某轿车车轮的有限元分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题主要是根据实际需要选题,为降低产品的成本,根据车轮台架试验对车轮进行有限元分析及优化设计[1]。以某轿车的钢制车轮为分析对象,构建从产品建模、应力分析、模态分析、疲劳分析到优化设计为一体的仿真分析。为开发设计人员提供设计依据,使设计人员在产品开发之前就能够预测其应力分布、变形和使用寿命等,进而降低产品的开发周期和成本。具体研究工作如下:
     (1)本文的轿车车轮为两件式,包括轮辐和轮辋,轮辐和轮辋通过过盈装配及焊接连接。为了更好的模拟过盈装配对车轮的影响,应用弹塑性理论对车轮进行了过盈装配分析,分析结果中表明只有轮辋发生了塑性变形,但是经过后期的热处理等工艺,可以将过盈产生的残余应力消除。
     (2)对车轮的螺栓预紧力进行了模拟,采用梁单元来模拟螺栓,并用温度载荷法给梁单元施加预紧力,通过分析可知螺栓的预紧力对车轮的影响较小,可以忽略不计。
     (3)根据国家标准,对车轮进行了弯曲和径向应力分析,由于车轮具有对称性,所以对车轮进行了正对螺栓孔和正对两螺栓孔中间的两种工况的分析。
     在对车轮进行径向应力分析时,在不考虑应力集中的情况下,轮辐的危险点出现在螺栓孔处,轮辋的危险点出现在轮辋两边的凸起处,但车轮的整体强度足够。
     对于弯曲应力分析,因为螺栓孔处为加载位置,所以螺栓孔处出现了应力集中,除应力集中外,轮辐和轮辋都有一定的强度储备,车轮处于安全状态。为了后续仿真计算,提出了车轮简化模型,并验证了其简化的合理性。
     (4)由于车轮的破坏主要是弯曲疲劳破坏,所以为了深入研究车轮在弯曲疲劳试验下车轮的振动特性,对车轮进行了弯曲工况下的模态分析,并提取前12阶模态,分析结果表明,车轮振动特性符合要求。
     (5)为了更好地预测车轮的疲劳寿命,用ANSYS中的Fatigue模块对车轮进行了弯曲疲劳寿命分析[2],预测车轮的疲劳破坏位置和使用寿命,为设计人员提供指导意义。
     (6)利用ANSYS中的优化模块,对车轮的轮辐进行了优化设计,结果表明,在保证车轮不发生共振和疲劳破坏的前提下,优化后的车轮质量减轻了4.32%,材料得到了充分利用,达到了降低生产成本的目的。
This topic is mainly according to actual needs to reduce the cost of the product, according to the wheel to wheel bench finite element analysis and optimization, the method is a collection of product modeling, stress analysis, model analysis, and fatigue analysis and optimization design as one of the simulation based on the car steel wheel. It can provides design basis for designers, makes the designers predict the stress distribution, deformation and service life before product development,then reducing product development cycle and cost. Specific studies are as follows:
     (1)This text of car wheel is two-piece, including the spoke and rim, the connection of spoke and rim through interfere fit and weld. In order to simulate the influence of interfere fit to wheel accurately; we used elastic-plastic theory to analyze. There is only plastic deformation on rim in the analysis results. But after the later heat treatment process, the interference can be generated by residual stress eliminated.
     (2)Simulated the preload of wheel bolts, using beam elements to simulate the bolts, and the beam elements were loaded by temperature load method. The result shows that the influence of bolts preload to the wheel is slight.
     (3)According to National Standards, analyze the bending and the radial stress of the wheel. Because of the symmetric of wheel, two analysis conditions were chosen, the wheel bolt holes and the middle of two bolt holes.
     When analyzed the radial stress, without considering the stress concentration in the case, the dangerous points of spoke appear on the bolt holes, and the dangerous points of rim appear on both sides of the protrusions.However, the overall strength of the wheel is enough.
