含分布式发电的配电网优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球对环境保护和节能问题的日益关注,以及风力发电、光伏发电等可再生能源发电技术的日益成熟,分布式发电(Distributed Generation, DG)技术成为国内外研究的热点。DG具有安装灵活、供电方便、环保等特点,通常DG安装在用户附近以增强负荷的供电可靠性及电能质量。DG接入配电网后,配电网结构和运行控制方式都将发生巨大改变。配电网自动化和需求侧管理需要考虑与DG间的协调控制,使其控制和管理将变得更加复杂。目前,国内外研究者在DG对电力系统的影响方面作了较多的研究,但对DG并网后配电网的优化运行研究得还较少。因此,研究DG并网后的配电网优化运行是大规模DG接入配电网急需解决的问题,具有重要的理论意义和实际意义。本文对含DG的配电网三相潮流算法、含DG的配电网重构与供电恢复、双馈电机风电场并网后的配电网无功优化以及风电场无功优化与配电网重构的间协调控制等方面进行了深入的研究,主要研究成果如下:
     (1)为解决不同类型DG并入配电网后的潮流计算,本文建立了风力发电、光伏电池等不同类型DG在潮流计算中的数学模型,提出了基于前推回代法的可处理PQ、PV节点类型DG的配电网三相潮流算法。根据发电机通常采用电压正序分量幅值作为电压调节参数的原理,将PV节点DG的电压正序分量幅值作为修正变量,采用灵敏度补偿算法计算PV节点无功补偿量。最后通过IEEE34节点系统算例验证了该算法的正确性,并分析了不同类型DG对配电网电压的影响。
     (2)研究了DG并网后配电网在正常运行条件下和故障情况下的重构问题和供电恢复问题。正常运行条件下,提出了一种基于粒子群优化算法的配电网重构和DG注入功率综合优化算法。该算法考虑了DG注入功率对重构的影响,在对电网进行重构的同时将DG作为可调度设备对其注入功率进行优化,提高了DG并网后配电网的电能质量和供电可靠性。当配电网发生严重故障引起大面积停电时,考虑DG并网后孤岛效应产生的影响,提出了一种利用DG孤岛效应的配电网供电恢复算法。该算法首先将DG按孤岛划分方案转入孤岛运行模式维持对孤岛内重要负荷供电,然后采用基于二进制粒子群优化算法的供电恢复算法对孤岛外非故障停电区域进行供电恢复。最后,通过算例验证了该算法的有效性。
     (3)研究了双馈电机风电场并网后的配电网无功优化问题。建立了双馈感应风电机组的稳态数学模型,分析了双馈感应风电机组的P-Q容量极限,根据双馈感应风电机组灵活的无功调节能力提出在最大效率利用风能前提下,将双馈电机风电场作为连续无功源参与配电网无功优化。该算法将风电场在不同风速条件下的无功出力极限作为约束条件,考虑了风电场无功调节极限与风电场并网点电压和风速间的关系,最后以系统有功功率损耗和电压偏差最小为目标函数,采用粒子群优化算法对含双馈电机风电场的配电网无功优化问题进行了求解。研究结果表明,利用双馈感应风电机组灵活的无功调节能力,将双馈电机风电场作为连续无功源参与配电网无功电压调节能大大节省风电场并网后额外安装大容量无功补偿装置产生的配置费用,并能有效解决传统配电网无功调压手段因调节离散化、调节速度慢、难以实现风电场并网后电压连续调节等问题。
     (4)鉴于配电网络无功优化和重构是配电网络优化运行的两种主要措施,本文提出了一种含小波变异算子混合粒子群优化算法的风电场无功优化控制与配电网络重构的综合优化算法。该算法将双馈电机风电场无功功率和配电网转换开关状态作为控制变量,在优化网络结构的同时寻求风电场最优无功出力以达到系统有功功率损耗最低和电压偏差最小的目的。研究结果表明该算法相对于单独进行风电场无功优化控制或配电网重构能进一步降低系统有功功率损耗和提高电压质量,实现了风电机组无功优化控制与配电网重构间的协调控制。
In recent years, along with increasing global concerns for environmental protection and energy saving issues, and with wind power, photovoltaic power generation and other renewable energy technologies becoming more sophisticated, the Distributed Generation (DG) technology has become a hot research topic. Therefore, after DG connected into the distribution network, the distribution network structure, operation and control mode will be tremendous changed, and the distribution automation and demand side management need to consider the coordination between DG and distribution network control, distribution system control and management will become more complex. At present, domestic and foreign researchers have done much research in the DG impact on the power system, but few of them studied on the distribution system optimal operation with grid-connected DG. Thus, study of the distribution system optimal operation after DG connected in the distribution network become an urgent need when large-scale DG access to distribution network, it have important theoretical and practical significance.
