鼓式制动器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼓式制动器是利用摩擦力实现驻车或使行驶中的汽车减速、停车的装置,由于制动效能高、结构简单、价格便宜,在汽车上得到广泛的使用。虽然制动器结构简单,但是其工作环境复杂,制动过程中伴随摩擦接触和机械振动,涉及多体动力学、摩擦学和接触力学等多种理论。基于以上原因,对鼓式制动器制动过程的研究,尤其是如何提高制动性能的研究,有很好的应用价值。本文通过机构运动学分析方法,建立摩擦片与鼓圆心重合与偏离时的摩擦片接触角方程,研究摩擦片-鼓接触原理,并基于虚拟样机技术和有限单元理论,利用多体动力学仿真软件ADAMS和大型通用有限元软件ANSYS对普通鼓式制动器进行结构动力学仿真研究,深入了解制动器的力学原理,提出了一种浮动鼓式制动器新型结构,并通过仿真分析、台架试验和实车试验验证了新型结构的合理性。主要研究内容如下:
     (1)分析了制动器的国内外研究现状,结合课题的研究需要,确定了鼓式制动器研究的主要内容,提出技术路线,明确研究重点。
     (2)采用机构运动学分析方法,建立了摩擦片与鼓圆心重合与偏离时的摩擦片接触角方程,利用Matlab仿真分析了某型重车鼓式制动器的接触角变化规律。分析表明:摩擦片圆心与鼓圆心重合时,摩擦片上端较下端接触角小,实际结构中存在弹性变形,此时摩擦片上端容易与鼓接触;鼓圆心与摩擦片圆心偏移量为0.1mm时,领蹄和从蹄均是摩擦片上端较下端接触角小,且随着偏心角度的变化,摩擦片下端接触角有较大变化,由于实际结构制动器的偏心量是随机的,因此接触状态差异较大;摩擦片接触角方程建立时虽未考虑结构弹性变形,但从几何角度可分析制动过程中摩擦片与制动鼓接触区域的变化规律,为复杂的鼓式制动器制动过程分析提供了一种分析途径;提出了一种浮动鼓式制动器的新型结构,即制动蹄在支撑销位置有径向移动,建立了新型结构的接触角运动方程,为后续仿真分析提供理论模型。
     (3)为了能够更准确地分析具有凸轮张开装置的领从蹄鼓式制动器的制动过程,提出将制动蹄、制动鼓和凸轮张开装置组成一个系统,在凸轮轴上施加制动力矩,通过ADAMS动力学仿真软件分析了制动过程中促动力、摩擦力矩以及各振动量的变化规律。结果表明:具有凸轮张开装置的领从蹄式制动器系统在制动过程中,领、从蹄制动力矩并非相等,而是领蹄制动力矩远大于从蹄,此结论又通过有限元法计算结果所验证;由于非线性摩擦因数等原因的影响,领从蹄在制动过程中一直处于随机振动状态,且振动程度随着车速的提高而增加;领蹄的制动摩擦衬片上的切向摩擦力(或衬片上的正压力)分布为中部大两侧小,而从蹄摩擦衬片上的切向摩擦力分布为上部大下部小,且从蹄切向摩擦力远小于领蹄,该结论也被有限元计算结果所验证;从蹄促动力大于领蹄促动力,在凸轮输入力矩相等的情况下,不随车速发生变化。
     (4)运用有限元分析软件ANSYS建立新型浮动鼓式制动器的三维有限元模型,在凸轮轴上施加输入力矩来模拟制动器系统的制动过程,对摩擦衬片和制动鼓之间的摩擦接触进行分析,得到了该制动器的接触应力分布云图和制动力矩的分布曲线,与普通鼓式制动器进行了对比分析,并利用接触角运动方程,分析了浮动领蹄和从蹄结构的接触角运动规律,最后分别进行两种制动器的制动效能台架试验验证了仿真分析的正确性。分析认为:浮动鼓式制动器的领蹄由于接触面积增大,在制动力矩保持不变的情况下,接触应力比普通鼓式制动器的接触应力小;浮动鼓式制动器从蹄由于向上浮动,使其摩擦力矩大于普通鼓式制动器;浮动鼓式制动器的总制动力矩大于普通鼓式制动器的制动力矩;浮动制动器制动时,领蹄通过蹄片支撑销处移动自由度的调整,可减小全摩擦片接触角变化量,改善接触状态,但不能改善从蹄的接触角状态。
     (5)利用ANSYS有限元分析软件进行普通鼓式制动器和浮动鼓式制动器的偏心量对制动输出力矩的影响分析,并通过接触角运动方程仿真分析浮动鼓式制动器的偏心量对摩擦片接触状态的影响,最后进行了试验台制动性能试验验证理论分析的合理性。结果表明:偏移量改变时,浮动鼓式制动器能够保证总的摩擦力矩基本不变,因此汽车在制动过程中,有效地降低了制动器对汽车跑偏的影响;偏移量改变时,普通鼓式制动器总摩擦力矩有很大的变化,容易造成左右轮制动力矩不等,发生制动跑偏;浮动领蹄结构可明显改善摩擦片接触状态,增大摩擦片接触区域,且通过接触运动方程可找出领蹄最优调整移动量,而浮动从蹄结构不能改善摩擦片接触状态;对普通鼓式制动器与浮动鼓式制动器进行车辆跑偏试验台试验,普通鼓式制动器制动差明显大于浮动鼓式制动器的制动差,说明装配普通鼓式制动器的车辆左右车轮制动力偏差较大,容易产生跑偏现象,与仿真结果吻合。
Drum brake, which applies friction to assuring parking and slowing down the running vehicles, is widely installed in automobiles because of high brake efficiency, simple structure and low price. Afterwards, its operating environment is complex because the braking process is constantly accompanied with friction contact and mechanical vibration. In order to make deeper study on this problem, some theories, such as multibody dynamics, tribology and contact mechanics, have been done on this field. Due to the above reason, it has great value in research on the braking