大型铝型材挤压生产线故障诊断系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型铝型材挤压生产线(Large Aluminum profile Extrusion Production Line, LAEPL)是由工频炉、挤压机主机、主辅机液压控制系统和油泵站、主辅机电气控制系统和监测装置、运锭机、推锭器、挤压筒加热及空气冷却系统装置等多种机械部件、油压单元、电气单元协调工作的复杂过程控制工业系统,故障种类多。当前LAEPL的故障诊断手段主要依赖人工经验,因此,对其进行智能故障诊断技术的研究具有重要意义。本文综合运用集成故障建模技术、液压故障诊断技术、传感器故障诊断技术、非线性系统状态估计理论、智能故障诊断理论等先进理论和算法,全面研究LAEPL的故障诊断关键技术,并开发了LAEPL状态监测与故障诊断系统。
     本文开展了集成故障建模方法研究,提出一种集成时序Petri网与混杂键合图(TPN-HBG)的LAEPL故障诊断模型,全面描述连续变量和离散事件,以满足LAEPL对诊断模型的要求。在集成故障诊断模型中,设计了系统层和设备层的故障诊断方法。其中在系统层,基于TPN设计了LAEPL故障诊断方法;在设备层,针对大型铝型材挤压机(Large Aluminum profile Extrusion Machine, LAEM)这一多液压源,多回路的复杂液压系统,提出一种集成混杂键合图与时间因果图(HBG-TCG)的故障诊断方法,用于检测与诊断LAEM这一关键设备的故障。
     针对LAEM的电液伺服系统的故障诊断,提出一种基于混杂系统模型及多元线性回归的故障模型,利用混杂系统理论抽象电液伺服系统的工况与故障,建立基于混杂系统的电液伺服系统模型,利用多元线性回归算法辨识系统参数,建立故障观测模型;实验表明,该故障诊断方法能有效应用于液压故障参数的监测和早期故障预报。
     LAEPL上的传感器数量、种类众多。因此,本文针对LAEPL故障诊断模型下的传感器故障诊断,提出一种基于最小折扣因子的证据不确定性修正算法,正确区分传感器故障、设备故障和环境造成的干扰。结合线性系统理论中观测器的设计方法,构造了用以实现传感器故障检测与隔离的残差产生器,利用几何理论中的不变子空间理论,通过特征空间分割,实现故障特征的解耦;利用空间投影运算,实现传感器故障的检测与隔离;该方法能对单故障实现检测与隔离,而且对多传感器并发故障同样具有很好的检测与隔离效果。
     在铝型材挤压状态估计研究方面,通过对挤压过程热力学理论分析,提出使用不确定性自回归滑动平均模型把挤压过程中的非线性连续状态表示成一个线性系统和非线性扰动,采用自适应摸糊神经网络与一种连续、单调并可逆的一一映射相结合的方式逼近非线性扰动。在铝型材挤压状态估计研究方面,通过对挤压工艺的分析,充分掌握控制参数与输出温升的关系,设计基于隐马尔科夫的离散状态估计模型,使用贝叶斯公式确定最有可能的离散状态,预测铝锭发生液相-固相突变的概率。
     在本文所研究的状态估计与故障诊断方法的基础上,开发了LAEPL故障诊断系统,结合铝型材挤压的工艺分析与故障诊断的要求,通过硬件升级,软件编程,研究开发了LAEPL远程监测与故障诊断系统,并已成功应用于某铝业有限公司的55MN铝型材挤压监测现场,实现了铝型材生产状态实时监测与故障诊断。
Large aluminum extrusion production line (LAEPL) is a complex industrial process control system, which is a combination of a variety of mechanical parts, hydraulic union and electrical unit including the frequency furnace, extrusion machine, the main auxiliary oil pump station, hydraulic control system, electrical control system of main auxiliary equipment,the monitoring device, etc. The rate of failures in the LAEPL is high for it is very difficult to diagnose these faults in LAEPL from people's practical experience, thus the research in intelligent fault diagnosis technique is of vital importance and very significant.