     In this dissertation, the distribution network optimal operation with grid-connected DG is studied. The contributions of this dissertation are summarized as follows:
     (1) To calculate the power flow of distribution network connected with various DG, a three phase power flow algorithm based on forward and backward substitutions that can cope with DG modeled as PV or PQ nodes is proposed. First, the models of the wind turbines, photovoltaic system in power flow calculation are presented. During the coping with DG modeled as a PV node, the positive sequence voltage magnitude of PV node is used as voltage regulating parameter, which represents the automatic voltage regulation mechanism of a generating unit properly. The sensitivity compensation method is used to calculate the amount of reactive power compensation of PV node. Finally, the correctness of the proposed algorithm is verified by the calculation results of IEEE34-bus test system, and the impacts of various type of DG on distribution network voltage are researched.
     (2) In this dissertation, based on the PSO, a joint optimization algorithm of network reconfiguration and injected power of DG is proposed. In this algorithm, the reconfiguration result influenced by the DG injected power is considered and the DG is treated as a dispatchable device. Through combining the network reconfiguration and the DG power injection optimization simultaneously, the power quality and power supply reliability of the distribution network are improved. When serious failures result in large area power blackout, a distribution system service restoration method using DG islanding technique is proposed. In this algorithm, DG switch to the islanding operation mode using islanding algorithm to maintain the power supply for the important load first, then a service restoration method based on the binary particle swarm optimization is proposed to restore non-failure power blackout area outside the islanding. Finally, the correctness of the proposed algorithm is verified.
     (3) In this dissertation, the reactive power optimization algorithm in distribution network considering doubly fed induction generator (DFIG) wind farm is proposed. First, the mathematical model of the DFIG wind turbine is developed, and the reactive power generation and absorption capacity for each generated active power of the DFIG wind turbine is analyzed. Utilizing the reactive power regulation capability of DFIG, wind farm made up with doubly fed induction generators is proposed to use as the continuous reactive power source to take part in the reactive power optimization in distribution network. In the proposed algorithm, the reactive power output of the wind farm is utilized as the constraint, and the relationship between the wind farm reactive power regulation capacity and the connection point voltage and the wind speed is considered, finally, the real power loss minimization is chose as the objective function and the particle swarm optimization algorithm is applied to solve the problem.
     (4) Considering both the distribution network reactive power optimization and reconfiguration are two main measures to optimize distribution networks, a joint optimization algorithm based on an improved hybrid particle swarm optimization with wavelet mutation algorithm (HPSOWM) combining reactive power control of wind farm and network reconfiguration is proposed. In the proposed joint optimization algorithm, reactive power output of wind farm and status of switches are utilized as the control variable to find the optimal network structure and the optimal reactive power output of wind farm for losses minimization and voltage profile improvement. The simulation results show that the joint optimization algorithm gets better solution results than using the wind farm reactive power control optimization or the network reconfiguration alone.
引文
[1]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术, 2003, 27(12):71-75.
    [2]胡学浩.分布式发电技术及其并网问题[J].电工技术杂志,2004(10):1-5.
    [3]丁明,王敏.分布式发电技术[J].电力自动化设备, 2004, 24(7):31-36.
    [4] Willis H L, Scott W G. Distributed Power Generation Planning and Evaluation[M]. New York: Marcel Decker, Inc, 2000.