process of drum brake, especially about how to enhance brake efficiency. To study the contact principle of the friction plates-drum, the contact angle equations are established when the center of the drum coincides with that of friction plates or not. Based on virtual prototype technology and finite element theory, dynamic simulation of traditional drum brake is discussed by utilizing the multi-body dynamics simulation software ADAMS and general finite element software ANSYS. The mechanical principle of brake is further studied, and a floating drum brake structure improved method is proposed. The main work is listed as follows:
     (1)The present research situation of brake at home and abroad is discussed. Combined with the subject requirements, the main research contents of drum brake is determined. Then the technical route is proposed and the key pointes of the study are recognized clearly.
     (2) By means of the kinematics analysis on drum brake, the contact angle equations are established when the center of the drum coincides with that of friction plates or not. The contact angle equations of drum brake used for the heavy vehicles are also simulated by Matlab. It can be concluded that the contact angle of friction plates at the top is smaller than that at the bottom when the center of friction plates coincide with the center of drum. Because of the elastic deformation of actual structures, the top friction plates contact with drum easily. When the offset from the center of drum to the center of the friction plates equal to0.1mm, the leading shoe and trailing shoe both have the smaller contact angle at the top of the friction plates than that at the bottom. And the contact angle at the bottom of friction plates have great changes as the eccentric angle changes. Thus there is great difference in contact state between the actual structures as a result of random eccentric quantity. Although the structure elastic deformation is not taken in to account while the contact angel equation of friction lining is established, the changing regularity between friction lining and drum brake contact zone during braking process can be analyzed from geometric scope, which provide a new approach for the analysis of braking process of complicated drum brake; apart from this, the article also represented a novel construction of floating drum brake:the brake shoe has a radial movement along the support pin position, and built improved contact angle motion equations, which provided a theoretical model for the following analyses.
