环境和生物体金属元素的痕量分析及形态分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
痕量分析和化学形态分析是国际上现代分析化学的前沿课题,对于生态环境的研究与保护具有重要的学术意义和实用价值。痕量分析研究为锡筛选出最佳基体改进剂,硝酸锶可使锡的允许灰化温度明显提高,灵敏度和检出限分别改善45倍和51倍,显著优于文献报道值。结合扫描电镜、X-射线光电子能谱和二元合金相图研究揭示出基体改进机理和原子化机理。将基体改进及与悬浮进样有机结合为粉煤灰和环境水体痕量锡的直接测定建立了灵敏可靠的新方法。为HG-AAS常规信号和导数信号分别建立了数学模型和动力学方程,提出了直接测定环境样品中锡的导数—HGAAS分析新方法,其灵敏度较常规法提高43倍。分子吸收光谱研究也为化工废水痕量锡的分析优选出高灵敏度显色反应体系。药用植物元素的痕量分析研究首次为3种药用植物中Se,Ge,Zn,Fe,Cu,Mn等6种有益元素和6种中草药中的锰及灵芝和香菇中的Ge建立了系列高灵敏度GFAAS新方法,并探讨了元素含量与药用价值的关系。研制出超短柱GC-AAS联机技术并首次成功地用于汞和混苯类化合物的分离分析。发现了无机形态汞进入人体后可发生烷基化而产生了Me_2Hg和MeHgCl,同一人体同一形态烷基汞在血细胞、血浆和尿液中的浓度依次降低。提出了摄汞小白鼠体内以肾脏蓄积为主的无机汞的分布规律。建立了CGC—AAS联用体系并应用于锡的化学形态分析。探讨了以三苯基氯化锡为代表的有机污染物对斜生栅藻生长的影响,斜生栅藻对三苯基锡有一定的降解作用,但三苯基锡浓度超过4μg·L~(-1),表现出其抑制作用。
Being at the forefront to the current international analytical chemistry, trace analysis and speciation analysis is important and practical to the studying and protecting environment. Sodium strontium was chose as the chemical modifier in the trace analysis of tin, which caused the highest allowable temperature enhanced obviously. The characteristic mass and detection limit was improved 45 and 51 folds. The mechanism of modification and atomization was explained with the results of scanning electron microscope and X-ray photoelectron spectroscopy and the binary alloy phase diagram of Sn-Sr. The direct determination of trace tin in water samples in the presence of Sr was reported for the first time. The proposed new method of slurry sampling technique combined with the Sr as modifier for the determination of tin in coal ash is sensitive and simple. A mathematical model for conventional hydride generation atomic absorption signal and a kinetic equation for derivative hydride generation atomic absorption single
     signal were established, respectively. The method for the direct determination of tin in mineral water and tap water was developed. The sensitivity of the proposed method was enhanced 43 times than that of the routine HG-AAS method. The highly sensitive system of Sn(FV) - cresolphthalexon(XO) - OP 10 was selected for the determination of tin by molecule absorption spectrometry. The color reaction was rapid, stable and sensitive. Six nutritional elements of Se, Ge, Zn, Fe, Cu, Mn in three kinds of Chinese herbal medicines were determined for the first time. The detecting methods of Mn in six kinds of Chinese herb medicine and Ge in the Lentinula Edodes and Ganoderma Lucidum were established separately. The relation between the concentrations of trace elements
    
    
    with the pharmacological effects was discussed. An interface between short column gas chromatography with atomic absorption spectrometry was prepared. The combined instruments were applied to the separation and determination of methylmercury and mixture containing benzene, toluene, xylene, and ethyl benzene. It was developed from the determination results that absorbed mercury in human body could transformed to MejHg and MeHgCl. And the concentration of methylmercry was reduced in-order of blood cell, plasma, and urine. Based on the content data in the body of small mouse, the distribution of Hg in the body was obtained. The mercury was accumulated mostly in kidney. The CGC coupled with GFAAS technique was applied to the determination of the speciation of tetramethyltin. The effect of triphenyltin on Scenedeamus Obliquus was investigated. Scenedeamus Obliquus has a degradation effect on triphenyltin, and a growth rate of Scenedeamus Obliquus was negatively related with the concentration of triphenyltin while
     above 4 ug L-1.
引文
[1] 联合国环境规划署,世界卫生组织合编.锡和有机锡化合物,北京:中国环境科学出版社,1991,pp4
    [2] 郑集.元素与生命,生命科学,1996,8(6):28-31
    [3] 李守淳.无机元素在人体内的生物学作用。南昌教育学院学报,1999,(3):50-54
    [4] 刘德宗,靳志华,张天慧.氢化物发生—原子吸收分光光度法测定食品中微量锡,齐齐哈尔轻工学院学报,1997,13(4):87-89
    [5] H Lachas, R Richaud, K E Jarvis, et al. Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes,Analyst, 1999, 124, 177-184
    [6] Jun Yosbinaga, Atsuko Nakama, Kyoko Takata. Determination of total tin in sediment reference materials by isotope dilution inductively coupled plasma mass spectrometry after alkali fusion, Analyst, 1999, 124: 257-261
    [7] 金珊.空气—氢气火焰原子吸收光谱法测定重整催化剂中低含量锡,石油化工,1995,24:422-425
    [8] 吴育良,王桂兰,张之翼等.火焰原子吸收法测定食品罐头中的铜锌和锡,南京化工学院学报,1994,16(1):40-43
    [9] 傅英文,薛平.原子吸收法测定镁锭中的钾钠钙和锡,检验检疫科学,2000,10(3):38-40
    [10] 龙洲雄,易永,周庆华等.锡铅合金中高含量锡、铅的火焰原子吸收测定,江西科学,1997,15(1):72-76
    [11] 郭瑞娣,储黎娟.石墨炉原子吸收光谱法测定硬聚氯乙烯饮水管中痕量锡,光谱实验室,2001,18(4):542-545
    [12] 王新省,龙志成,宋丽铭等.钨丝探针电解预富集.石墨炉原子吸收法测定罐头食品中痕量锡,分析化学,2002,30(10):1214-1217
    [13] 王晓慧,齐文启,刘廷良.石墨炉原子吸收法测定土壤中的锡,环境科学
    