     When analyzed the bending, because the bolt hole is loaded position, so there is a stress concentration around the bolt hole. Both of the spoke and rim have additional strength reserved except the stress concentration, so that the wheel is safe.
     Proposed the simplified model of the wheel for the simulation following, and verified the reasonableness.
     (4)For the main damage of wheel is bending fatigue, the modal analysis of wheel is discussed, which to study the vibration characteristics of the wheel in the bending fatigue test deeply. Extracting the preceding twelve models proved that the vibration characteristics of the wheel to meet the requirements there was no resonance upon the wheel.
     (5)In order to exactly predict the fatigue life of the wheel, we analyzed the bending fatigue life of the wheel using Fatigue in ANSYS,predicted the fatigue failure location and the wheel life, provided guidance for the designer.
     (6)Take use of the optimization module of ANSYS,optimized the wheel spoke. The result shows that the mass of spoke reduced by 4.32%.The material has been fully utilized to achieve lower the production cost.
引文
[1]陈玉发.铝合金车轮有限元分析与疲劳寿命预测[D].南京:南京理工大学,2008(11).
    [2]闫胜昝.铝合金车轮结构设计有限元分析与实验研究[D].浙江:浙江大学,2008.
    [3] Anton wimmer and Jurgen Petersen.Road Stress Resistance and Lighweight Construction of Automobile Road Wheel[J].SAE Paper 990713.
    [4] Miloslav Riesner and Richard I. DeVries.Finite Element Analysis and Structural Optimization of Vehicle Wheels [J]. SAE Paper 930133.
    [5] Vatroslav Grubisic and Gerhard Fischer. Automotive Wheels, Method and Procedure for Optimal Design and Testing [J].SAE Paper 930135.
    [6] Marek Pajda and Dr.Adam Dacko.Modeling of a Car Disk Wheel with MSC. Nastran for Windows.MSC [J].Software User Conference.1998.5.
    [7] U.Kocabicak, M.Firat.A simple approach for multiaxial fatigue damage prediction based on FEM post-processing [J].Material and Design, 2004, (25):73~82.
    [8] G.Marron and P.Verrier.A New Concept for Lighter Steel Wheels.SAE Paper. 1999-01-0783.
    [9] Automating Fatigue Predictions Cut Material Costs for Wheel Manufacturer Hayes-Lemmerz. MSC.Software Success Stories, 1999.
    [10] Yeh-Liang Hsu, Ming-Sho Hsu.Weight Reduction of Aluminum Disc Wheels under Fatigue Constraints Using A Sequential Neural Network Approximation Method [J].Computers in Industry.Taiwan.Vol. 46/2, October 2001.
    [11]王立辉.铝合金车轮的强度分析及优化设计[D].河北工业大学,2002.
    [12]傅盛,夏复兴,袁庆丰.轿车车轮钢圈强度的有限元分析[J].机电一体,2003,(4):34~35.
    [13]赵震伟.钢圈弯曲强度的分析和试验方法的研究[D].北京:清华大学,2000.
    [14]王波.钢圈弯曲强度有限元分析及设计[D].北京:清华大学,2001.
    [15]李艳霞.对精冲机三个关键技术问题的研究[D].重庆:重庆理工大学,2009.
    [16]张晨光.铝合金轮毂的造型设计与结构分析[D].河北:河北工业大学,2000.
    [17]戴禹.重型卡车驾驶室数值模态分析与结构优化[D].吉林:吉林大学,2008.
    [18] Wheel Standards Committee. Wheels--Passenger Car and Light Truck Performance Requirements and Test Procedures.SAE Standard.J328, 2005.
    [19]张国智.轿车铝合金车轮轮毂台架试验的有限元数值模拟[D].燕山:燕山大学,2005.
    [20]中华人民共和国国家技术监督局.GB/T5334-1995.中华人民共和国国家标准—轿车钢制车轮性能要求和试验方法.北京:国家技术监督局,1995.