     (3) In order to study the brake process accurately for the leading-trailing brake system with an opening device by a cam, the paper presents that constituting brake shoes, brake drum with cam as a system, applying brake torque on the cam, analysising opening force, brake torque and change rule of vibrations by ADAMS dynamic simulation software. Analysis holds that brake torque of leading shoe is not equal to the one of trailing shoe, and brake torque of leading shoe is much larger than the one of trailing shoe in the brake process of leading-trailing shoe brake system with an opening device by a cam, the result is also proved by FE model; Owing to the nonlinear friction factor and other reasons, the leading shoe and the trailing shoe have been in a state of random vibration and their vibration intensity increases with the raising of the vehicle speed. The distribution regulation of the tangential friction (or normal force) on the brake lining of the leading shoe is that the middle part is greater than the both sides. The tangential friction on the trailing shoe is far less than the one of leading shoe, and its distribution law is that the upper part is large and the lower part is small. The above conclusions are also validated by FEA results. The opening force of the trailing shoe is greater than the one of the leading shoe, and both opening force remains unchanged though the vehicle speed is different in the condition that input torque applied on the cam is equal.
     (4) The finite element model of floating-shoe brake is builded by ANSYS finite element software by appllying input torque on the cam axis to simulate brake process of brake system, then friction contact between brake lining and drum is analysised. Contact stress cloud-chart and distribution curve of brake torque are obtained.The motion rule of floating leading shoe and trailing shoe's contact angular are analysed, and at last the correctness of the simulation analysis is verified through the braking performance platform test of the two kinds of brakes.The analysises indicate that:The contact stress of floating-shoe is less than that of tradition structure in the condition of brake torque keeping invariant because of leading-shoe's larger contact area of floating shoe brake, The trailing shoe floats upward, which results in that the trailing shoe's friction torque of floating-shoe brake is larger than the tradition's. The total brake torque of floating-shoe brake is larger than the one of traditional brake. When the floating brake works, the contact angular's variation is decreased through the regulation of hoof support pin's DOF, and the contact condition is improved, which goes against the trailing's improvement
     (5) The influence of the floating-shoe and tradional brake's eccentric on torque is analysised through ANSYS finite element software in this paper, and also the influence of the floating-shoe brake's eccentric on contact state of friction is analysised through the motion equation of contact angle.Last, the bench tests of vehicle are performed in order to verify the correctness of the theoretical analysis.It can be concluded that the floating hoof drum brake can make its own total friction torque unchangeable basically when the offset is changed. For this reason the vehicles have lower the brakes' influence on vehicles' offset in the process of braking. When the offset changes, the total friction torque of a traditional hoof drum brake always changes a lot, which easily makes the braking torques of left and right wheels unequal and causes braking deviation. Floating-leading shoe structure can improve contact condition and enlarge contact areas of brake lining obviously, also optimal adjustment movement value of leading shoe can be obtained by contact motion equation, while brake lining contact condition can not be improved by floating-trailing shoe structure. Through the vehicle deviation test of traditional drum brake and floating drum brake on the test bed, the differences of brake forces for the traditional drum brake are larger than those for the floating drum brake. The result above explains that braking force of left wheel and right wheel on vehicles with traditional drum brake have serious deviation, which agree with the simulation result.
引文
[1]肖兴宇.汽车底盘构造[M].重庆:重庆大学出版社,2008.
    [2]Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. ASME Transactions, Journal of Basic Engineering,1963,85(4):528-534.
    [3]韩文明,吕振华.关于鼓式制动器效能因数变化特性的新探讨[J].公路交通科技,2004,21(5):128-131,140.
    [4]宁晓斌,张文明.矿用汽车鼓式制动器制动效能因数的仿真分析[J].有色金属,2005,57(2):120-124.
