculating zone-2 setting of distance relays and tts use in an adaptive protection system. IEEE Transactions on Power Delivery, 2004, 19(1):70-77.
    [178] K Kawahara, H Sasaki, H Sugihara. An application of rule based system to the coordination of directional overcurrent Relays.Conference of.Developments in Power System Protection, 1997, 3.
    [179]冯艳,徐玉琴,沈志强.一种新的基于图论确定所有最小断点集方法.电力自动化设备.2005, 3(25):87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700