靶向基因shRNA干扰家蚕及猪若干病毒的复制和增殖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA, dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病的基因治疗领域。
     1猪圆环病毒(Porcine circovirus2, PVC2)病毒是我国猪场疫病复杂的重要原因,可以说它对养猪产业正常维持带来了极大的困难,对我国养猪产业的影响目前受到了仅次于高致病性蓝耳病的空前关注,且目前尚无有效疫苗与治疗方法。本文根据PVC2型病毒-Rep、Cap和ORF3/ORF4基因的结构序列和shRNA序列设计原则,进行地毯式搜索并设计合成了139对针对PVC2型病毒-Rep蛋白基因、134对针对PVC2型病毒-Cap蛋白基因、18对针对PVC2型病毒-ORF3/ORF4基因的shRNA序列,共计291对PVC2型病毒靶向shRNA。(?)设计合成的291对shRNAs连接到线性化的RNAi-Ready pSIREN-RetroQ-ZsGreen载体上,构建成RNA干扰载体。分别在转染试剂介导下导入无PCV2污染的猪肾PK15细胞,24小时后进行荧光观察,确定转染效率。并在转染24小时后对细胞接种PCV2病毒,接毒72小时后收集细胞,通过Real-Time PCR方法检测细胞中病毒的相对表达量,从而分析所设计的shRNA对PCV2病毒的抑制作用。结果表明,针对Rep基因序列设计的139对shRNAs中,pSIREN-REP-C, pSIREN-REP-4, pSIREN-REP-23', pSIREN-REP-30', pSIREN-REP-33', pSIREN-REP-67', pSIREN-REP-75', pSIREN-REP-80'共8个序列表现出对PVC2病毒复制与增殖的抑制作用;针对Cap基因序列所设计的134对shRNAs中,pSIREN-Cap-3, pSIREN-Cap-5, pSIREN-Cap-C11', pSIREN-Cap-14, pSIREN-Cap-80共5个序列表现出对PVC2病毒复制增殖的抑制作用,而针对ORF3和ORF4所设计的18对shRNAs并没有表现出较显著的对PVC2病毒复制增殖的抑制作用。综上所述,以上对PCV2具有显著抗病毒能力的shRNA靶向基因序列可作为转基因的候选shRNA序列。
     2猪繁殖与呼吸综合症(Porcine Reproductive and Respiratory Syndrome, PRRS)俗称猪蓝耳病,是一种新的猪传染病,能够引起母猪的生殖障碍及仔猪的呼吸道症状,在世界各地危害很大。猪生殖和呼吸系统综合症病毒(PRRSV)由ORF5、ORF6分别编码的GP5、M蛋白是PRRSV病毒的主要结构蛋白,它们在病毒的致病性、病毒复制、病毒装配、病毒变异和保护性反应等方面具有重要意义。本文根据猪蓝耳病病毒PRRSV-ORF5及PRRSV-ORF6的基因结构序列和shRNA序列设计原则,分别设计和合成了5对针对PRRSV-ORF5,5对针对PRRSV-ORF6编码蛋白基因序列的靶向shRNA。(?)设计合成的shRNA连接到线性化的RNAi-Ready pSIREN-RetroQ-ZsGreen载体上,构建成RNA干扰载体。将上述质粒DNA,分别在转染试剂介导下导入Marc-145细胞,24小时后进行荧光观察,确定转染效率。同时,转染细胞接种PRRSV病毒,72小时后收集细胞,通过Real-Time PCR方法检测病毒感染后的相对表达量,分析所设计的shRNA对PRRSV病毒的抑制作用。结果表明,分别针对ORF5和ORF6设计的共10对shRNAs均表现出抑制PRRSV病毒增殖复制的作用,但不同shRNA的抑制效果存在差异(0.71%-67.52%)。其中以ORF6-6e的病毒相对表达量最低,细胞内病毒表达量仅为0.71%,即抗病毒能力最强,因此该序列可作为转基因的候选shRNA序列。
     采用piggyBac转座子构建转座载体,为了便于筛选,以RNAi-Ready pSIREN-RetroQ-ZsGreen载体为模板进行PCR扩增,得到ZsGFP基因,连接到PXL-BACⅡ上形成重组载体PXL-BACⅡ-ZsGFP;再以pSilencer4.1-CMVneo载体为模板进行PCR扩增,得到Neomycinr基因,与PXL-BACⅡ-ZsGFP连接,形成重组载体PXL-BACⅡ-ZsGFP-Neo。为了后期能将这两个筛选基因给剔除掉,又在ZsGFP基因和Neomycinr基因的两端加入了FRT位点,形成最终的转座载体PXL-BACⅡ-FRT-ZsGFP-Neo.最后将在上述活性筛选试验中挑选的具有最佳抗病毒能力的shRNA (ORF6-6e)构建到该转座载体,命名为PXL-BACⅡ-FRT-ZsGFP-Neo-shRNA。该转基因载体同时具有筛选基因和标记基因,便于进行转基因细胞的建立。该细胞株可稳定传代,以细胞基因组和RNA反转录产物cDNA为模板,分别经PCR和RT-PCR确认,表明转基因细胞中外源基因shRNA转录框、标记基因GFP和筛选基因Neo均可正常转录和表达。该细胞株相对于正常Marc-145细胞具有较显著的抗病毒能力,病毒相对表达量仅为0.01%,表明病毒在该转基因细胞内无法复制增殖。该研究为抗PRRSV病毒转基因猪品种的培育与鉴定建立了方法,奠定了基础。