    [5]宁晓斌.基于虚拟样机技术的重型汽车制动器研究[D].北京:北京科技大学,2004.
    [6]吕振华,韩文明.鼓式制动器摩擦副压强不均匀性分析与评价[J].汽车工程,2004,26(1):90-93.
    [7]吕振华,韩文明.具有多自由度联动蹄的蹄-鼓式制动器:中国,00254032[P].2000.9.29.
    [8]毛智东,王学林,胡于进,李成刚.鼓式制动器接触分析[J].华中科技大学学报(自然科学版),2002,30(7):71-73.
    [9]杨国俊,李伟平.接触分析在鼓式制动器设计中的应用[J].机械设计,2009,26(3):69-71.
    [10]俄延华,李明丽.鼓式制动器尖叫特性分析的复模态方法[J].汽车技术,1992,7:29-34.
    [11]管迪华,朱新潮,成波.鼓式制动器结构振动噪声研究[J].汽车工程,1993,15(2):71-78.
    [12]朱新潮,管迪华.结构参数对鼓式制动器高频噪声的影响[J].汽车工程,1994,16(1):12-20.
    [13]曹立波,郭正康.鼓式制动器制动尖叫的机理及预防[J].湖南大学学报,1995,22(3):91-96.
    [14]蒋伟康,西择男,高田博.鼓式制动器振动与啸叫的研究[J].机械强度,1998,20(2):81-86.
    [15]蔡旭东,蒋伟康.鼓式制动器噪声机理及对策研究[J].汽车工程,2002,24(5):391-394,407.
    [16]宁晓斌,张文明,王国彪.用虚拟样机技术分析鼓式制动器的振动[J].有色金属,2003,55(2):105-108.
    [17]周明刚,黄其柏,王勇,胡溧.鼓式制动器非线性低频振动的稳定性分析[J].华中科技大学学报(自然科学版),2007,35(3):63-66.
    [18]周明刚,黄其柏,王勇.鼓式制动器非线性振动模型的极限环颤振研究.华中科技大学学报(自然科学版),2007,35(10):74-76.
    [19]周明刚,黄其柏,王勇.鼓式制动器制动低频振动特性的有限元分析[J].中国机械工程,2008,19(4):396-397,401.
    [20]刘献栋,侯俊剑,单颖春.颗粒阻尼用于鼓式制动器减振降噪[J].振动、测试与诊断,2008,28(3):247-251.
    [21]张海军,谷正气,杨易,龚旭,汪怡平.鼓式制动器低频振动的分析与改进[J].汽车工程,2009,31(11):1060-1065.
    [22]李亮,宋健,李永,郭振宇.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报,2005,17(12):2869-2872,2877.
    [23]郭应时,付锐,杨鹏飞,袁伟.鼓式制动器瞬态温度场数值模拟计算[J].长安大学学报(自然科学版),2006,26(3):87-90.
    [24]孟召辉.汽车鼓式制动器热性能有限元分析[D].吉林:吉林大学,2007.
    [25]马迅,朱前进.蹄鼓式制动器瞬态温度场的仿真分析[J].机械设计与制造,2008,(6):71-73.
    [26]赵凯辉,魏朗.鼓式制动器三维热-机耦合温度场仿真[J].农业机械学报,2009,40(2):32-36.
    [27]王涛,朱文坚,李羡真.制动摩擦副材质对其摩擦性能影响的研究[J].中国机械工程,1993,4(4):15-17.
    [28]程和法,黄笑梅,陈翌庆,苏勇.HT200制动鼓的失效分析及其新材质的研制[J].机械工程材料,2001,25(10):36-38.
    [29]黄笑梅,程和法,苏勇,陈翌庆.低合金化灰铸铁汽车制动鼓的研制[J].汽车工艺与材料,2002,(1):22-24.
    [30]丁厚福,李先芬,祖方遒,苏勇,陈翌庆.低合金铸铁汽车制动鼓的失效分析[J].合肥工业大学学报(自然科学版),2004,27(9):983-986.