    [5] Borbely A M, Kreider J F. Distributed Generation[M]. Baca Raton London & New York Washington, D.C.CRC Press. American, Nov, 2003.
    [6]王建,李兴源,邱晓燕.含分布式发电装置的电力系统研究综述[J].电力系统自动化, 2005, 29(24):90-97.
    [7] EI-Khattam W, Salama M M A. Distributed Generation Technologies, Definitions And Benefits[J]. Electric power system research, 2004, 71: 119-128.
    [8] Peter A D, Jay M. Understanding the Potential Benefits of Distributed Generation on Power Delivery Systems[C]. Rural electric power conference: IEEE, 2001,Vol 29:A2/1-A213.
    [9] Iyer H, Ray S, Ramakumar R. Assessment of Distributed Generation Based on Voltage Profile Improvement and Line Loss Reduction[C]. IEEE Transmission and Distribution Conference and Exhibition, 2006: 1171-1176.
    [10] Maurhoff B, Wood G. Dispersed Generation-Reduce Power Costs and Improve Service Reliability[C]. Rural electric power conference: IEEE, 2000: C5/1-C5/7.
    [11]王长贵,崔容强,周簧.新能源发电技术[M].北京:中国电力出版社, 2003.
    [12]熊一权.燃料电池发电技术[M].中国电力,1998, 31(9):61-64.
    [13]吴汕,梅天华.分布式发电引起的电压波动和闪变[J].能源工程.2006(04):55-60.
    [14]王志群,朱守真,周双喜.分布式发电对配电网电压的影响[J].电力系统自动化, 28(16),2004: 56-60.
    [15] Ijumba N M, Jimoh A A, Nkabinde M. Influence of Distribution Generation on Distribution Network Performance[C]. 5th African conference in Afica, Cape Town, South Africa, September, 1999(2): 961-964.
    [16] Mori H, Sakatani Y. Application of Probabilistic Security Assessment Technique to Distribution System with Distributed Generation[C]. Proc of IEEE power engineering society transmission and distribution conference, Asia pacific, 2002, 739-744.
    [17] P. Chiradeja. Benefit of Distributed Generation: A Line Loss Reduction Analysis[C].IEEE/PES Transmission and Distribution Conference& Exhibition: Asia and Pacific Dalian, China, 2005.
    [18]王成山,郑海峰,谢莹华,陈恺.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化, 2005, 29(24):39-45 .
    [19] Naka S, Genji T, Fukuyama Y. Practical Equipment Models for Fast Distribution Power Flow Considering Interconnection of Distributed Generators[C]. In: Proceedings of IEEE Power Engineering Society 2001 Summer Meeting Vancouver, Canada, 2001(2):1007-1012.
    [20] Feijoo A E, Cidras J. Modeling of Wind Farms in The Load Flow Analysis[J]. IEEE Trans on Power Systems, 2000, 15(1):110-115.
    [21] Y. Zhu and K. Tomsovic, Adaptive Power Flow Method for Distribution Systems with Dispersed Generation[J]. IEEE Transactions on Power Delivery, 2002, 17(13): 322-327.
    [22]陈海焱,陈金富,段献忠.含分布式发电的配电网潮流计算[J].电力系统自动化. 2006, 30(1):35-40.
    [23] Carol S. Cheng, Dariush Shirmohammadi. A Three-Phase Power Flow Method for Real-Time Distribution System Analysis[J]. IEEE Transactions on Power Delivery, 10(2), May,1995.
    [24] Nara K, Hayashi Y, Ikeda K, et al. Application of Tabu Search to Optimal Placement of Distributed Generators[C]. IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 2001.
    [25] Hamedani G M E, Arefifar S A. Distributed Generation, Reactive Sources and Network-Configuration Planning for Power and Energy Loss Reduction[C]. IEE Proceedings of Generation, Transmission and Distribution, 2006, 153(2):127-136.
    [26]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化,2007,31(3):19-23.
    [27]陈海焱,陈金富,杨雄平,等,配电网中计及短路电流约束的分布式发电规划[J].电力系统自动化,2006,30(21): 16-21.