     3家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus, BmNPV)所引起的血液型脓病,是家蚕病毒病的主要类型,是在我国乃至世界养蚕业危害较为严重的一种病毒病。家蚕抗病能力除了作为宿主本身的家蚕抗性机理外,作为病原一方的复制增殖也同样重要,正所谓“无菌不成病”。本文正是从BmNPV在家蚕体内的复制繁殖的角度开展研究。以BmNPV病毒的结构序列和shRNA序列设计原则,分别针对病毒复制增殖所必需的极早期表达因子ie-1,晚期表达因子lef-1, lef-2和lef-3等靶基因设计合成32对shRNA,以BmN细胞基因组为模板,通过PCR方法扩增得到BmU6启动子,构建重组载体PXL-BACII-GFP-BmU6-shRNA.将上述质粒DNA转染家蚕BmN细胞后接种BmNPV病毒,72小时后收集细胞,采用Real-Time PCR方法检测病毒感染细胞后的相对表达量,以分析不同shRNA的抑制病毒复制与增殖活性。结果表明:shRNAs均表现出对BmNPV的抗病毒能力,但效果大有不同。其中,靶基因序列长度为21bp的shRNA-ie1c表现出对BmNPV复制增殖具有极显著的抑制作用,病毒相对表达量仅为5.5%,其次为Lef3e-2。与此同时,本试验还设计并比较了不同靶序列长度:19bp和21bp在抑制BmNPV病毒增殖复制时的作用和差别。结果表明,leflb(85%)和lef1b-2(29%), Ief2d (91%)和lef2d-2(38%)的抗病毒能力效果差异显著,靶序列长度为21bp的病毒相对表达量较19bp病毒相对表达量分别减少56%和53%,说明shRNA干扰靶序列长度为21bp的RNA干扰病毒复制增殖效果优于19bp。
     经shRNA活性筛选32对特异干扰靶向shRNA,分别针对极早期表达因子ie-1和晚期表达因子lef3的ie1c和lef3e-2表现出良好的抑制BmNPV的作用,因此将iel c和leBe-2作为转基因的候选shRNA序列,构建到含有筛选基因Neo的转座重组载体上,并构建单联和双联重组转座子载体,分别命名为PXL-B ACII-GFP-BmU6-shRNA(ie1c)-Neo和PXL-B ACII-GFP-double(ie1c/lef3e2)-Neo.在细胞水平进行转基因研究,建立含抗BmNPV病毒shRNA的转基因细胞,评价其抑制病毒增殖活性。结果表明单联重组转座载体构建的转基因细胞相对于正常BmN细胞具有较显著的抗病毒能力:病毒感染0-24h,对照组细胞与转基因细胞内的病毒相对表达量均较低,分别为7.15%和0.45%,尽管在病毒感染初期,病毒DNA刚开始复制,仍可见转基因细胞已初步表现出抗病毒增殖的能力;24-48h,对照组细胞内病毒表达量呈指数增长趋势(56.23%),增加了49.08%,而转基因细胞组病毒相对表达量仍能维持较低水平(7.04%);48-96h,对照组细胞与转基因细胞组的病毒相对表达量处于稳定期,对照组病毒表达量始终维持较高水平(56.23%-64.03%),高于转基因细胞组约47%-52%;病毒感染96h后,正常细胞组的病毒相对表达量又呈现增长趋势,约90%细胞的核内充满多角体,细胞死亡率上升,同时,随着病毒感染时间的延长,转基因细胞组抑制病毒复制增殖效果略有下降,但转基因细胞病毒相对表达量仍低于对照组细胞约30%-50%。因此,在感染BmNPV后0-96h内,转基因细胞表现出较好的抑制病毒增殖与复制的能力。
     双联重组转座载体中含有上述活性检测选出的两条效果最好的shRNAs (ielc/lef3e2),其转基因细胞的病毒相对表达量为42.49%,虽然较正常BmN细胞内病毒表达量低,但是其抗病毒效果显著低于单联转座的转基因细胞(7.04%)的抗病毒能力。通过PCR、RT-PCR等方法确定转基因细胞中外源基因均能正常转录和表达,并采用Splinkerette-PCR方法经NCBI Blast检索分析外源基因插入位点。该研究结果为抗BmNPV转基因家蚕的培育以及鉴定奠定了基础。
Over the past decade RNA interference (RNAi) plays an important role in biology, especially for silencing gene expression. RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Methods of mediating the RNAi effect involve small interfering RNA (siRNA) and short hairpin RNA (shRNA). In various applications, RNAi has been used to create model systems, to identify novel molecular targets, to study gene function in a genome-wide fashion, and to create new avenues for clinical therapeutics. In this study, we developed a system of RNAi for the inhibition of replication and multiplication of some silkworm and swine viruses by targeting shRNAs. Our results suggest that RNAi technology might serve as an experimental basis and technical insight into the researches on virus disease therapeutics.