     This paper is a tentative research on key technologies of fault diagnosis in LAEPL by using a series of technologies. These technologies include integrated fault modeling technology, hydraulic fault diagnosis technology, sensor fault diagnosis technology, nonlinear system state estimation theory, intelligent fault diagnosis theory and other advanced theories and algorithms. On the basis of theoretical research, a fault diagnosis system in LAEPL is initiated and developed in this paper.
     This paper is expected to put forward a fault diagnosis model integrated with TPN-HBG by conducting some researches on the integrated fault modeling method, and based on hybrid system is supposed to be integrated in this model. This model can overall reflect continuous variables and discrete events, and would satisfy the requirement of diagnostic model in the complex process control system. Based on the integrated fault diagnosis model, two fault diagnosis methods in the system layer and the device layer are designed. To be more specific, a LAEPL fault diagnosis method in the system layer was designed. A multi-loop complex hydraulic system will be put forward in the device layer. This system is a kind of HBG-TCG based fault diagnosis method for LAEM (Large Aluminum profile Extrusion Machine) with multi hydraulic source for detecting and diagnosing the key equipment failure-LAEM.
     In order to diagnose electro-hydraulic servo system of LAEM, a brand-new model based on hybrid systems and multiple linear regression models is proposed in this dissertation by using multi sensor information fusion, a model based on hybrid systems and multiple linear regression models. The condition and the fault of electro hydraulic servo system are abstracted by using hybrid system theory, and the electro hydraulic servo system model of hybrid system is further established. Also the parameters of the system are identified by the use of multiple linear regression algorithms. Experiments show that two fault diagnosis methods are effective in fault diagnosis of hydraulic parameters monitoring and fault forecasting.
     For the diversity in the quantity and the type of sensors on LAEPL, this paper will propose good evidence to show the uncertainty correction algorithm on the basis of the smallest discount, and this algorithm can distinguish the sensor faults, equipment failure and environmental disturbance. In this paper, a residual generator is constructed to realize the sensor fault detection and isolation through combining the theory of linear system observer. Also by using the geometric theory of the invariant subspace, the fault feature decoupling will be achieved through feature space partition. The sensor fault detection and isolation system will be further realized by using space projection operation. By doing these, not only the single fault can be detected and isolated by the method, but also multi sensor fault can be detected and isolated effectively.
     In the field of state estimation research in aluminum extrusion, the extrusion processes is represented as a linear system through the analysis of the extrusion thermodynamic theory, and a nonlinear disturbance model is proposed by using ARMR model. By combining an adaptive-network-based fuzzy inference system with "one-to-one mapping", a compensator for unmodeled dynamics is constructed. Based on the research on state estimation in aluminum extrusion and the analysis of extrusion process, the relationship between the control parameters and the temperature rise is derived A discrete state estimation model based on Hidden Markov is designed; the most likely state can be determined by using the Bays formula. This method can be used to correctly estimate the extrusion process as well as the liquid-solid phase mutation probability prediction.
     On the basis of the research in the state estimation and fault diagnosis method, the fault diagnosis system for LAEPL will be developed in this paper, and the LAEPL running status monitoring and fault diagnosis system will also be designed for the actual need. This system has been successfully applied in55MN aluminum extrusion practice monitoring of a aluminum CO.,LTD, and it can also be used in the real time state monitoring and fault diagnosis.
引文
[1]何钊,王赫男,王孟君,李光耀.复杂铝型材挤压过程的模拟与试模(英文)[J],中国有色金属学报(英文版),2012,22(7):55-60.
    [2]刘静安.铝挤压向产业强国起航[J].中国金属通报,2012,9:16-20.
    [3]PR NEWSWIRE. Global and China Aluminum Profile Industry Report,2012 [R], http://www.reportlinker.com/p01007787/Global-and-China-Aluminum-Profile-Indust ry-Report.html,2012.
    [4]张颖伟.复杂工业过程的故障诊断[M],哈尔滨:东北大学出版社,2007.
    [5]WANG, Hong, CHAI, Tian-You, DING, Jin-Liang, BROWN, Martin.Data Driven Fault Diagnosis and Fault Tolerant Control:Some Advances and Possible New Directions[J], 自动化学报,2009,35(6):741-756.