    研究,1999,12(1):54-55,59
    [14] Landberg E, Beigmer K B, Frech W. Investigations of reactions involve in eelectrothermal atomic absorption procedures: Part 11. A theoretical and experimental investigation of factors influencing the determination of tin, Anal. Chim. Acta., 1982, 142: 129-142
    [15] A B Volynsky, E M Sedykh, B Ya. SpivakovI. Havezov. Factors influencing the free oxygen content in an electrothermal atomizer, Analytica Chimica Acta,1985, 174: 173-182
    [16] W Wendl, G Müller-Vogt. Chemical reactions in the graphite tube for some carbide and oxide forming elements, Spectrochimica Acta Part B, 1984, 39: 237-242
    [17] 马桂元,马弛,韩金涛等.石墨炉原子吸收光谱法测锡基体改进剂研究,冶金分析,1996,16(5):23-25
    [18] 蒋永清.石墨炉原子吸收光谱法测定锡和锗时基体改进剂硝酸钙的作用,分析化学,1989,17(11):961-964
    [19] 陈树榆,伍荣护,林淑钦.石墨炉原子吸收法测定锡的基体改进剂研究,高等学校化学学报,1998,19(6):861-865
    [20] Rettberg T M, Beach L M. Journal of Analytical Atomic Spectrometry, 1989, 4: 427
    [21] Ouishi Kounosuke, Yasuda Kazuo, Morishige Yosuke et al. Role of metal matrix modifier in ashing and beginning of the atomization processin graphite furnace-atomic absorption spectrometry, Fresenius J Anal Chem, 1994, 348: 195-200
    [22] I Arambarri, R Garcia, E Millán. Optimisation of tin determination in aqua regia-HF extracts from sediments by electrothermal atomic absorption spectrometry using experimental design, Analyst, 2000, 125(11): 2084-2088
    [23] Mustafa Ozcan, Suleyman Akman, Marcus Schuetz et al. The spatial distribution and photometric and analytical accuracy of tin determined by graphite furnace atomic absorption spectrometry in the presence of sulfates and
    
    palladium, J Anal At Spectrom, 2002, 17(5): 515-523
    [24] 陆莹,王志伟.硝酸镧作基体改进剂微孔滤膜采样石墨炉原子吸收法测定环境空气中的锡,分析化学,2002,30(3):379
    [25] Erik Lundberg, Bjrn Bergmark. Determination of total tin in geological materials by electrothermal atomic absorption spectrometry, Anal Chim Acta,1986, 188: 111-118
    [26] 周谐.石墨炉原子吸收法测定大气中锡的研究,重庆环境科学,1997,19(5):56-59
    [27] Jin Long-Zhu. At. Spectrosc., 1984, 5: 91
    [28] 杨锦发,戴连金.岩矿测试,1990,9(1):44
    [29] V I Slaveykova, M Hoenig. Electrothermal Atomic Absorption spectrometric Determination of Lead and Tin in Slurries. Optimization Study, Analyst, 1997,122: 337-343
    [30] 梁析,陆惠文.石墨炉原子吸收光谱法测定中成药中痕量锡,光谱学与光谱分析,1996,16(5):88-91
    [31] Pruszkowska E, Manning D C, Carnrick G R et al. Experimental conditions for the determination of tin with the stabilized temperature platform furnace and Zeeman background correction, At. Spectrosc., 1983, 4: 87-93
    [32] Bettinelli M, Baroni U, Pastoreui N. Microwave oven sample dissolution for the analysis of environmental and biological materials, Anal. Chim. Acta,1989, 225: 159-174
    [33] Bettinelli M, Baroni U, Pastoreui N. Determination of arsenic, cadmium, lead,antimony, selenium, and thallium on coal fly ash using the stabilized temperature platform furnace and Zeeman-effect backgroud correction, Anal Chim Acta, 1989, 225: 159-166
    [34] Subramanican K S. Determination of tin in lead/tin solder leachates from copper piping by graphite platform furnace atomic-absorption spectrometry,Talanta, 1989, 36: 1075-1080
    [35] J L Gardea-Torresde, S Martinez-Gonzalez, K H Pannell. Method development
    
    for the determination of tin in a marine sediment and a preliminary study of tin, Proceedings of the 10th Annual Conference on Hazardous Waste Research, 261-270
    [36] Sentiment E, Mazzetto G.. At. Spectrosc., 1986, 7: 181
    [37] Wamoto I, Shimazu H, Yokoto K et al. Atomization of tin in saline water media in graphite furnace atomic absorption spectrometry with a tungsten-coated tube using palladium as a chemical modifier, Anal. Chim. Acta, 1993, 274: 231-235
    [38] Iwamoto Narukawa. Determination of total tin in environmental and geological samples by electrothermal atomic absorption spectrometry using a tungsten furnace after pretreatment by solvent extraction and cobalt(Ⅲ) oxide collection, J. Anal. At. Spectrom., 1999, 14: 1081-1085
    [39] 何滨.涂锆石墨管石墨炉原子吸收法测定水样中的有机锡和无机锡,光谱学与光谱分析,1999,19(5):718-720
    [40] 胡正芝等.食品与发酵工业,1986,(4):1
    [41] Noorbasha N Meeravali, Sunil Jai Kumar. Zirconium-iridium coating as a permanent modifier for determination of tin in stream sediment, oyster tissue and total diet slurries by ETAAS, J. Anal. At. Spectrom., 2002, 17(7): 704-709
    [42] 渠荣遴,何菲.镧涂层塞曼效应石墨炉原子吸收法测定铜基合金中微量锡,分析试验室,1995,15(6):53-55
    [43] 陈晓红,刘佑铭,于笑宇.涂层石墨管—原子吸收法测定食品中锡,中国卫生检验杂志,2001,11(5):569-570
    [44] 高焰,张怀成,王在峰.石墨管涂层技术测定环境样品中锡,中国环境监测,1995,11(4):30-31
    [45] Ricardo Queiroz Aucélio, Adilson José Curtius and Bernhard Welz. Sequential determination of Sb and Sn in used lubricating oil by electrothermal atomic absorption spectrometry using Ru as a permanent modifier and microemulsion sample introduction, J. Anal. At. Spectrom., 2000, 15: 1389-1393
    [46] José Bento Borba da Silva, Márcia Andreia Mesquita da Silva, Adilson José Curtius. Determination of Ag, Pb and Sn in aqua regia extracts from sediments
    
    by electrothermal atomic absorption spectrometry using Ru as a permanent modifier, J. Anal. At. Spectrom., 1999, 14: 1737-1742
    [47] D C Manning, Walter Slavin, S Myers. Sampling at constant temperature in graphite furnace atomic absorption spectrometry, Analytical Chemistry, 1979,51(14): 2375-2378
    [48] 周立群.石墨探针/石墨炉原子吸收光谱测定人发中痕量银,仪器仪表与分析监测,1997,(4):54-56
    [49] 曾卓.萃取色层—平台石墨炉原子吸收法测定三氯化铁中微量锡,理化检验(化),1992,28(6):367-370
    [50] 杜新元.平台石墨炉原子吸收法测定环境样品中锡,分析化学,1986,14(2):90-94
    [51] 王文琴,魏继中,汤莜婷等.钨丝探针电解-石墨炉原子吸光谱法测定砷化镓中的铬,光谱学与光谱分析,1994,14(6):87-93
    [52] Dogan S, Haerdi W. Determination of total tin in environmental biological and water samples by atomic absorption spectrometry with graphite furnace. Int J Environ Anal Chem, 1980, 8(4): 249-257
    [53] 刘德宗,靳志华,张天慧.氢化物发生—原子吸收分光光度法测定食品中微量锡,齐齐哈尔轻工学院学报,1997,13(4):86-88
    [54] X C Le, W R Cullen, K J Reimer, et al. A new continuous hydride generator for the determination of arsenic, Antimony and tin by hydride generation atomic absorption spectrometry, Anal. Chim. Acta, 1992, 258: 307-315
    [55] 李淑萍,郭旭明,黄本立等.电化学氢化物发生法的进展及其在原子光谱分析中的应用分析化学,2001,29(8):967-970
    [56] M Begoa Martín-García, Dolores Bellido-Milla. Application of a fractionary factorial design to the determination of tin in lubricating oils by continuous flow hydride generation-atomic absorption spectrometry, Fresenius J Anal Chem, 1999, 364: 527-532
    [57] Tsuda T, Wada M, Aoki S, Matsui Y. Determination of inorganic tin in biological samples by hydride generation-atomic absorption spectrometry after
    