     1Porcine circovirus type2(PCV2) is the primary causative agent of an emerging swine disease, it caused postweaning multisystemic wasting syndrome (PMWS) in pig farms in many swine-producing areas in the world in recent years, moreover, no antiviral treatment is available. To exploit the possibility of using RNA interference as a therapeutic approach against the PCV2, the291recombinant plasmid short hairpin RNAs (shRNAs) were constructed to target the Rep, Cap, ORF3and ORF4of PCV2genome. Transfection of these shRNAs into cultured PK15cells caused a different level of reduction in viral DNA replication. These results indicated that shRNAs are capable of inhibiting PCV2infection in vitro and thus may constitute an effective therapeutic strategy for PCV2infection.
     2Porcine reproductive and respiratory syndrome (PRRS) is now considered one of the most important diseases in countries with intensive swine industries. However, at present there is no effective method to prevent and control the disease. Therefore it is needed to develop the new antiviral strategies. In this study, the recombinant plasmid expressing shRNAs, specifically targeting the GP5/M gene RNAs of PRRSV, were generated and used to inhibit the production of GP5/M gene RNAs. It was found that shRNAs could down-regulate effectively specific gene expression and inhibit viral replication in Marc-145cells when compared to the controls. The highest activity displayed in shRNAs of the ORF6e sequences, which the inhibition rate reached to99.09%. The results suggest that RNAi technology might serve as a potential molecular strategy for PRRSV therapy. Furthermore the transgenic Mac-145cell line of piggyBac transpo son-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus was established, which is necessary for research works on transformed pigs studies.
     3The Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most destructive diseases in silkworm, which has caused the main damage to silk industry. In this study, we developed a system of RNAi for preventing the BmNPV infection using the piggyBac transpo son-derived targeting shRNA interference. The shRNAs targeting the genes of ie-1, lef1, lef2and lef3of.BmNPV were designed and used to inhibit the intracellular replication or multiplication of BmNPV in BmN cells. The highest activity was presented in the shRNA targeting the iel-c of BmNPV, which the inhibition rate reached94.5%. Further a stable BmN cell line of piggyBac transpo son-derived targeting shRNA interference against BmNPV was established, which presented highly efficacious suppression of virus proliferation. This efficient method of stable gene transformation opens a way for promising research and biotechnology application on silkworm lethal diseases.
引文
1 Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol,1974,226(2):153-167.
    2 Tischer I, Gelderblom H, Vettermann W, et al. A very small porcine virus with circular single-stranded DNA. Nature,1982,295(5844):64-66.