    [6]孙优贤,褚健.工业过程控制技术一方法篇[M].北京:化学工业出版社,2006.
    [7]PR Newswire US. Global and China Aluminum Profile Industry Report[R],2012. PR Newswire US[M],2012.
    [8]Mannan Sam, Frank P. Lees. Lee's loss prevention in the process industries:hazard identification, assessment, and control[M]. Oxford:Elsevier Butterworth-Heinemann, 2005.
    [9]V.Venkatsubramanian, R.Rengaswamy, K.Yin, S.N.Kavuri. A review of process fault detecation and diagnosis Part 1:Quantitative model-based methods[J]. Computers and Chemical Engineering,2003,27(3):293-311.
    [10]Nigerian Accident Investigation Bureau.Accident Investigation report[Z].2009. http://aib.gov.ng.
    [11]Statistics Bureau and the Director-General for Policy Planning (Statistical Standards). International Conferences and Technical Cooperation to Developing Countries[Z].2009. http://www.stat.go.jp/english/index.htm.
    [12]UK National Statistics. Office for National Statistics (ONS)[Z].2009 http://www.statisties.gov.uk/.
    [13]安全文化网.化工事故统计[z].2009.http://www.anquan.com.cn/.
    [14]R.VBeard. Fault accommodation in linear systems through self-reorganization[R]. Report MVT-71-1, Man Vehnicle, Cambridge,1971.
    [15]R.K.MehLra, J.Pesehon. An innovational approach to fault detection and diagnosis in dynamics[J]. Automatic,1973,7(3):637-640.
    [16]R.J.patton, P.M.Frank, and R.N.C.(Ed), Fault Diagnosis in Dynamic Systems[J], Theory and Applications. Englewood Clis, NJ:Prentice-Hall,1989.
    [17]R.J.patton, p, M.Frank, andR.N.C.(Eds.), Issues of Fault Diagosis for Dynamic Systems[M]. Springer,NewYork,2000.
    [18]P.M.Frank,S.X.Ding,,T.Mareu,"Model-based fault diagnosis in technical processes".Transactions of the Institute of Measurement and Control, 2000,22(3):57-101,.
    [19]吴今培,肖建华.智能故障诊断与专家系统[M],北京,科学出版社,1997.
    [20]Stephanopoulos, G., C. Han. Intelligent system in process engineering:a review[J]. Compu. Chem. Engng,2000,20(6):743-781.
    [21]Frank, P. M. and Kiupel, N. Residual Evaluation for Fault Diagnosis Using Adaptive Thresholds and Fuzzy Inference [C]. Proc. Of IF AC World Congress, San Francisco, USA,1996:115-120.
    [22]Timo, S. and Heikki, N.K. Application of Artificial Neural Networks in Process Fault Diagnosis[J]. Automatica,1993,29:843-849.
    [23]张建华,王占林.基于模糊神经网络的故障诊断方法的研究[J].北京航空航天大学学报,1997,23(4):502-506.
    [24]徐常胜,周兆英,刘思行,等.基于神经网络和专家系统的故障诊断[J].控制理论与应用,1995,10(4):342-346.
    [25]Duan G R, Howe D. paton R. J., Robust fault detection in descriptor systems Via Generalized unknown input observers[C]. Proceedings of the IF AC 14 world congress, Beijing, P.R.China,1999:43-48.
    [26]周东华,孙优贤.控制系统的故障检测与诊断技术[M],北京:清华大学出版社,1994.
    [27]Douglas R K and SPeyer J.L.Hoo bounded fault detection filter[J].Journal of Guidance, Control and Dynamics,1999,22(1):129-138.
    [28]GertlerJ, MonajemyR. Generating directional residuals with dynamic parity relations[J]. Automatica,1995,31(4):627-635.
    [29]Gertler, J.J. Fault detection and diagnosis in engneering systems[M]. New York. Mareel Dekkef,1998.
    [30]Chen, J., Patton, R.J.Robust model-based fault diagnosis for dynamic systems[M]. Dordreeht:Kluwer Academie Publishers,1999.