    silica gel cleanup, J Assoc Off Anal Chem, 1988, 71(2): 373-374
    [58] Le X, Cullen WR, Reimer KJ, Brindle YD. A new continuous hydride generator for the determination of arsenic, Antimony and tin by hydride generation atomic absorption spectrometry, Anal Chim Acta, 1992, 258: 307-315
    [59] 魏观春,张建利,任娟玲.氢化物发生-原子荧光法测定焙烧钼精矿及钼铁中的锡,中国钼业,2002,26(1):40-41
    [60] 李慧莉,邱德仁,陈治江.碱性模式氢化物发生感耦等离子体光谱法测定土样中砷、硒、锡、锑,化学世界,1997,(6):321-323
    [61] 邱德仁,袁双生,阮文兴等.氢化物发生原子光谱分析中铁对氢化反应的化学干扰,复旦大学学报(自然科学版),1994,33(6):701-704
    [62] Christine Rigby, Ian D Brindle. Determination of arsenic, antimony, bismuth,germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry, J. Anal.At. Spectrom., 1999, 14: 253-258
    [63] 邱德仁,陈治江,罗晓雯.氢化物发生的碱性模式,光谱学与光谱分析,1994,14(1):77-79
    [64] Pilar Bermejo-Barrera Monica Ferron-Novais Guadalupe Gonzalez-Campos.Tin determination in seawater by flow injection hydride generation atomic absorption spectroscopy, Atomic Spectroscopy, 1999, 20(3): 120-126
    [65] 李建强,吴永明,黄飞雪.碱性氢化物发生-火焰原子吸收光谱法测定锡,分析试验室,1998,17(5):57-59
    [66] 陈天裕,汪正.流动注射氢化物发生-原子吸收光谱法测定镍基合金中的硒和锡,分析试验室,2001,20(2):14-16
    [67] E Denkhaus, F Beck, P Bueschler et al. Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium,and tin -mechanistic aspects and figures of merit, Fresenius J Anal Chem,2001, 370: 735-743
    [68] Brockmann A, Nonn C, Golloch A. degradation of phenanthrene and pyrene by
    
    microorganisms isolated from marine sediment and seawater, J Anal At Spectrom, 1993, 8: 397-401
    [69] Lin Y-H, Wang X-R, Yuan D-X et al. J Anal Atom Spectrom, 1992, 7: 287-291
    [70] Solange Cadore, Nivaldo Baccan. Continuous Hydride Generation System for the Determination of Trace Amounts of Bismuth in Metallurgical Materials by AAS Using an On-line Stripping-type Generator/Gas-Liquid Separator, J. Anal.At. Spectrom., 1997, 12: 637-642
    [71] Erico M.M. Flores, Sergior Mortari, Ayrtonf Martins. Microbatch Venturi-type System for Determination of Selenium(iv) by Hydride Generation Atomic Absorption Spectrometry, J. Anal. At. Spectrom., 1997, 12(3): 379-381
    [72] Chen Hengwu, Yao Wei, Wu Dexiu et al. Determination of tin in steels by non-dispersive atomic fluorescence spectrometry coupled with flow-injection hydride generation in the presence of L-cysteine, Spectrochimica Acta Part B,1996, 51(14): 1829-1836
    [73] 李贵峰.氢化物发生-原子荧光法测定环境水样中痕量锡,中国环境监测,1999,15(6):23-25
    [74] Christine Rigby and Ian D. Brindle. Determination of arsenic, antimony,bismuth, germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom., 1999, 14: 253-258
    [75] Yokoi K, Kimura M, Itokawa Y. Determination of tin in biological samples using gaseous hydride generation-ICP-AES, Anal Biochem, 1990, 190(1): 71-77
    [76] Y L Feng, H Y Chen, H W Chen, et al. Sequential determination of tin, arsenic,bismuth and antimony in marine sediment material by inductively coupled plasma atomic emission spectrometry using a small concentric hydride generator and L-cysteine as prereductant, Fresenius J Anal Chem, 1998, 361(2): 155-157
    [77] 李慧莉,邱德仁,陈治江.碱性模式氢化物发生感耦等离子体光谱法测定
    
    土样中砷、硒、锡、锑,化学世界,1997,(6):321-323
    [78] 郭旭明,李淑萍,黄本立等.原子光谱/质谱分析中蒸气发生法进样的非传统技术的研究,厦门大学学报(自然科学版),2001,40(2):344-348
    [79] MorabitoR, MassanissoP, QuevauvillerP. Derivatization methods for the determination of organotin compounds in environmental samples, Trends in Anal. Chem., 2000, 19:113-119
    [80] Máximo Gallignani, Carlos Ayala, Rosario Brunetto et al. Flow analysis-hydride generation-Fourier transform infrared spectrometry. A new analytical technique for the simultaneous determination of antimony, arsenic andtin, Analyst, 2002, 127(12), 1705-1712
    [81] 李建强,吴永明,黄飞雪.碱性氢化物发生.火焰原子吸收光谱法测定锡,分析试验室,1998,17(5):57-59
    [82] G Drasch, L V Meyer, G Kauert et al. Studies of guaifenesin metabolism using gas chromatography-mass spectrometry, Fresenius J Anal Chem, 1980,304(2/3): 141-149
    [83] 郭旭明,郭小伟,黄本立.氢化物的气相富集及其在超痕量分析中的应用,光谱学与光谱分析,2000,20(4):533-536
    [84] Jorge Moreda-Pieiro, Purificación López-Mahía, Soledad Muniategui-Lorenzo, et al. Tin determination in marine sediment, soil, coal fly ash and coal slurried samples by hydride generation-AAS, Analytica Chimica Acta, 2002, 461(2):261-271
    [1] 渠荣遴,何诽.涂镧层塞曼石墨炉原子吸收法测定铜基合金中微量锡,分析试验室,1995,(6):53-55
    [2] Etsuro Iwamoto, Hiromichi Shimazu, Kayoko Yokota, et al. Atomization of tin in saline water media in graphite furnace atomic absorption spectrometry with a tungsten-coated tube using palladium as a chemical modifier, Anaytical Chimica Acta, 1993, 274: 231-235
    