    [21]洪小军.载重汽车底盘结构件的计算机辅助分析与设计[D].安徽:合肥工业大学,2008.
    [22]谭庆昌,赵洪志.机械设计[M].北京:高等教育出版社,2004:31~57.
    [23]博嘉科技.有限元分析软件—ANSYS融会与贯通[M].北京:中国水利水电出版社,2002.
    [24]叶红,颜廷武,刘元胜.法兰连接中的螺栓预紧力[J].有色矿冶,2005,21(3):46~48.
    [25]李会勋,胡迎春,张建中.利用ANSYS模拟螺栓预紧力的研究[J].山东:山东科技大学学报,2006,25(1):57~59.
    [26]曹树谦,张文德.振动结构模态分析理论、实验与应用[M].天津:天律大学出版社,2001.
    [27]杨明,张秀良,闫浩.模态分析理论在汽轮发电机试验中的应用[J].吉林电力,2004(6):48~50.
    [28]管迪华.模态分析技术[M].北京:清华大学出版社,1999.
    [29]张先刚,朱平等.摩托车车架的动态特性分析及其减振优化研究[J],中国机械工程,2005,(12):1114~1115.
    [30]隋允康,杜家政,彭细荣.MSC.Nastran有限元动力分析与优化设计实用教程(第l版)[M].北京:科学出版社,2004:157~184.
    [31]胡少伟,苗同臣.结构振动理论及其应用[D].北京:中国建筑工业出版社,2005.
    [32]载货汽车车轮性能要求和试验方法.GB/T5909-1995.中华人民共和国国家标准.
    [33]王德尊.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,1993.
    [34]李舜酩.机械疲劳与可靠性设计(第1版)[M].北京:科学出版社, 2006:162~175.
    [35]徐颧.疲劳强度(第1版)[M].北京:高等教育出版社,1988.
    [36]周传月,郑红霞,罗慧强等.MSC.Fatigue疲劳分析应用与实例(第1版)[M].北京:科学出版社,2005:45~52.
    [37]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003:1~2.
    [38]王彦伟,罗继伟等.基于有限元的疲劳分析方法及实践[J].机械设计与制造,2008,(1):22~24.
    [39]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994:78~84.
    [40]张向,杨庆雄.带孔元件裂纹形成及扩展的全寿命计算方法[J].西北工业大学学报,1984,2(4):381~392.
    [41]毛健.特大跨钢桁系杆拱桥有关问题研究[D].重庆:重庆交通大学,2009.
    [42]周祖勇.钢桥纵梁与横梁交叉节点疲劳寿命研究[D].重庆:重庆交通大学,2008.
    [43]赵少沛,王忠保.抗疲劳设计一方法与数据[M].北京:机械工业出版社,1997,325~336.
    [44]鲁三才.汽车零件的可靠性优化设计[J].汽车科技,1995,(5):1~4.
    [45]吴军,袁昌松,汤文成.基于ANSYS分析的机架优化设计[J].机械制造与研究.2006,35(1):35~37.
    [46]杨雅萍.潮湿路段耐久性沥青路面支撑结构优化设计[D].陕西:长安大学,2010.
    [47]刘品强.刮板输送机中部槽的强度分析及优化[D].河北:河北工业大学,2007.
    [48]姜燕清.高速地铁列车动车车体建模分析与优化[D].南京:东南大学,2006.
    [49]刘国军.复合材料汽车车轮的强度分析及优化设计[D].哈尔滨:哈尔滨工业大学,2006.
    [50]韩林山.机械优化设计[M].黄河水利出版社.2003:7~10.
    [51] Y.C.Fu, H.J.Xu, J.H.Xu.Optimization design of grinding wheel topography for high efficiency grinding [J].Journal of Materials Processing Technology. 2002.
    [52]孙红梅.轿车铝合金车轮模态计算和优化设计[D].燕山:燕山大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700