    3 Tischer I, Mields W, Wolff D, et al. Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol,1986,91 (3-4):271-276.
    4 Tischer I, Bode L, Peters D, et al. Distribution of antibodies to porcine circovirus in swine populations of different breeding farms. Arch Virol,1995,140(4):737-743.
    5 Clark EG. Post-weaning multisystemic wasting syndrome, in Proceedings of the American Association of Swine Practitioners. American Association of Swine Practitioners,1997: 499-501.
    6 Harding J, Clark EG. Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS). J Swine Health Prod,1997,5:201-203.
    7 Ellis J, Hassard L, Clark E, et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J,1998,39 (1):44-51.
    Allan GM, Meehan B, Todd D, et al. Novel porcine circoviruses from pigs with wasting disease syndromes. Vet Rec,1998,142(17):467-468.
    9 Allan GM, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol,1999,121(1):1-11.
    10 Allan GM, Me Neilly F, Meehan BM, et al. Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. Vet Microbiol, 1999,66(2):115-123.
    11 Sanchez R, Nauwynck H, Pensaert M. Serological survey of porcine circovirus 2 antibodies in domestic and feral pig population in Belgium, in 20 Proceedings of the ssDNA viruses of plants, birds, pigs and primates.2001, European Society of Veterinary Virology: 122.
    12 Segales J, Allan GM, Domingo M. Porcine circovirus diseases. Anim Health Res Rev, 2005,6(2):119-142.
    13 Allan GM, Phenix KV, Todd D, et al. Some biological and physico chemical properties of porcine circovirus. Zentralbl Veterinarmed B,1994,41 (1):17-26.
    14 Royer RL, Nawagitgul P, Halbur PG, et al. Susceptibility of porcine circovirus type 2 to commercial and laboratory disinfectants. J Swine Health Prod,2001,9:281-284.
    15 Morozov I, Sirinarumitr T, Sorden SD, et al. Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol,1998, 36 (9):2535-2541.
    16 Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol,1998,72 (6):5262-5267.
    17 Meehan BM, McNeilly F, Todd D, et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol,1998,79:2171-2179.
    18 Cheung AK. Palindrome regeneration by temp late strand-switching mechanism at the origin of DNA replication of porcine circovirus via the rolling-circle melting-pot replication model. J Virol,2004,78 (17):9016-9029.
    19 Cheung AK. Identification of an octanucleotide motif sequence essential for viral protein, DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirus type 2. Virology,2004,324(1):28-36.
    20 Cheung, AK. Detection of template strand switching during initiation and termination of DNA replication of porcine circovirus. J Virol,2004,78(8):4268-77.
    21 Cheung, AK. Identification of the essential and non-essential transcription units for protein synthesis, DNA replication and infectious virus production of Porcine circovirus type 1. Arch Virol,2004,149(5):975-88.
    22 Hamel AL, Lin LL, Nayar GPS. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. Journal of Virology,1998,72(6): 5262-5267.
    J Cheung AK. Transcri ptional analysis of porcine circovirus type 2. Virology,2003,305(1): 168-180.
    24 RM Pogranichnyy, KJ Yoon, PA Harms, et al. Characterization of immune response of young pigs to porcine circovirus type 2 infection. Viral Immunol,2000,13(2):143-53.
    25 Cheung AK. The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology,2003,313(2):452-459.
    26 Mankertz A, Hillenbrand B. Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology,2001,279(2):429-438.
    27 A Mankertz, F Persson, J Mankertz, et al. Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol,1997,71(3):2562-6.
    Mankertz, A. and B. Hillenbrand. Analysis of transcription of Porcine circovirus type 1. J Gen Virol,2002,83(11):2743-51.
    29 A Mankertz, J Mankertz, K Wolf, et al. Identification of a protein essential for replication of porcine circovirus. J Gen Virol,1998,79:381-4.
    30 Gibbs, M.J. and G.F. Weiller. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci USA, 1999,96(14):8022-7.
    31 Nawagitgul P, Morozov I, Bolin SR, et al. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol,2000,81:2281-2287.
    32 Mahe D, Blanchard P, Truong C, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol, 2000,81:1815-1824.
    33 Liu, Q., S.K. Tikoo, L.A. Babiuk. Nuclear loalization of the ORF2 protein encoded by porcine circovirus type 2. Virology,2001,285(1):91-99.
    34陈美玲,陈焕春,宋云峰,等.猪圆环病毒Ⅰ型ORF2蛋白序列与其核定位功能的相关性.中国预防兽医学报,2005,27(6):459-461.