    
    [3] Gerhard Schlemmer, Bernhard Welz. Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry.Spectrochimica Acta, 1986, 41B(11): 1157-1165
    [4] 王晓慧,齐文启,刘廷良等.石墨炉原子吸收法测定土壤中的锡,环境科学研究,1999,12(1):54-55,59
    [5] 何滨,吴迪,江桂斌.涂锆石墨管石墨炉原子吸收法测定水样中的有机锡和无机锡,光谱学与光谱分析,1999,(6):718-720
    [6] 米瑞华.锡的原子吸收光谱分析,冶金分析,1998,18(3):35-38
    [7] W Slavin. Graphite Furnace AAS: A Source Book, Perkin-Elmer, Ridgefield,CT, 1984, 144-147
    [8] Ricardo Queiroz Aucélio, Adilson José Curtiu, Bernhard Welz. Sequential determination of Sb and Sn in used lubricating oil by electrothermal atomic absorption spectrometry using Ru as a permanent modifier and microemulsion sample introduction, J. Anal. At. Spectrom., 2000, 15: 1389-1393
    [9] Karl X Yang, Robert F Lonardo, Zhongwen Liang. Determination of Tin in Nickel-based Alloys by Electrothermal Laser-excited Atomic Fluorescence With Confirmation of Accuracy by Inductively Coupled Plasma Mass Spectrometry and Atomic Absorption Spectrometry, Journal of Analytical Atomic Spectrometry, 1997, 12: 369-373
    [10] Sonja Arpadjan, Lili Vuchkova and Elena Kostadinova. Sorption of Arsenic, Bismuth, Mercury, Antimony, Selenium and Tin on Dithiocarbamate Loaded Polyurethane Foam as a Preconcentration Method for Their Determination in Water Samples by Simultaneous ICP-AES and ETAAS, Analyst, 1997, 122: 243-246
    [11] José Bento Borba da Silva, Marcia Andreia Mesquita da Silva, Adilson Jos Curtius et al. Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier, J. Anal. At. Spectrom., 1999, 14: 1737-1742
    [12] V I Slaveykova, M Hoenig. Electrothermal atomic absorption spectrometric
    
    Determination of Lead and Tin in Slurries. Optimization Study, Analyst, April 1997, 122: 337-343
    [13] 周谐.石墨炉原子吸收法测定大气中锡的研究,重庆环境科学,1997,19(5):56-59
    [14] 郭瑞娣,储黎娟.石墨炉原子吸收光谱法测定硬聚氯乙烯饮水管中痕量锡,光谱实验室,2001,18(4):542-545
    [15] Kounosuke Ouishi, Kazuo Yasuda, Yosuke Moriseigel, et al. Role of metal matrix modifier in ashing and beginning of the atomization process in graphite furnace-atomic absorption spectrometry, Fresenius J. Anal. Chem., 1994, 348: 195-200
    [16] R E Sturgeon, S N Willie, G I Sproue, et al. Sequestration of volatile element hydrides by platinum group elements for GFAAS, Spectrochimica Acta B, 1989, 44: 667-682
    [17] Anatoly B Volynsky. Catalytic processes on graphite furnaces for electrothermal atomic absorption spectrometry, Spectrochimica Acta B, 1996,51: 1573-1589
    [18] W Wendl, G Muller-Vogt. Chemical reaction in the graphite furnace for some carbide and oxide forming elements, Spectrochimica Acta, Part B, 1984, 39: 237-242
    [19] 王建平,邓勃.分析测试学报,1992,11(2):7-11
    [20] 陈树榆,伍荣护,林淑钦.石墨炉原子吸收法测定锡的基体改进剂研究,高等学校化学学报,1998,19(6):861-865
    [21] Erik Lundberg, Bjrn Bergmark, Wolfgang Frech. Investigations of reactions involved in electrothermal atomic absorption procedures: Part 11. A theoretical and experimental investigation of factors influencing the determination of tin,Anal Chim Acta, 1982, 142: 129-142
    [22] 王新省,龙志成,宋丽铭等.钨丝探针电解预富集-石墨炉原子吸收法测定罐头食品中痕量锡,分析化学,2002,30(10):1214-1217
    [23] 邓勃,罗燕飞,王建平等.元素在探针表面上的原子化机理研究,光谱学
    
    与光谱分析,1996,16(1):99-106
    [24] Campbell W C, Ottaway J M. Talanta, 1974, 21: 837
    [25] Frech W, Lundberg E, Cedergren A. Prog. Anal. At. Spectrosc., 1985, 8: 257
    [26] Boris V L'vov, Andrey A Vasilevich, Alexey O Dyakov, et al. Reduction of metal oxides by carbon in graphite furnaces. Part 1. Temporal oscillations of atomic absorption in the process of slow evaporation of Al, Bi, Cr, In, Mg, Mn,Pb, Sb, Sn and Te oxides, J. Anal. At. Spectrom., 1999, 14, 1019-1024
    [27] 严秀平,江焱,倪哲明.电热原子吸收光谱法在原子化过程动力学研究的最新进展,光谱学与光谱分析,2001,21(5):649—654
    [28] Quan Z, Ni Z M, Yan X P. Can. J. Appl. Spectrosc., 1994, 39: 54
    [29] Tittarelli Paolo, Anselmi Anna, Biffi Claudio, et al. Formation of tin and lead molecular species in electrothermal atomizers, Spectrochimica Acta, Part B,1995, 50: 1687-1701
    [30] Heidrun Fritzsche, Wolfhare Wegscheider, Gunter Knapp. A sensitive AAS method for the determination of tin with atomization from impregnated graphite surfaces, Talanta, 1979, 26: 219-226
    [31] I Massalski, Thaddeus B. Binary alloy phase diagrams(2nd Edition), Materials Park Ohio, 1990, 3398-3400
    [32] 郝润蓉,方锡义,钮少冲.无机化学丛书(第三卷)—碳硅锗份族,北京: 科学出版社,1998,P388
    [33] Yan Xiu-ping, Ni Zhe-ming, Yang Xiao-tao, et al. An approach to the determination of the kinetic parameters for atom formation in electrothermal atomic absorption spectrometry, spectrochimica Acta Part B, 1993, 48(4): 605-624
    [1] Binato, G. Biancotto, R. Piro, et al. Atomic absorption spectrometric screening and gas chromatographic-mass spectrometric determination of
    