    [28]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容[J].电力系统自动化,2006,30(3): 38-43.
    [29] Yiming Mao, Miu K. Switch Placement to Improve System Reliability for Radial Distribution Systems with Distributed Generation[C]. IEEE Power Engineering Society General Meeting, June 2004.
    [30] Jian Wang, Longyun Kang, Binggang Cao, Liuchen Chang. Reliability Study of A Distributed Generation System Based on Renewable Energy[C]. Conference on Electrical and Computer Engineering, May 2005.
    [31] H Falaghi, M.R Haghifam. Distributed Generation Impacts on Electric Distribution Systems Reliability:Sensitivity Analysis[C]. The International Conference on Computer as A Tool, 2005.
    [32] Duttagupta S S, Singh C. A Reliability Assessment Methodology for Distribution Systems with Distributed Generation[C]. IEEE Power Engineering Society General Meeting, June 2006.
    [33] Andrade W S, Borges C L T, Falcao D M. Modeling Reliability Aspects of Distributed Generation Connected to Distribution Systems[C]. IEEE Power Engineering Society General Meeting, June 2006.
    [34] Bae I. S, Kim J. O. Reliability Evaluation of Distributed Generation Based on Operation Mode, IEEE Transactions on Power Systems[J]. 2007, 22(2):785-790.
    [35] Carpaneto E, Chicco G, Prunotto A. Reliability of Reconfigurable Distribution Systems Including Distributed Generation[C]. Probabilistic Methods Applied to Power Systems International Conference, June 2006.
    [36] Neto A C, da Silva M G, Rodrigues A B. Impact of Distributed Generation on Reliability Evaluation of Radial Distribution Systems under Network Constraints[C]. Probabilistic Methods Applied to Power Systems International Conference, June 2006.
    [37] Chaitusaney S, Yokoyama A. Reliability Analysis of Distribution System with Distributed Generation Considering Loss of Protection Coordination[C]. Probabilistic Methods Applied to Power Systems International Conference, June 2006.
    [38]刘传铨,张焰,计及分布式电源的配电网供电可靠性[J].电力系统自动化, 2007, 31(22): 46-60.
    [39] Ackermann T, Andersson G, Soder L. Distributed Generation: A Definition [J]. Electric Power System Research, 2001, 5(7): 195-204.
    [40]张颖颖,曹广益,朱新坚,等.燃料电池:有前途的分布式发电技术[J].电网技术, 2005, 29(2):57-61.
    [41]赵豫,于尔铿.新型分散式发电装置:微型燃气轮机[J].电网技术, 2005, 29(12):27-32.
    [42]沈海权,李庚银,周明.燃料电池和微型燃气轮机的动态模型综述[J].电网技术,2004, 28(14):79-82.
    [43]雷亚洲,Gordon L.国外风力发电导则及动态模型简介[J].电网技术, 2005, 29(12):27-32.
    [44]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [45]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [46]陈海焱,段献忠,陈金富,等.计及配网静态电压稳定约束的分布式发电规划模型与算法[J].电网技术,2006,30(21):11-14.
    [47]王守相,黄丽娟,王成山,等.分布式发电系统不平衡三相潮流计算[J].电力自动化设备,2007,27(8):11-15.
    [48]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报,2003,23(1):74-79.
    [49] S K Goswami, S K Basu. A new Algorithm for The Reconfiguration of Distribution Feeders for Loss Minimization[J]. IEEE Trans.on Power Delivery, l992, 7(3): l484-149l.
    [50]王守相,王成山.现代配电系统分析[M].北京高等教育出版社,2007.
    [51] Sun D I H, Abe S, Shoults R R, Chen M. S. Calculation Of Energy Losses in A Distribution System[J]. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(4):1347-1356.
    [52] S K Goswami, S K Basu. Direct Solution of Distribution Systems[C]. Proceedings Of IEE.Part C. 1991, l38(1):78~88.
    [53] Fang Zhang, Carol S Cheng. A Modified Newton Method for Radial Distribution System Power Flow Analysis[J].1EEE Trans. on Power Systems, 1997,12(1):389~397.