    [31]Emami Naemi, Akhter M.M., Rock, S.M. Effect of model uncertainty on failure detection:The threshold selector[J]. IEEE Transactions on Automatic Control,1988, 33:1106-1115.
    [32]Horak, D.T. Failure detection in dynamic systems with modeling errors[J]. Journal of Guidance, Control and Dynamics,1988,11(6):508-516.
    [33]Vicene Puig, Joseba Quevedo. Fault-tolerant PID controllers using a passive robust fault diagnosis approach[J].Control Engineering Practice,2001,9:1221-1234.
    [34]Steven X. Ding. Model-based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools[M].Springer-Verlag Berlin Heidelberg,2008.
    [35]Zhao F, Kout soukos X, Haussecker H, et al. Monitoring and fault diagnosis of hybrid systems[J]. IEEE Trans. On SMC Part B:Cybernetics,2005,35 (6):793-801.
    [36]Narasimhan S, Zhao F, Biswas G, et al. Fault isolation in hybrid system combing model based diagnosis and signal processing[C] Proc. of the 4th Symposium on Fault Detection, Supervision and Safety for Technical Processes, Budapest, Hungary,2000: 1074-1079.
    [37]Tromp L, Benveniste A, Basseville M. Fault detection and isolation in hybrid systems:a Petri-net approach[C]. Proc.14th IFAC World Congress, Beijing,1999: 79-84.
    [38]Zhang Y M, Li X R. Detection and diagnosis of sensor and actuator failures using IMM estimator [J]. IEEE Trans. on Aero. and Elect. Syst.,1998,34(4):1293-1313.
    [39]Dearden R, Clancy D. Particle filter for real time fault detection of planetary rovers [C]. Proc.13th Int. workshop on Principles of Diagnosis (D X'2002), Semmering, Austria,2002.
    [40]Hibey J L, Charalambous C D. Conditional densities for continuous time nonlinear hybrid systems with applications to fault detection[C]. Proc of the 37th IEEE Conference on Decision and Control,1998:1123-1130.
    [41]Zhang Y M, Li X R. Detection and diagnosis of sensor and actuator failures using IMM estimator[J]. IEEE Trans. on Aero. and Elect. Syst.,1998,34(4):1293-1313.
    [42]Mosterman P J. Hybrid dynamic systems:a hybrid bond graph modeling paradigm and its application in diagnosis[D]. Verderbilt University,1997.
    [43]Aghasaryan A, Fabre E, Benveniste A, et al. A Petri net approach to fault detection and diagnosis in distributed system, Part Ⅱ:extending Viterbi algorithm and hidden Markov model techniques to Petri nets[C]. Proc. of the 36th I EEE Conference on Decision and Control,1997,726-731.
    [44]Nelly Olivier-Maget, Gilles Hetreux, Jean Marc Le Lann, Marie Veronique Le Lann. Model-based fault diagnosis for hybrid systems:Application on chemical processes[J]. Computers and Chemical Engineering.2009(33).1617-1630.
    [45]叶昊,王桂增,方崇智.一种基于小波变换的导弹运输车辆故障诊断方法[J].自动化学报,1998,24:301-306
    [461叶昊,王桂增,方崇智.小波变换在故障检测中的应用[J].自动化学报,1998,23:735-741.
    [47]叶昊,王桂增,方崇智.基于脉冲响应的正交小波变换系数的故障检测方法[J].控制理论与应用,1999,16:6-9.
    [48]HyVarinen, A. and Oja, E. Independent component analysis:algorithm and applications[J].Neural Networks,2000,13(4):411-430.
    [49]何宁.基于ICA-PCA方法的流程工业过程监控与故障诊断研究[D].浙江大学博士学位论文,2004.
    [50]薄翠梅.过程控制系统的故障检测诊断与容错控制[D].[博士学位论文].南京:南京理工大学,2008.
    [51]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究[D].[博士学位论文].长沙:中南大学,2001.
    [52]刘晓颖.复杂过程的智能故障诊断技术及其在大型工业窑炉中的应用[D].[博士学位论文].长沙:中南大学,2003.