    organotin compounds in marine mussels: an application in samples from the Venetian Lagoon, Fresenius J. Anal. Chem., 1998, 361: 333-337
    [2] XU Yuping. Combined Nickel and Phosphate Modifier for Lead Determination in Water by Electrothermal Atomic Absorption Spectrometry, J. Anal. At.Spectrom., 1997, 12: 471-474
    [3] K S Subramanian. Determination of tin in lead/tin solder leachates from copper piping by graphite platform furnace atomic-absorption spectrometry, Talanta,1989, 36(11): 1075-1080
    [4] Ricardo Queiroz Aucélio, Adilson José Curtius, Bernhard Welz. Sequential determination of Sb and Sn in used lubricating oil by electrothermal atomic absorption spectrometry using Ru as a permanent modifier and microemulsion sample introduction, Journal Analytical Atomic Spectrometry, 2000, 15(10): 1389-1393
    [5] 陈树榆,伍荣护,林淑钦.石墨炉原子吸收法测定锡的基体改进剂研究,1998,19(6):861-865
    [6] 马桂元,马驰,韩金涛等.石墨炉原子吸收光谱法测锡基体改进剂研究,1996,16(5):23-25
    [7] Kounosuke Ouishi, Kazuo Yasuda, Yosuke Moriseige, et al. Role of metal matrix modifier in ashing and beginning of the atomization process in graphite furnace-atomic absorption spectrometry,, Fresenius J. Anal. Chem., 1994, 348: 195-200
    [8] Anatoly B. Volynsky, Viliam Krivan. Colloidal palladium—a promising chemical modifier for electrothermal atomic absorption spectrometry,Spectrochimica Acta Part B, 1997, 52(9-10): 1293-1304
    [9] Gerhard Schlemmer, Bernhard Welz. Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry,Spectrochimica Acta Part B, 1986, 41(11): 1157-1165
    [10] Shoji Imai, Yutaka Kubo, Akira Yonetani, et al. Effect of refractory element carbide coating of a pyrolytically coated graphite furnace on injectable
    
    sample volume in the electrothermal atomic absorption spectrometric determination of lead, J. Anal. At. Spectrom., 1998, 13: 1199-1202
    [11] 何滨,吴迪,江桂斌.涂锆石墨管石墨炉原子吸收法测定水样中的有机锡和无机锡,1999,19(5):718-720
    [12] 渠荣遴,何非.镧涂层塞曼效应石墨炉原子吸收法测定铜基合金中微量锡,分析试验室,1995,14(6):53-55
    [13] Tomohiro Narukawa. Determination of total tin in environmental and geological samples by electrothermal atomic absorption spectrometry using a tungsten furnace after pretreatment by solvent extraction and cobalt(Ⅲ) oxide collection,J. Anal. At. Spectrom., 1999, 14(7): 1081-1085
    [14] Liang Yanzhong, Xu Yuping. Comparison of Chemical Modifiers for the Determination of Lead in Water Samples With Electrothermal Atomic Absorption Spectrometry, J. Anal. At. Spectrom., 1997, 12: 855-858
    [15] Itami T, Ema M, Amano H et al. Simple determination of tin in biological materials by atomic absorption spectrometry with a graphite furnace. J Anal Toxicol, 1991, 15(3): 119-22
    [16] I Arambarri, R Garcia, E Millán. Optimisation of tin determination in aqua regia-HF extracts from sediments by electrothermal atomic absorption spectrometry using experimental design, Analyst, 2000, 125(11): 2084-2088
    [17] Tsuda T, Wada M, Aoki S et al. Determination of inorganic tin in biological samples by hydride generation-atomic absorption spectrometry after silica gel cleanup, J Assoc Off Anal Chem, 1988, 71(2): 373-374
    [18] Dogan S, Haerdi W. Determination of total tin in environmental biological and water samples by atomic absorption spectrometry with graphite furnace, Int J Environ Anal Chem, 1980, 8(4): 249-257
    [19] Erik Lundberg, Bjrn Bergmark. Determination of total tin in geological materials by electrothermal atomic absorption spectrometry, Anal. Chim. Acta,1986, 188: 111-118
    [20] H N Elsheimer, T L Fries, Determination of total tin in silicate rocks by graphite
    
    furnace atomic absorption spectrometry, Anal Chim Acta, 1990, 239: 145-149
    [21] H. Lachas, R. Richaud, K. E. Jarvis, et al. Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes, Analyst, 1999, 124: 177-184
    [22] Jun Yoshinaga, Atsuko Nakama, Kyoko Takata. Determination of total tin in sediment reference materials by isotope dilution inductively coupled plasma mass spectrometry after alkali fusion, Analyst, 1999, 124: 257-261
    [23] Sonja Arpadjan, Lili Vuchkova, Elena Kostadinova. Sorption of Arsenic,Bismuth, Mercury, Antimony, Selenium and Tin on Dithiocarbamate Loaded Polyurethane Foam as a Preconcentration Method for Their Determination in Water Samples by Simultaneous Inductively Coupled Plasma Atomic Emission Spectrometry and Electrothermal Atomic Absorption Spectrometry, Analyst, 1997, 122: 243-246
    [24] Christine Rigby, Ian D Brindle. Determination of arsenic, antimony, bismuth,germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry, J. Anal.At. Spectrom., 1999, 14: 253-258
    [25] Y.-L. Feng, H.-Y. Chen, H.-W. Chen, et al. Sequential determination of tin,arsenic, bismuth and antimony in marine sediment material by inductively coupled plasma atomic emission spectrometry using a small concentric hydride generator and L-cysteine as prereductant, Fresenius J Anal Chem, 1998, 361,(2): 155-157
    [26] Karl X Yang, Robert F Lonardo, Zhongwen Liang. Determination of Tin in Nickel-based Alloys by ElectrothermalLaser-excited Atomic Fluorescence With Confirmation of Accuracy byInductively Coupled Plasma Mass Spectrometry and Atomic AbsorptionSpectrometry, J. Anal. At. Speetrom., 1997, 12(3): 369-373
    [27] Trachman HL, Tyberg A J, Branigan PD. Atomic absorption spectrometric determination of sub-part-per-million quantities of tin in extracts and biological
    
    materials with a graphite furnace, Anal Chem, 1977, 49(8): 1090-1093
    [28] I Arambarri, R Garcia, E Milln. Application of experimental design in a method for screening sediments for global determination of organic tin by electrothermal atomic absorption spectrometry(ETAAS), Fresenius J Anal Chem, 2001, 371: 955-960
    [29] José Bento Borba da Silva, Márcia Andreia Mesquita da Silva, Adilson José Curtius. Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier, J. Anal. At. Spectrom., 1999, 14: 1737-1742
    [30] Gustavo S B Januzzi, Francisco J Krug, Marco A Z Arruda. Application of the Slurry Technique to the Determination of Selenium in Fish Samples by Electrothermal Atomic Absorption Spectrometry, J. Anal. At. Spectrom., 1997,12(3): 375-378
    [31] Martin Hornung, Viliam Krivan. Determination of Trace Impurities in High-Purity Tungsten by Direct Solid Sampling Electrothermal Atomic Absorption Spectrometry Using a Transversely Heated Graphite Tube,Analytical Chemistry, 1998, 70(16): 3444-3451
    [32] V I Slaveykova, M Hoenig. Electrothermal Atomic Absorption spectrometric Determination of Lead and Tin in Slurries. Optimization Study, Analyst, 1997,122: 337-343
    [33] N J MILLER-IHLI. Slurry Sampling Electrothermal Atomic Absorption Spectrometry: Results From the Second Phase of an International Collaborative Study, J. Anal. At. Spectrom., 1997, 12: 205-212
    [34] López-García, P. Vias, J. Arroyo-Cortéz et al. Rapid determination of lead and cadmium in sewage sludge samples using electrothermal atomic absorption spectrometry with slurry sample introduction, Fresenius J Anal Chem, 2000,367(8): 727-732
    [35] Dogan S, Haerdi W. Determination of total tin in environmental biological and water samples by atomic absorption spectrometry with graphite furnace. Int J
    