    [54] Jen-Hao Teng, Whe Min Lin. Current-Based Power Flow Solutions for Distribution Systems[C]. ICPST Beijing, China, l994:414-418.
    [55] Ray D Zimrnerman, Hsiao Dong Chiang. Fast decoupled Power Flow for Unbalanced Radial Distribution Systems[J]. IEEE Trars. on Power Systems, l995,10(4):2045-2051.
    [56] Chen T H, Chen M S, Hwang K J, P Kotas and E Cbebli. Distribution System Power Flow Analysis A-Rigid Approach[J]. IEEE Trans. on Power Delivery, l991, 6(3):1146-l152.
    [57] Kersting W H. Radial Distribution Test Feeders[C]. Proceedings of IEEE PES Winter Meeting, Columbus, USA, 2001:908-912.
    [58]余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构[J].中国电机工程学报,2000,20(9):44~49.
    [59]葛少云,刘自发,余贻鑫.基于改进禁忌搜索的配电网重构[J].电网技术,2004,28(23):22-26.
    [60]靳晓凌,赵建国.基于改进二进制粒子群优化算法的负荷均衡化配电网重构[J].电网技术,2005,29(23):40-43.
    [61]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-76.
    [62]钱科军,袁越,Zhou Chengke.分布式发电对配电网可靠性的影响研究[J].电网技术,2008,32(11):74-79.
    [63] Goswami S K, Basu S K. A new Algorithm for The Reconfiguration of Distribution Feeders for Loss Minimization[J]. IEEE Transactions on Power Delivery, 1992, 7(3):1484-1491.
    [64]邓佑满,张伯明,相年德.配电网络重构的改进最优流模式算法[J].电网技术,1995,19(7): 47-50.
    [65]刘蔚,韩祯祥.基于时间区间的配电网重构[J].电力系统自动化,2006,30(10):33-38.
    [66] Chen C S, Cho M Y. Energy Loss Reduction by Critical Switches[J]. IEEE Transactions on Power Delivery, 1993, 8 (3):1246-1253.
    [67] Lin W M, Chin H C. A New Approach for Distribution Feeder Reconfiguration for Loss Reduction and Service Restoration[J]. IEEE Transactions on Power Delivery, 1998, 13(3):870-875.
    [68]张栋,张刘春,傅正财.配电网络重构的快速支路交换算法[J].电网技术,2005 ,29( 09 ):82-85.
    [69]车仁飞,李仁俊.一种大规模配电网实时重构新方法[J].电力系统自动化, 2004,28(01):59-63.
    [70]毕鹏翔,刘健,张文元.配电网络重构的改进支路交换法[J].中国电机工程学报,2001,21(08):98-103.
    [71]王毅.基于改进自适应遗传算法的配电网络重构.电力自动化设备[J].2005,25(12),45-48.
    [72] Chiang H D, Rene J J. Optimal network reconfigurations in distribution systems: Part 1:A New Formulation and Solution Methodology[J]. IEEE Transactions on Power Delivery, 1990, 5 (4):1902-1909.
    [73] Jiang D, Baldick R. Optimal Electric Distribution System Switch Reconfiguration and Capacitor Control[J]. IEEE Transactions on Power Systems, 1996,11(2): 890-897.
    [74] Jeon, Y J, Kim JC ,Kim JO ,etal. An Efficient Simulate Dannealing Algorithm for Network Reconfiguration in Large-Scale Distribution Systems[J]. IEEE Transactions on Power Delivery, 2002,17(4):1070-1078.
    [75]刘莉,宛力,陈学允.模糊遗传算法在配电网络综合优化中的应用[J].电力自动化设备,2001,21(01):14-16.
    [76]王伟,张粒子,麻秀范.基于模糊综合评价的结构元中压配电网规划[J].电力系统自动化,2006,30(12):42 -46.
    [77]陈根军,李袭洗,唐国庆.基于Tabu搜索的配电网络重构算法[J].中国电机工程学报, 2002, 22(10):28-33.