    [53]张志学,马皓,毛兴云.基于混杂系统模型和事件辨识的电力电子电路故障诊断[J].中国电机工程学报.2005,25(3):49-53.
    [54]杨麟祥.基于混杂系统理论的工业过程实时控制研究[D].[博士学位论文].上海:同济大学,2008.
    [55]Matthew J. Daigle. A Qualitative Event-Based Approach to Fault diagnosis of Hybrid systems. [Doctor Dissertation]. Nashville in USA:Vanderbilt University,2008.
    [56]Kout soukos X, Kurien J, Zhao F. Estimation of distributed hybrid systems using particle filtering methods[C]. Maler O A, Pnueli A, (eds):Hybrid Systems Computation and Control (HS CC' 03,), Lecture Notes in Computer Science Vol. 2623.New York, USA:Springer-Verlag,2000:298-313.
    [57]Yang Z Y. A hybrid system approach towards redundant fault tolerant control systems [C]. Proc. of the 39th I EEE Conference on Decision and Control,2000: 987-992.
    [58]刘军,苗执元,韦尧兵,陈积明.具有不确定需求的混杂系统的生产与维修控制[J].自动化学报,2007,33(12):1331-1335.
    [59]邱爱兵,文成林,姜斌.基于混杂系统方法的一类采样数据系统鲁棒故障检测(英文)[J].自动化学报,2010,36(8):1182-1187.
    [60]廖伟志,古天龙,李文敬,黄容伟.模糊柔性制造系统的混杂Petri网建模与调度[J].计算机集成制造系统,2008,14(11):2134-2141.
    [61]刘振娟,李宏光,吴重光.基于PETRI网递阶监控器的间歇过程故障诊断[J].系统仿真学报,2009,21(5)1495-1497.
    [62]王东.切换时滞系统的H-∞滤波与故障检测[D].[博士学位论文],大连:大连理工大学,2011.
    [63]姚秀明.混杂Markovian跳跃系统的分析与综合[D].[博士学位论文],哈尔滨:哈尔滨工业大学,2010.
    [64]Alur R, Courcoubetis C, Henzinger T A, et al. Hybrid automata:An algorithmic approach to t he specification and verification of hybrid systems [C]//Grossman R L, et al (eds). Hybrid Systems. New York, USA:Springer-Verlag,1993:209-229.
    [65]Basseville M, Benveniste A, Tomp L. Diagnosing hybrid dynamical systems: fault graphs, statistical residuals and viterbi algorithms[C]. Proc. of the 37th IEEE Conference on Decision and Control,1998,4:3757-3762.
    [66]Rezai M, Lawrence P D, Ito M R. Analysis of fault s in hybrid systems by global Petri nets[C]. Proc. of IEEE International Conference on Systems, Man and Cybernetics,1995:2251-2256.
    [67]Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraint s [J]. Automatica,1999,35(3):407-427.
    [68]Gatzke E P, Doyle Ⅲ F J. Moving horizon parameter estimation using qualitative knowledge and multiple linear models[R]. Technical Report of Univ. of Delaware Process Control and Monitoring Consortium,1999,4.
    [69]Rapoport I, Oshma Y. A cramer-rao-type estimation lower bound for systems with measurement faults [J]. IEEE Trans. on Automatic Control,2005,50 (9):1234-1245.
    [70]Lerner U, Parr R, Koller D, et al. Bayesian fault detection and diagnosis in dynamic systems[C].Proc. of the 17th National Conference on Artificial Intelligence (AAAI), Austin, Texas,2000:531-537.
    [71]Lunze J. Diagnosis of quantised systems by means of timed discrete vent representation [C]. Lynch N A, Krogh B H. (eds):Hybrid Systems:Computation and Control (HSCC'2000), Lecture Notes in Computer Science, New York USA:Springer-Verlag,2000,1790:258-271.
    [72]周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报.2006,42(9):6-13.
    [73]D. Yu. Fault Diagnosis for a Hydraulic Drive System Using a parameter estimation Method[J], Control Engineering Practice,1997,5(9):1283-1291.
    [74]Liang An, Nariman Sepehri. HYDRAULIC ACTUATOR LEAKAGE FAULT DETECTION USING EXTENDED KALMAN FILTER[J]. International Journal of Fluid Power.2005,6(1):41-51.