    Environ Anal Chem, 980, 8(4): 249-257
    [36] Subramaniean K. S. Determination of tin in lead/tin solder leachates from copper piping by graphite platform furnace atomic-absorption spectrometry,Talanta, 1989, 36: 1075-1080
    [37] Meinrat O A, James T B. Determination of tin and methyltin species by hydride generation and detection with graphite-furnace atomic absorption or flame emission spectrometry, Analytica Chimica Acta, 1984, 156: 147-157
    [38] Christine Rigby and Ian D. Brindle. Determination of arsenic, antimony,bismuth, germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry, J.Anal. At. Spectrom., 1999, 14, 253-258
    [39] Y L Feng, H Y Chen, H W Chen, et al. Sequential determination of tin, arsenic, bismuth and antimony in marine sediment material by inductively coupled plasma atomic emission spectrometry using a small concentric hydride generator and L-cysteine as prereductant, Anal Bioanal Chem, 1998, 361, (2): 155-157
    [40] Brindle I D, Le X C. Analyst, 1988, 113: 1377
    [41] 李贵峰.氢化物发生.原子荧光法测定环境水样中痕量锡,中国环境监测,1999,15(6):23-25
    [42] X C Le, W R Cullen, K J Reimer et al., A new continuous hydride generator for the determination of arsenic, Antimony and tin by hydride generation atomic absorption spectrometry, Anal Chim Acta, 1992, 258, 307-315
    [43] Sun H W, Ha J, Zhang D Q et al. Determination of trace selenium in urine by derivative hydride generation atomic absorption, Analytical Science, 2002, 18: 603-605
    [44] Ha J, Sun H W, Sun J M et al. Determination of tellurium in urine by hydride generation atomic absorption spectrometry with derivative signal processing, Analytica Chimica Acta, 2001, 448:145-149
    [45] Sun H W, Ha J, Sun J M et al. Derivative hydride generation atomic absorption and determination of lead traces in water, Fresenius J Anal Chem, 2001, 371(8):
    
    1154-1157
    [46] Mayer D, Haubenwallner S, Komus W. Modified electrical heating system for hydride generation atomic absorption spectrometry and elaboration of a digestion method for the determination of arsenic and selenium in biological materials, Anal Chim Acta, 1992, 268: 315-321
    [47] 赵变仙,南萍.邻苯二酚紫.溴化十六烷基三甲基铵光度法测定微量锡,冶金分析,1999,19(3):55-56
    [48] 罗宗铭,陈凯瑞,杨雪娇.锡(Ⅳ)-磺基水杨酸.溴邻苯三酚红.溴化十六烷基三甲基铵胶束混配络合物的显色反应,光谱实验室,2001,18(2):155-158
    [49] 李琴美.苯基荧光酮分光光度法测定微量锡,冶金分析,1998,18(6):45-47
    [1] 陆蕴如.中药化学,北京:学苑出版社,1995
    [2] 于仁诚,宋秀贤.原子吸收光谱仪用于沉积物中的锡分析的方法研究,海洋与湖沼,2000,31(3):315-321
    [3] 中国光谱学会.分析样品的预处理,1985
    [4] 黄国清,彭珊珊,欧阳崇学等.药食两用花卉中营养元素的光谱测定,光谱学与光谱分析),2000,20(3):376-378
    [5] 项斯芬.无机化学新兴领域导论,北京:北京大学出版社,1988
    [6] 陈国树.微量元素学科研究进展,环境与开发,1995,10(4):1-4
    [7] 刘雨田,郭小权,晏向华.微量元素锰的营养学研究进展,兽药与饲料添加剂,2000,5:27-29
    [8] 姜岳明.锰对体内必需元素生物转运的影响,铁道劳动安全卫生与环保,2000,27(3):169-171
    [9] 穆家鹏.原子吸收分析方法手册,北京:原子能出版社,1989,241
    [10] 上海中医学院方药教研组.中药临床手册,上海:上海人民出版社,1977:33-263
    [11] 武侠,罗金绥.石墨炉原子吸收法测定人参样品中微量锗的方法探讨,农业环境保护,1994,(1):45-46
    
    
    [12] 马钦科 Z著,郑用熙等译.元素的分光光度测定,北京:地质出版社,1983:240
    [13] 舒永红,杨秀华,司徒伟强.石墨炉原子吸收法测定人体血浆和尿中锗,分析测试学报,1997,16(1):27-31
    [14] 徐东群.GFAAS测定血清中锗时11种基体改进作用的研究,光谱学与光谱分析,1994,14(6):77-81
    [15] 周波,冯素萍,陈荣礼.石墨炉原子吸收法测定食品及饮料中微量锗,现代商检科技,1998,8(5):24-25
    [16] 林琳,韩华云.钇基体改进剂GFAAS测定微量锗,光谱实验室,1997,14(4):70-72
    [17] 唐宝英,杨秀环,詹星耀.石墨炉原子吸收法测定饮料和中成药中锗,光谱实验室,1994,11(6):55-59
    [18] 周林爱,曹民杰,汤楠.石墨炉原子吸收法测定灵芝孢子粉中的痕量硒与锗,分析试验室,2001,20(4):87-89
    [19] 孙汉文.原子吸收光谱分析技术,北京:中国科学技术出版社,1992:192
    [1] 单孝全,王仲文.形态分析与生物可给性,分析试验室,2001,20(6):103-108
    [2] Kot A, Namiesnik J. The role of speciation in analytical chemistry, Trends Anal Chem, 2000, 19: 69-79
    [3] Joanna Szpunar, Ryszard Lobinski. Speciation in the environmental field-trends in analytical chemistry, Fresenius J Anal Chem, 1999,363: 550-557
    [4] 单孝全,王子健,张淑贞.形态分析、生物可给性与生态毒理研究,中国科学院院刊,2002,(1):137-40
    [5] 袁东星,王小如.化学形态分析,分析测试通报,1992,11(4):1-9
    [6] 孙勇,林宏伟.痕量金属形态分析方法的进展,郧阳师专学报,2000,20(3):64-68
    [7] Kurt J Irgolic. Analytical procedures for the determination of organic
    