    [78] Zhang D, Fu Z, Zhang L.An Improved TS Algorithm for Loss-Minimum Reconfiguration in Large-Scale Distribution Systems[J]. Electric Power Systems Research, 2007, 77(5-6):685-694.
    [79]甘学涛,宋喜,王志刚等.基于蚁群算法的配电网络重构模型及其应用[J].西北农林科技大学学报,2005,33(5):157-160.
    [80] Enrico Carpaneto, Gianfranco Chicco. Ant-Colony Search-Based Minimum Losses Reconfiguration of Distribution Systems[J]. IEEE Melecon 2004.
    [81]袁晓辉,王乘,张勇传等.粒子群优化算法在电力系统中的应用[J].电网技术,2004,19(28):14-19.
    [82]刘自发,葛少云,余贻鑫.一种混合智能算法在配电网络重构中的应用[J].中国电机工程学报,2005,25(15):73-78.
    [83] Kennedy J, Eberhart R. Particle Swarm Optimization[C]. Proceedings of IEEE Conference on Neural Networks, Perth, Australia, 1995.
    [84] Kennedy J, Eberhart R. A Discrete Binary Version of The Particle Swarm Algorithm[C]. Proceeding of IEEE International Conference on Systems, Man, and Cybernetice, Orlando, USA, 1997.
    [85] Eberhart, Yuhui Shi, Particle Swarm Optimization: Developments, Application and Resources[C]. Proceedings of 2001 Congress on Evolutionary Computation, 2001(1):81-86.
    [86] Civanlar S, Grainger J J, Yin H, et a1. Distribution Feeder Reconfiguration for Loss Reduction[J]. IEEE Trans on Delivery, 1988, 3(7): 1217-1223.
    [87]卢志刚,董玉香.含分布式电源的配电网供电恢复策略[J].电力系统自动化, 2007,31(1): 89-94.
    [88] Celli G, Mocci S, Pilo F. Improvement of Reliability in Active Networks with Intentional Islanding[C]. Proc. of 2nd DRPT conference, Hong Kong, April 5-8, 2004.
    [89]刘传铨,张焰.计及分布式电源的配电网供电可靠性.电力系统自动化,2007,31(22):46-50.
    [90] Bower W, Ropp M. Evaluation of Islanding Detection Methods for Photovoltaic Utility. International Energy Agency, Report IEA PVPS T5-09:2002, http://www.iea-pvps.org.
    [91]易新,陆于平.分布式发电条件下的配电网孤岛划分算法[J].电网技术,2006,30 (7):50~54.
    [92] Baran M E, Wu F F. Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing[J]. IEEE Transactions on Power Delivery. 1989, 4(2):1401-1407.
    [93] LIANG R H,CHENG C K. Dispatch of Main Transformer ULTC and Capacitors in A Distribution System[J]. IEEE Trans on Power Delivery, 2001, 16(4):625-630.
    [94]胡泽春,王锡凡.配电网无功优化的分时段控制策略[J].电力系统自动化,2002,26(6):45-49.
    [95]刘明波,朱春明,钱康龄,等.计及控制设备动作次数约束的动态无功优化算法[J].中国电机工程学报,2004,24(3):34-40.
    [96]颜伟,田甜,张海兵,考虑相邻时段投切次数约束的动态无功优化启发式策略,电力系统自动化,2008,32(10):71-76.
    [97]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(3):26-29.
    [98] J. Wiik, J.O. Gjerde,T. Gjengedal, et al. Steady State Power System Issues When Planning Large Wind Farms[C]. IEEE Power Engineering Society Winter Meeting[C].2002,1:366-371.
    [99] A. Tapia , G. Tapia, J.X. Ostolaza. Reactive Power Control Of Wind Farms for Voltage Control Applications[J]. Renewable Energy, 2004, 29(3):377-392.
    [100]李晶,李建林,许洪华.基于配电网无功优化的变速恒频双馈风电机群控制策略[J].电网技术, 2006,30 (15):59-64
    [101]郎永强,张学广,徐殿国,马洪飞,Hadianmrei S.R.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报, 2007,27(9):77-82.