    35刘光清,倪征,云涛,等.猪圆环病毒Ⅱ型结构蛋白的二级结构及其B细胞抗原表位预测.中国预防兽医学报,2005,27(6):462-464.
    36 X Wang, W Jiang, P Jiang, et al. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice. Vaccine, 2006,24(16):3374-80.
    37 S Kamstrup, AM Barfoed, TH Frimann, et a. Immunisation against PCV2 structural protein by DNA vaccination of mice. Vaccine,2004,22(11-12):1358-1361.
    38 J Liu, I Chen, H Chua, et al. Inhibition of porcine circovirus type 2 replication in mice by RNA interference. Virology,2006,347:422-433.
    39金宁一,秦晓冰,郑敏,等.猪2型圆环病毒核酸疫苗的接种BalB/c小鼠实验免疫研 究.中国生物工程杂志,2005,25(7):76-79.
    40 Q Liu, P Willson, S Attoh-Poku, et al. Bacterial expression of an immunologically reactive PCV2 ORF2 fusion protein. Protein Expr Purif,2001,21(1):115-20.
    41 Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol,2005, 79 (13):8262-8274.
    42 J Yang, X Liu, K Bhalla,et al. Prevention of apoptosis by Bcl-2:release of cytochromec from mitochondria blocked. Science,1997,275(5303):1129-32.
    43李增魁,陈婷飞,李益飞,等.猪圆环病毒2型ORF4基因编码蛋白的体外表达.中国兽医科学,2008,10:37-42.
    44 Choi, C, C. Chae. Distribution of porcine parvovirus in porcine circovirus 2-infected pigs with postweaning multisystemic wasting syndrome as shown by in-situ hybridization. J Comp Pathol,2000,123(4):302-5.
    45 J Ellis, S Krakowka, M Lairmore, et al. Reproduction of lesions of postweaning multisystemic wasting syndrome in gnotobiotic piglets. J Vet Diagn Invest,1999,11(1): 3-14.
    46 SC Kyriakis, K Saoulidis, S Lekkas, et al. The effects of immuno-modulation on the clinical and pathological expression of postweaning multisystemic wasting syndrome. J Comp Pathol,2002,126(1):38-46.
    47 PA Harms, SD Sorden, PG Halbur, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol,2001,38(5):528-39.
    48 S Krakowka, JA Ellis, B Meehan, et al. Viral wasting syndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol,2000,37(3): 254-63.
    49 S Krakowka, JA Ellis, F McNeilly, et al. Activation of the immune system is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2). Vet Pathol,2001,38(1):31-42.
    50 R. Magar, R. Larochelle, S. Thibault, et al. Experimental transmission of porcine circovirus type 2 (PCV2) in weaned pigs:a sequential study. J Comp Pathol,2000,123(4): 258-69.
    51 SR Bolin, WC Stoffregen, GPS Nayar, et al. Postweaning multisystemic wasting syndrome induced after experimental inculation of cesarean-derived, colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Invest,2001,13(3):185-94.
    52 Y Okuda, M Ono, S Yazawa, et al. Experimental reproduction of postweaning multisystemic wasting syndrome in cesarean-derived, colostrum-deprived piglets inculated with porcine circovirus type 2 (PCV2):investigation of quantitative PCV2 distribution and antibody responses. J Vet Diagn Invest,2003,15(2):107-14.
    53 J Nielsen, IE Vincent, A B(?)tner, et al. Assciation of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol.2003,92(3-4):97-111.
    54 GM Allan, F McNeilly, S Kennedy, et al. Immunostimulation, PCV-2 and PMWS. Vet Rec,2000,147(6):170-171.
    55 S Kennedy, D Moffett, F McNeilly, et al. Reproduction of lesions of postweaning multisystemic wasting syndrome by infection of conventional pigs with porcine circovirus type 2 alone or in combination with porcine parvovirus. J Comp Pathol,2000,122(1):9-24.
    56 GM Allan, F McNeilly, J Ellis, et al. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol,2000,145(11):2421-9.
    57 A Rovira, M Balasch, J Segales, et al. Experimental inculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol,2002, 76(7):3232-9.