    compounds of metals and metalloids in environmental samples, The Science of the Total Environment, 1987, 64: 61-73
    [8] 胡广林,王小如,杨鹏源.气相色谱.原子光谱测定痕量金属有机化合物形态的样品前处理,分析科学学报,1998,14:170-174
    [9] Konstantinos Fytianos. Speciation analysis of heavy metals in natural waters: a review, J of AOAC international, 2001, 84(6): 1763-1769
    [10] Chau Y K, Wong PT S. Fresenius J. Anal. Chem., 1991, 339: 640
    [11] Szpunar J, Schmitt V O, Donard O F X, et al. Low-power focused microwave technology as a new tool for rapid preparation of solid samples for speciation analysis, TrendsAnalChem, 1996, 15(4): 181-187
    [12] D S Forsyth, J R Iyengar. The determination of tetra-alkyllead and ionic alkyllead compounds in seafood, Applied Organomentallic Chemistry, 1989, 3: 211-218
    [13] M Aklf, Seckln, Aygun et al. Determination and Speciation of Mercury in a Dental Work-place by Cold Vapour AAS and Gas Liquid Chromatography,International J Analytic Chemistry, 1986, 26: 1-17
    [14] Takunori kato, Takashi Uehiro, Akio Yasuhara, et al. Determination of methylmercury species by CGC with axially viewed ICP-AES detector, Journal of Analytical Atomic spectrometry, 1992, 7: 15-18
    [15] 何滨,汪桂斌.固相微萃取毛细管气相色谱.原子吸收联用测定农田土壤中的甲基汞及乙基汞,岩矿测试,1999,18(4):259-262
    [16] Jiang Guibin, Ni Zheming, Wang Shunrong, et al. Organo mercury speciation in fish by CGC interfaced with AAS, Fresenius J Anal Chem, 1989, 334: 27-30
    [17] Wilfried MR Dirk, Freddy C Adamas. Speciation of oraganotin compounds in water and sediments by GC/AAS, MikrochimcaActa, 1992, 109: 79-81
    [18] Glen F Van Landeghem, Patrick C Haese, Ludwig V Lamderts, et al. Quantitative HPLC/ETAAS hybrid method with an on-line metal scavenger for studying the protein binding and speciation of aluminum and iron, Anal Chem,1994, 66: 216-222
    
    
    [19] Paola Rivaro, Laura Zaratin, Roberto Frache. Determination of organotin compounds in marine mussel by using HPLC-hydride generation ICP-AES, Analyst, 1995, 120: 1937-1939
    [20] Dimiter L Tsalev, Michael Sperling, Bernhard Welz. Speciation Determination of Arsenic in Urine by HPLC-HGAAS with on-line Ultraviolet Photooxidation, Analyst, 1998, 123: 1703-1710
    [21] Kim A High, Jean-Simon Blais. Probing the Characteristics of Metal-binding Proteins Using HPLC-AAS and ICP Mass Spectrometry, Analyst, 1995, 120: 629-634
    [22] 贾丽,陈曦,王小如等.毛细管电泳在形态分析中的应用,色谱,1998, 16(5):402-405
    [23] 庞秀言,梁淑轩.气相色谱.原子吸收联用技术测定人体体液中烷基汞,色谱,1997,15(2):130-131
    [24] Anna Paudyn, Jon C Van Loon. Determination of organic forms of mercury and arsenic in water and atmospheric samples by GC-AAS, Frensenius J Anal Chem, 1986, 325: 369-376
    [25] Thomas M Vickrey, M S Buren, H Z Howell. A Simple and inexpensive interface between a LC and FAAS detector, Anal Letters, 1978, 11(12): 1075-1095
    [26] J C Loon. Metal Speciation by Chromatography/Atomic Speciation, Anal Chem, 1979, 51(10-11): 1139A-1150A
    [27] Gilon, A Astruc, M Astruc, et al. Selenoamino acid speciation using HPLC-ETAAS following an enzymic hydrolysis of selenoprotein, Applied Organometallic Chemistry, 1995, 9: 623-628
    [28] D T Burns, F Glocking, N Harriott. Investigation of the determination of tin tetraalkyls and alkyltin chlorides, Analyst, 1981, 106: 921-930
    [29] Nygren. On-line interfacing of a LC to a continuously heated GFAAS for element specific detection, Anal Chem, 1988, 60: 2204-2208
    [30] C Bendicho. Evaluation of an automated Thermospray Interface for Coupling
    
    Electrothermal Atomization AAS and Liquid Chromatography, Anal Chem,1994, 66: 4375-4381
    [31] 孙汉文.色谱-原子吸收光谱联用技术,分析化学,1982,10(2):117-124
    [32] Kolchl chlba, kazuo yoshlda, klyosh Tanabe, et al. Determination of alkylmercury in seawater at the nanogram per liter by GC/atmospheric pressure Helium microwave-induced plasma emission spectrometry, Anal Chem, 1983,55: 450-453
    [33] Takunori kato, Takashi Uehiro, Akio Yasuhara, et al. Determination of methylmercury species by CGC with axially viewed ICP-AES detector. Journal of Analytical Atomic spectrometry, 1992, 7: 15-18
    [34] Zdenka Slejkovec, Johannes T Van Elteren, Anthony R Byrne. A Dual Arsenic Speciation System Combining LC and Purge Trap-GC Separation with AFS,Analytic Chimica Acta, 1998, 358: 51-60
    [35] 黄卓尔.水相乙基化GC-AFS测定环境及生物样品中甲基汞,分析测试学报,1998,17(1):22-25
    [36] K W M Siu, G J Gardner, S S Berman. Ionspray MS/MS: quantification of tributyltin in a sediment reference material for trace metals, Anal Chem,1989, 61: 2320-2322
    [37] 张德荣,卿素华,陈以彬等.金属毒理学手册,成都:四川科学技术出版社,1985:382-383
    [38] Pietro Apostoli. The role of element speciation in environmental and occupational medicine, Fresenius J Anal Chem, 1999, 363: 499-504
    [39] Shona McSheehy, Joanna Szpunar, Roberto Morabito, et al. The speciation of arsenic in biological tissues and the certification of reference materials for quality control, TrAC Trends in Analytical Chemistry, 2003, 22(4): 191-209
    [40] Lothar Dunemann. Coupling Techniques in speciation analysis, Fresenius J Anal Chem, 1992, 342: 802-804
    [41] Y K Chau. Chromatographic Techniques in Metal Speciation, Analyst, 1992,117: 571-575
    
    
    [42] Steve J Hill. Advances in coupled Techniques for speciation Studies, Analytical Proceeding, 1992, 29: 399-401
    [43] Anna Paudyn, Jon C. Van Loon. Determination of organic forms of mercury and arsenic in water and atmospheric by GC-AAS, Fresenius Z Anal Chem, 1986, 325: 369-376
    [44] Jiang Guibin, Ni Zheming, Wang Shunrong. Organic mercury speciation in fish by capillary GC interfaced with AAS, Fresenius Z Anal Chem, 1989, 334: 27-30
    [45] 常学秀,文传浩,王焕校.重金属污染与人体健康,云南环境科学,2000,19(1):59-61
    [46] 陈自强,吴抒见,于继慧.职业性汞接触对机体行为影响的研究,工业卫生与职业病,1990,16(5):269-273
    [47] 林兆富,戴自英.实用内科学,上册,北京:人民卫生出版社,1985,669-675
    [48] 联合国环境规划署,世界卫生组织合编.环境卫生基准-汞,北京:中国环境科学出版社.1986,33-38
    [49] Y K Chau, P T S Wong, G A Bengert, J L Duma. Determination of dialkyllead,trialkyllead, tetraalkyllead and lead(Ⅱ) compounds in sediment and biological samples, Anal Chem, 1984, 56(2): 271-274
    [50] C E Oda, J D Ingle Jr. Speciation of mercury with cold vapor atomic absorption spectrometry by selective reduction, Anal Chem, 1981, 53(14): 2305-2309
    [51] 朱玉华,曹钟兴,钱龙华等.职业性汞接触对肾小管毒作用的探讨,职业卫生与应急救援,2000,18(1):126
    [52] 季全兰,沈维干,周华珠等.砷汞对小鼠生殖毒性的研究,微量元素与健康研究,2000,17(2):1-3
    [53] 沈维干,陈彦,李朝军.汞对雌性小鼠生殖功能及脏器的影响,卫生研究,2000,29(2):75-77
    [54] 廖自基.微量元素的环境化学及生物效应,中国环境科学出版社,1992:348
    [55] 吴胜虎.汞的神经毒性及机制研究进展,国外医学儿科学分册,2000,27(4):169-172
    