    [75]Keqiang Cao, Jianbang Zhang,Liangmou Hu.Fault Diagnosis of Electro-hydraulic Position Servo Closed-loop System Based on Support Vector Regression[C]. IEEE International Conference on Automation and Logistics,2007:3044-3049.
    [76]贺湘宇,何清华,谢习华,蒋苹,周旭.基于偏最小二乘回归的挖掘机液压系统故障诊断[J].中南大学学报(自然科学版)2007,38(6):1152-1154.
    [77]明廷涛,张永祥,张西勇,李彦龙.基于非线性观测器的液压伺服系统故障诊断方法研究[J].中国机械工程.2008,19(13):1527-1530.
    [78]Wang Qingjun, Chen Hanxin, Chua Patrick,Hian Lim Geok.Fault Detection of Water Hydraulic Motor by Demodulated Vibration Signal Analysis with the Hilbert Transform and Genetic Algorithm[J]. Journal of Testing and Evaluation. 2011,39(2):12-15.
    [79]王艾伦,刘琳琳,马强,杨相稳.基于键合图模型的某专用卸荷溢流阀故障诊断分析.机械科学与技术,2006,25(9):1096-1102.
    [80]Angeli C, Chatzinikolaou A. An expert system approach to fault diagnosis in hydraulic systems. Expert System,1995,12(4):323-329.
    [81]张若青,裘丽华.基于动态神经网络的液压伺服系统故障检测[J].机械工程学报,2002,38(3):46-49.
    [82]徐蔚鸿.模糊智能系统中模糊推理研究[D].[博士学位论文],南京:南京理工大学,2000.
    [83]姜万录.基于混沌性质和多分辨分析的故障诊断理论及试验研究[D].[博士学位论文],秦皇岛:燕山大学,2001.
    [84]董选民.鲁棒故障诊断及其在液压系统中的应用研究[D].[博士学位论文],北京:北京航空航天大学,1997.
    [85]高英杰.轧机AGC液压系统故障诊断技术的研究[D].[博士学位论文],秦皇岛:燕山大学,2001.
    [86]杨光琴.多传感器航空液压系统信息融合故障诊断研究[D].[博士学位论文]北京:北京航空航天大学,2003.
    [87]于文征.柱塞泵泄露故障智能诊断系统研究[D].[博士学位论文],南京:南京理工大学,2002.
    [88]张娅玲,陈伟民,章鹏,胡顺仁,黄晓微,郑伟.传感器故障诊断技术概述[J].传 感器与微系统,2009,28(1):4-8.
    [89]车录锋,周晓军,程耀东.考虑传感器失效的多传感器加权数据融合算法[J].工程设计(Konstruktion),1999(1):38-40.
    [90]赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法[J].传感技术学报,2006,12(6):2723-2726.
    [91]吴浩中,戴小文,王开文.摆式列车用传感器的故障检测与识别[J].测控技术,2001,20(6):19-21.
    [92]Clarke D W, Fraher P M. Model-based validation of a DOX sensor[J]. Control Engineering Practice,1996,4(9):1313-1320.
    [93]徐涛,王祁.基于小波变换的多尺度主元分析在传感器故障诊断中的应用[J].测试技术学报,2006,20(5):418-423.
    [94]龚瑞昆.离散小波变换在传感器故障诊断中的应用[J].仪器仪表学报,2001(8):237-239.
    [95]蒋东翔,张礼勇.基于知识的传感器故障在线诊断系统[J].电测与仪表,1993(11):39-41.
    [96]曹曦,苏明,黄善衡.BP神经网络用于传感器故障诊断的仿真研究[J].上海铁道大学学报,2000,21(6):43-47.
    [97]李冬辉,周巍巍.基于小波神经网络的传感器故障诊断方法研究[J].电工技术学报,2005,20(5):49-52.
    [98]J Boker,G Balas. Detection filter design for LPV systems -a geometric approach[J]. Automatic,2004,40(3)-.511-518.