    [31]陶世波.某载货汽车制动鼓开裂分析[J].合肥工业大学学报(自然科学版),2009,(32)(增刊):146-148.
    [32]Shan Shih, Rajesh Somnay, Robert Hannon, Joseph Kay. Improved drum brake dhoe factor prediction with the consideration of system compliance [C], International Truck and Bus Meeting and Exposition, Portland,2000.
    [33]C. Hohmann, K. Schiffner, K. Oerter, H. Reese. Contact analysis for drum brakes and disk brakes using ADINA [J]. Computers and Structures,1999,72:185-198.
    [34]Rajesh Somnay,Shan Shih,Paul Johnston. Improved drum brake performance prediction considering coupled thermal and mechanical effects[C]. International Truck and Bus Meeting and Exhibition, Chicago,2001.
    [35]Daniel Thuresson. Influence of material properties on sliding contact braking applications[J].Wear,2004,257(5):451-460.
    [36]P. Ioannidis, P. C Brooks and D. C Barton. Drum brake contact analysis and its influenceon squeal noise prediction[C].21st Annual Brake Colloquium and Exhibi-tion, Hollywood,2003.
    [37]Ibrahim Ahmed. Studying the contact analysis behavior of vehicle drum brake using finite element methods [C]. Commercial Vehicle Engineering Congress and Exhibition, Chicago,2006.
    [38]J. M. Lee, S. W. Yoo, J. H. Kim, C. G. Ahn. A study on the squeal of a drum brake which has shoes of non-uniform cross-section [J]. Journal of Sound and vibra-tion,2001,240(5):789-808.
    [39]Yitzong Chern,R. H. Basch. A drum brake squeal analysis in the time domain [C]. SAE 2005 Noise and Vibration Conference and Exhibition,Traverse City,2005.
    [40]Jinchun Huang, CharlesM. Krousgrill, Anil K. Bajaj. Modeling of automotive drum brakesfor squeal and parameter sensitivity analysis [J]. Journal of Sound and Vibration,2006,289:245-263.
    [41]Ibrahim Ahmed, Shawky Aboul-Seoud. Drum brake squeal analysis by finite element method [C].24th Annual Brake Colloquium & Exhibition, Grapevine,2006.
    [42]Ibrahim Ahmed, Shawky Aboul-Seoud. On the analysis of drum brake squeal using finite element methods technique [C]. Commercial Vehicle Engineering Cong-ress and Exhibition, Chicago,2006.
    [43]John Lawrence Grimes.Design of a thermal compensating adjuster for drum brakes. PhD thesis, California State University, Long Beach,1999.
    [44]Malak Naji, M.AL-Nimr. Dynamic thermal behavior of a brake system [J]. Int.Comm.Heat Mass Transfer,28(6):835-845.
    [45]Rajesh Somnay, Shan Shih, Paul Johnston. Improved drum brake performance prediction considering coupled thermal and mechanical effects [C]. International Truck and Bus Meeting and Exhibition, Chicago,2001.
    [46]Voldrich Josef. Frictionally excited thermoelastic instability in disc brakes:Transient problem in the full contact regime [J].International journal of mechanical sciences,2007,49(2):129-137.
    [47]Ji Hoon Choi,In Lee. Finite element analysis of transient thermoelastic behaviors in disk brakes [J].Wear,2004,254:47-58.
    [48]Biswadip Shome, Vinod Kumar and Salvio Chacko. Numerical simulation of drum brake cooling for heavy trucks [C].24th Annual Brake Colloquium & Exhi-bition, Grapevine,2006.
    [49]John A. Urban, Anthony A. Moore,Thomas J. MacMenemy. CamLaster TM-A new drum brake for north america [C]. Truck and Bus Meeting and Exposition, Portland,2000.