    
    [56] 邢彩虹,李桂兰,李玉英等.单细胞凝胶电泳法检测苯作业工人淋巴细胞DNA损伤,中华劳动卫生职业病杂志,2000,18(5):41
    [57] 鲁桂根,董莉,沈燕珍等.上海金山区混苯作业工厂职业危害现状调查,劳动医学 2001,18(5):293-294
    [58] 张慰安.苯、甲苯、乙苯及邻、间、对二甲苯的气相色谱分离,化工生产与技术,2000,(3):32-34
    [59] 许龙福.苯、甲苯和二甲苯气相色谱超短柱测定,预防医学文献信息,2000,6(1):59
    [60] 庞秀言,梁淑轩.气相色谱.原子吸收联用技术测定人体体液中烷基汞,色谱,1997,15(2):130—132
    [61] John M. Batt, The world of organotin chemicals: applications, substitutes, and the environment
    [62] Isaac Rodriguez Pereiro, Vincent O Schmitt, Joanna Szpunar, et al. Speciation analysis for organotin compounds in biomaterials after Integrated dissolution,extraction and derivatization in focused microwave field, Analytical chemistry,1996, 68: 4135-4140
    [63] N Cardellicchio, S Giandomenico, A Decataldo. Speciation of butyltin compounds in marine sediments with headspace solid-phase microextraction and gas chromatography-mass spectrometry. Fresenius J. Anal. Chem, 2001, 369: 510-515
    [64] 龙进祥,朱春山,刘祖平等。急性三甲基锡中毒225例临床分析,中国工业医学杂志,2000,13(1):31-33
    [65] P Bermejo-Barrera, G Gonzalez-Campos, M Ferron-Novais, et al. Column preconcentration of organotin with tropolone-immobilized and their determination by electrothermal atomization absorption spectrometry, Talanta,1998, 46: 1479-1484
    [66] Caterina Pellegrino, Paolo Massanisso, Roberto Morabito. Comparison of 12 selected extraction methods for the determination of butyl- and phenyltin compounds in mussel samples, Trends in Analytical chemistry, 2000, 19(2+3):
    
    97-106
    [67] Yan Liu, Viorica Lopez-Avila, Marcela Alcaraz. Off-line complex/SFE and GC with AED for the determination and speciation of organotin compounds in soils and sediments, Anal Chem, 1994, 66: 3788-3796
    [68] 孙汉文.色谱—原子吸收光谱联用技术,分析化学,1982,10(2):117—124
    [69] 周群芳,江桂斌.气相色谱法在有机锡化合物形态分离与测定中的应用,分析科学学报,2002,18(3):240—246
    [70] 郭磊,江桂斌.高效液相色谱及其联用技术在有机锡形态测定中的应用,环境科学进展,1999,7(6):45—57
    [71] Kurt J Irgolic. Analytical procedures for the determination of organic compounds of metals and metalloids in environmental samples, The science of the environmental samples, 1987,64: 61-73
    [72] Masahiro Takeuchi, Kazuko Mizuishi, Toshiyuki Hobo. Determination of organotin compounds in environmental samples, Analytical Science,2000,16: 349-359
    [73] P Bermejo-barrera, G Gonzalez-Campos, M Ferron-Novais, et al. Column preconcentration of organotin with tropolone-immobilized and their determination by eletrothermal atomization absorption spectrometry, Talanta,1998,46:1479-1484
    [74] Janet Ashby, Steven Clark, Peter J Craig. Methods for the production of volatile organometallic derivatives for application to the analysis of environmental samples, Journal of analytical atomic spectrometry, 1988, 3: 735-736
    [75] Tadeusy Górecki, Janusz Pawlisyn. Effect of sample volume on quantitative analysis by solid-phase microextraction, part 1. Theoretical considerations,The Analyst, 1997, 122: 1079-1086
    [76] Tadeusy Górecki, Abir Khaled, Janusz Pawlisyn. The effect of sample volume on quantitative analysis by solid-phase microextraction, part 2. Experimental verifyication, The Analyst, 1998,123: 2819-2824
    
    
    [77] 严国安,沈国兴,严雪等.农药对藻类的生态毒理学研究Ⅰ:毒性效应,环境科学进展,1998,7(5)1999:96-106
    [78] 高玉荣.杀虫剂单甲脒对绿藻的毒性研究,环境科学学报,1995,15(1):92-97
    [79] M E Kobraei, D S White. Effects of 2,4-Dichlorohenoxyacetic acid on Kentucky algae: simultaneous laboratory and field toxicity testings, Arch Environ Contam Toxicol, 1996, 31: 571-580
    [80] 张康生,刘双进,赵忠宪。有机锡污染调控对策初步分析,中国环境科学,1996,16(4):293-296
    [81] 胡春,王圣符.有机锡化合物用途,化学与粘和,1995,(3):160—163
    [82] 胡冠九,徐明华.有机锡化合物的性质、环境污染来源及测定方法,环境监测管理与技术,2000,12(增刊):14—17
    [83] 孔垂华,姜李,胡飞等.三烃基锡氨基酸酯的合成与生物活性,华南农业大学学报,1997,18(2):51—53
    [84] 梁述尧.元素有机化合物,北京:科学出版社,1989:92-98
    [85] Les Ebdon, Steve J Hill, Cristina Rivas. Organotin compounds in solid waste: a review of their properties and determination using high-performance liquid chromatography, Trends in Analytical Chemistry, 1998, 17(5): 277-288
    [86] 《化工职业中毒》编写组.化工职业中毒,北京:化工出版社,1986:330-334
    [87] 沈宏,周培疆.环境有机污染物对藻类生长作用的研究进展,水生生物学报,2002,26(5):529-535
    [88] J M Llobet, S Granero, M Schuhmacher, et al. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. Ⅳ.Estimation of the dietary intake, Trace Elements and Electrolytes, 1998, 15(3): 136-141
    [89] 熊丽,吴振斌,况琪军等.氯氰菊酯对斜生栅藻的毒性研究,水生生物学报,2002,26(1):66-73
    [90] 夏宜,况琪军.综合生物塘中的藻类研究,水生生物学报,1993,17(1):75-82
    
    
    [91] 夏宜.栅藻高温品系的培育及其在环境监测中的应用,水生生物学集刊,1975,5(3):380-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700