    [99]Meskin N, Liang S, Sobhani E, et al. A nonlinear geometricfault detection and isolation approach for almost-lighter-than-air-vehicles [A].16th IEEE International Conference on Control Applications, Part of IEEE Multi Conference on System and Control [C]. Singapore,2007.1073-1078.
    [100]Nader Meskin, K Khorasani. Robust fault detection and isolation of time delay systems using a geometric approach [J]. Automatic,2009,45(6):1567-1573.
    [101]侯彦东,文成林,陈志国.多传感器故障检测与隔离的残差产生器设计方法研究[J],电子学报,2011.39(2):429-435.
    [102]Sheldon M. Ross. Introduction to Probability Models, Eighth Edition[M], Academic Press,2002,pp.188-191.
    [103]GUO HW, SHI W K, DENG Y. Evaluating sensor reliability in classification problems based on evidence theory[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2006,36(5):970-981.
    [104]徐晓滨,王玉成,文成林.评估诊断证据可靠性的信息融合故障诊断方法[J].控制理论与应用,2011,28(4):504-510.
    [105]NarendraKS, GallmanPG. An iterative method for the identification of nonlinear systems using a Hammerstein model[Jl. IEEE Transactions on Automatic Control, 1966, 11(3):546-550.
    [106]Stoica P. On the convergence of an iterative algorithm used for Hammerstein system identification[J].IEEE Transactions on Automatic Control.1981 26(4):967-969.
    [107]S.Billings. Identification of nonlinear systems-A survey[C].proceedings of IEEE, part D127 1980:272-285.
    [108]E.Bai. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems[J]. Automatic,1998,34(3):333-338.
    [109]J.C.Gomez, E.Baeyens. Identification of multivariable Hammerstein systems using rational Orthonormal bases[C], Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia,2000:2849-2854.
    [110]J.Voros.parameter identification of discontinuous Hammerstein systems[J]. Automatica,1997,33(6):1141-1146.
    [111]J.Voros. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones[J]. IEEE Transactions on Automatic Control, 2003,48(12):2203-2206.
    [112]向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识的新方法[J].控制理论与应用,2007,24(1):143-147.
    [113]孔金生,万百五.一种多输入单输出Hammerstein系统的集成辨识方法[J].控制理论与应用,2005,22(4):517-519.
    [114]Goethals 1, Pelekmans K, Suykens J A K, et al. Identification of MIMO Hammerstein models using least squares support vector machines[J]. Automatic,2005, 41(7):1263-1272.
    [115]Lennartson B, Tittus M, Egardt B et al. Hybrid systems in processcontrol[C]. IEEE Control System, Oct,1996,45-56.
    [116]王中双.键合图理论及其在系统动力学中的应用[M].哈尔滨工程大学出版社,2000.
    [117]陈嫦,唐进元.基于20-sim的减振器试验台液压系统键合图建模与动态仿真分析[J],工程设计学报,2010,7(5):339-345.
    [118]YANG Hui LI Zhen-hong ZHANG Zhi-liang.Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMn[J]浙江大学学报:A卷英文版,2006,7(8):1453-1460.
    [119]P.J.Mosterman,G Biwas,Monitoring, prediction, and fault isolation in dynamic physical systems[C], in the Proc of the Fourteenth National Conference on Artificial Intelligence,1997:100-105.
    [120]P. J. Mosterman and G. Biswas. Diagnosis of continuous valued systems in transient operating regions[J]. IEEE Trans.on Systems, Man and Cybernetics, 1999,29(6):554-565.
    [121]Ronald C. Rosenberg and Dean Karnopp. Introduction to Physical System Dynamics[M]. McGraw-Hill Publishing Company, New York, New York,1983.
    [122]Pieter J. Mosterman. Hybrid Dynamic Systems:A hybrid bond graph modeling paradigm and its application in diagnosis[D]. PhD dissertation, Vanderbilt University,1997.
    [123]贺湘宇,何清华,邹湘伏,谢习华,黄志雄.基于RBF网络和ARX模型的液压系统故障诊断方法[J].系统仿真学报.2009,21(1):282-285.