    [50]Gottfried Spelsberg-Korspeter. Structural optimization for the avoidance of self-excited vibrations based on analytical models. Journal of Sound and Vibration,2010,329:4829-4840.
    [51]Nui Wang. Development of a single-shoe leading-trailing drum brake-code named Fuchsia [C]. SAE 2000 World Congress, Detroit,2000.
    [52]M. P. Raajha, V. Lakshmi Narayanan. High performance drum brake assembly for automotive braking applications [C].21st Annual Brake Colloquium and Exhi-bition, Hollywood,2003.
    [53]I. Paczelt, Z. Mroz. Optimal shapes of contact interfaces due to sliding wear in the steady relative motion[J]. International Journal of Solids and Structures,2007, 44:895-925.
    [54]I. Paczelt, Z. Mroz. On the analysis of steady-state sliding wear processes[J].Tribology International,2009,42:275-283.
    [55]Roberson R E, Schwertassek R. Dynamics of multibody systems[M]. Berlin:Spring Verlag,1988.
    [56]Huston R L. Multibody dynamics-modeling and analysis methods[J].J of APPI. Mech, 1991,44(3):109-117.
    [57]宁晓斌.虚拟样机技术的重型汽车制动器研究[D].北京:北京科技大学,2004.
    [58]林慕义,宁晓斌.工程车辆全动力制动系统[M].北京:冶金工业出版社,2007.
    [59]张越今,多体系统动力学在轿车动力学仿真及优化研究中的应用[D].北京:清华大学,1997.
    [60]ADAMS Users Reference Manual,MDI,1997
    [61]陆佑方,柔性多体系统动力学[M].北京:高等教育出版社.1996
    [62]洪家振等,多体系统动力学理论、计算方法和应用[M].上海:上海交通大学出版社,1992.
    [63]詹文章,汽车独立悬架多体系统动力学仿真及转向轮高速摆振研究[D].吉林:吉林大学,2009.
    [64]ADAMS Theory Seminar,Meehanical Dynamics,Inc.,1994
    [65]MID,Using the ADAMS/Flex,Mechanical Dynamics,Inc.,1999
    [66]孙林松,王德信,谢能刚.接触问题有限元分析方法综述[J].水利水电科技进展,2001,2(3):18-20.
    [67]刘惟信,汽车设计[M].北京:清华大学出版社,2001.
    [68]靳少杰,徐徐颖强,林富华.鼓式制动器摩擦片-鼓接触点确定方法及变化规律分布[J].汽车工程,2010,5(32):424-428.
    [69]张健,雷雨成,卫修敬.领从蹄式鼓式制动器制动力矩计算方法研究[J].长沙交通学院学报,2001,17(3):31-35.
    [70]管欣,申军烽,管仁梅,詹军.鼓式制动器多柔性体ADAMS建模与仿真[J].汽车技术,2007,(10):6-9.
    [71]杨国俊,谷正气,李伟平.有限元分析在鼓式制动器设计中的应用[J].机械设计与制造,2007,(4):14-15.
    [72]刘立刚,王学林.鼓式制动器的有限元分析[J].专用汽车,2003,(3):21-23.
    [73]陈家瑞.汽车构造[M].北京:人民交通出版社,1997.
    [74]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社,2004.
    [75]王望予.汽车设计[M].北京:机械工业出版社,2004.
    [76]申军烽.鼓式制动器接触与摩擦不均匀及其影响的动态过程仿真[D].吉林:吉林大 学,2009.
    [77]王解生.关于汽车典型故障制动跑偏的研究[J].科学咨询(科技管理),2010,(6):91-92.
    [78]史裕聪.解决蹄式制动器新车制动跑偏的新思路[J].建筑科技与管理,2010,(6):171-172.
    [79]王庭义,吕彭民,李玉杰,孟铁.浮动鼓式制动器制动过程有限元分析[J].长安大学学报:自然科学版,2010,30(6):99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700