    [102]陈琳,钟金,倪以信.含分布式发电的配电网无功优化[J],电力系统自动化,2006,30 (14):20-25.
    [103]陈海焱,陈金富,段献忠.含风电机组的配网无功优化[J].中国电机工程学报, 2008,3(5):40-46.
    [104] L Jiao, BT Ooi, G Joós, F Zhou, Doubly-Fed Induction Generator (DFIG) as A Hybrid of Asynchronous and Synchronous Machines[J]. Electric Power Systems Research, 2005, 76(3): 33-37.
    [105]刘其辉.变速恒频风力发电系统运与控制研究[D].博士论文.浙江大学电气工程学院,2005.
    [106]肖运启.双馈型风力发电机励磁控制与优化运行研究[D].博士学位论文.华北电力大学. 2008.
    [107] D. J.Atkinson, R. A. Lakin, and R. Jones. A Vector-Controlled Doubly-Fed Induction Generator for A Variable-Speed Wind Turbine Application[J]. Trans. Inst. Measurement and Control, 1997, 19(1):2-12.
    [108] R. S. Pe?na, J. C. Clare, and G. M. Asher. Vector Control of A Variable Speed Doubly Fed Induction Machine for Wind Generation Systems[J]. EPE Journal, 1996, 6(3):67-67.
    [109] A. Tapia, G. Tapia, J. X. Ostolaza, and J. R. S′aenz. Modeling and Control of A Wind Turbine Driven Doubly Fed Induction Generator[J]. IEEE Trans. Energy Convers., 2003, 12(2) :194-204.
    [110] Santos-Martin D, Arnaltes S, Amenedo J LR. Reactive Power Capability of Doubly Fed Asynchronous Generators[J]. Electric Power Systems Research, 2008, 78(11) :1837-1840.
    [111]申洪.变速恒频风电机组并网运行模型研究及其应用[D],博士学位论文,北京,中国电力科学研究院,2003.
    [112] G. Tapia, A. Tapia, and J. X. Ostolaza. Two Alternative Modeling Approaches for theEvaluation of Wind Farm Active and Reactive Power Performances[J]. IEEE Transactions on Energy Conversion, 2006, 21(4): 909-921.
    [113]陈金富,陈海焱,段献忠,等.含大型风电场的电力系统多时段动态优化潮流[J].中国电机工程学报,2006,26(3):31-35.
    [114] D. Jiang and R. Baldick. Optimal Electric Distribution System Switch Reconfiguration and Capacitor Control[J]. IEEE Trans. on Power Syst., vol. 11, no. 2, pp. 890–897, May 1996.
    [115] C. T. Su and C. S. Lee. Feeder Reconfiguration and Capacitor Setting for Loss Reduction of Distribution Systems[J]. Elect. Power Syst. Res., vol.58, no. 2, pp. 97–102, Jun. 2001.
    [116] D. Zhang, Z.C. Fu, and L.C. Zhang. Joint Optimization Or Power Loss Reduction In Distribution Systems[J]. IEEE Trans. on Power Syst., vol. 23, no. 1, pp. 161–170, Feb. 2008.
    [117] C.F. Chang. Reconfiguration and Capacitor Placement for Loss Reduction of Distribution Systems by Ant Colony Search Algorithm[J]. IEEE Trans. on Power Syst., vol. 23, no. 4, pp. 1747–1755, Nov. 2008.
    [118] C. F. Juang. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design[J]. IEEE Trans. Syst., Man, Cybern. B, Cybern., 2004,34(2):997–1006.
    [119] A. A. E. Ahmed, L. T. Germano, and Z. C. Antonio. A Hybrid Particle Swarm Optimization Applied to Loss Power Minimization[J]. IEEE Trans. Power Syst., 2005, 20(2):859–866.
    [120] Ling S H, Iu C H H, Chan K Y, et al. Hybrid Particle Swarm Optimization with Wavelet Mutation and Its Industrial Applications[J]. IEEE Transactions on Systems, Man and Cybernetics-PartB: Cybernetics. 2008, 38(3):743–764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700