    [124]贺湘宇,何清华,谢习华,蒋苹,周旭.基于偏最小二乘回归的挖掘机液压系统故障诊断[J].中南大学学报(自然科学版).2007.38(6):1152-1154.
    [125]明廷涛,张永祥,张西勇,李彦龙.基于非线性观测器的液压伺服系统故障诊断方法研究[J].中国机械工程,2008,19(13):1527-1530.
    [126]谢建,何德虎,李良.基于观测器和神经网络的液压系统故障诊断方法研究[J].机床与液压,2011,39(1):135-137.
    [127]DongM, Li G Y, Liu C. Hydrau lic com ponent fault diagnosis research based on mathematical model[C]. Proceedings of the 5thWorld Congress on Intelligent Control and Automation, June,2004, Hangzhou, China.
    [128]董玉才,杨万利,张玲,等.基于偏最小二乘法的两栖突击车液压马达故障诊断[J].机床与液压,2010,38(21):141-144.
    [129]GUO HW, SHI W K, DENG Y. Evaluating sensor reliability in classification problems based on evidence theory [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2006,36(5):970-981.
    [130]JOUSSELME A L, GREN IER D, BOSSE E. A new distance between two bodies of evidence[J]. Information Fusion,2001,2 (1):91-101.
    [131]刘玉长.自动监测和过程控制[M].北京:冶金工业出版社,2005.
    [132]WEN Gang-Yao, SUN Zhao-Yan, YANG Jian, etal. Polym. Mater. Sc.i Eng. [J],2002,18(2):154-158.
    [133]李西铭,张渌泉.铝合金型材挤压[M].北京:国防工业出版社,1982.
    [134]LI Luo-xing, LOU Yan, Ram speed profile design for isothermal extrusion of AZ31 magnesium alloy by using FEM simulation[J]. Trans. Nonferrous Met. Soc. China,2008,18:252-256.
    [135]孟凡旺,李静媛,刘志铭,等,6063铝合金型材挤压温升数学模型的研究[J].轻合金加工技术,2010,38(9):23-30.
    [136]陈昆.管材热挤压成型关键技术的研究与实现[D].[博士学位论文],武汉:武汉理工大学,2007.
    [137]黄东男,张志豪,李静媛,谢建新.焊合室深度及焊合角对方形管分流模挤压成形质量的影响[J].中国有色金属学报,2010,5:954-960.
    [138]YANG Hui LI Zhen-hong ZHANG Zhi-liang.Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMn[J]. 浙江大学学报:A卷 英文版,2006,7(8):1453-1460.
    [139]Nengping Jin, H.Z., Yi Han, Wenxiang Wu, Jianghua Chen, Hot deformation behavior of 7150 aluminium alloy during compression at elevated temperature[J]. Materials Characterization,2008.60:530-536.
    [140]林春坤,杨广图,李静媛.铝锭坯梯度水冷过程中温度场的数值模拟[J].轻合金加工技术,2010,38(9):30-31.
    [141]ANFIS Takagi K, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985,15(1):116-132.
    [142]H. Q. Nguyen, Robust low level control of robotic excavation[D]. PhD.thesis, Australian Centre for Field Robotics, The University of Sydney,2000.
    [143]hmm Rabiner L. An introduction to hidden Markov models[J]. IEEE ASSP Magazine,1986,3(1):4-8.
    [144]邹涛,王昕,李少远,基于混合逻辑的非线性系统多模型预测控制[J].自动化学报,2007,33(2):188-192.
    [145]J. Julvez, C. Mahulea, C.R. Vazquez, Analysis and simulation of manufacturing systems using SimHPN toolbox[C]. Proc. of the 7th IEEE Conf. On Automation Science and Engineering, Trieste, Italy, August 2011:432-437.
    [146]Hybrid Jocelyne Perret, Gilles Hetreux, Jean-Marc Le Lann. INTEGRATION OF AN OBJECT FORMALISM WITHIN A HYBRID DYNAMIC SIMULATION ENVIRONMENT[J], Computers in Industry,2004,55(3):654-667.
    [147]Guy Eddon,Henry Eddon著.Inside COM+ Base Services[M]北京:北京希望电子出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700