    58 Kavanagh, N.T., Dermatitis/nephropathy syndrome in pigs. Vet Rec,1994,134(12):311.
    59 Thacker, E.L., Immunology of the porcine respiratory disease complex. Vet Clin North Am Food Anim Pract,2001,17(3):551-65.
    60 郎洪武,张广川,吴发权.断奶猪多系统衰弱综合征血清抗体检测.中国兽医科技,2000,30(3):3-5.
    61 王忠田,杨汉春,规模化猪场猪圆环病毒2型感染的流行病学调查.中国兽医杂志,2002,38(10):3-6.
    62 陈庆新,商绍彬,叶菊秀,等.杭州地区猪Ⅱ型圆环病毒抗体的血清学调查.中国兽医科技,2003,33(7):26-28.
    63 周继勇,陈庆新,叶菊秀,等.猪圆环病毒2型感染的血清学分析.中国兽医学报,2004,24(2):1-3.
    64 陈庆新,商绍彬,叶菊秀,等.杭州地区猪Ⅱ型圆环病毒抗体的血清学调查.中国兽医科技,2003,33(7):26-28.
    65 陈义祥,刘翠权,何丹,等.广西猪圆环病毒2型感染的流行病学调查.中国兽医科技,2005,35(1):827-831.
    66 刘烈发,李麟,尚宏华,等.江西省猪圆环病毒病流行病学调查及PCR法诊断.江西农业大学学报,2005,27(2):285-287.
    67 杨增岐,杨泽晓,姜艳芬,等.陕西省PCV2感染的血清学调查.西北农林科技大学学报,2006,34(4):1-4.
    68 刘秀清,宁金友,赵荣茂,等.西宁市猪圆环病毒2型感染的流行病学调查.中国兽医科学,2006,36(2):162-165.
    69 Blanchard P, Mahe D, Cariolet R, et al. Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine,2003,21 (31):4565-4575.
    70 Ju C, Fan H, Tan Y, et al. Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Vet Microbiol,2005,109(3-4): 179-190.
    71 Song Y, Jin M, Zhang S, et al. Generation and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2. Vet Microbiol,2007, 119(2-4):97-104.
    72 Zhixin Feng, Ping Jiang, Xianwei Wang, et al. Adenovirus-mediated shRNA interference against porcine cirovirus type 2 replication both in vitro and in vivo. Antiviral Research, 2008,77:186-194.
    73 Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus. Vet Quarterly,1991,13(3):121-130.
    74 Kefaber KK. Reproductive failure of unknown etiology. Am Assoc Swine Prac Newslett, 1989,1(2):1-9.
    75 G Wensvoort, EP de Kluyver, J Pol, et al. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at Lelystad. Vet Microbiol,1992,33(1-4):185-93.
    76 Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses. Gen Virol,1998,79: 961-979.
    77 李景荣,于晓龙,赵晓川,等.猪繁殖与呼吸综合症的防治.吉林畜牧兽,2008,4(29):21-22.
    Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus isolate ATCC VR.23321 in North America and experimental reproduction of the disease in gnotobiotic pigs. Vet Diagn Invest,1992,4(2):117-126.
    7 ER Jusa, Y Inaba, M Kohno, et al. Hemagglutination with porcine reproductive and respiratory syndrome virus. J Vet Med Sci,1996,58(6):521-527.
    80 XJ Meng, PS Paul, PG Halbur, et al. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. Arch Virol,1995,140(4):745-55.
    81 Nelsen, C.J., M.P. Murtaugh, K.S. Faaberg. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents. J Virol,1999, 73(l):270-80.
    82 Mateu E, Martin M, Vidal D.Genetic diversity and phylogenetic analysis of glycoprotein 5 of European-type porcine reproductive and respiratory syndrome virus strain in Spain. J Gen Virol,2003,84:529-534.
    Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus: implication for current vaccine efficacy and future vaccine development. Arch Virol,1999, 144:2389-2401.
    64 Lee C, Hodgins D, Calvert JG, et al. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology,2006,346(1):238-250.
    van den Born, E., C. C. Posthuma, et al. Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region. J Virol,2005,79(10):6312-24.
    86 Liao, C. L. M. M. Lai. Requirement of the 5'-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J Virol,1994,68(8): 4727-37.
    87 Lai, M. M. Coronavirus:organization, replication and expression of genome. Annu Rev Microbiol,1990,44:303-33.
    88 S. Dea, C. A. Gagnon, H. Mardassi, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolatesArch Virol,2000,145:659-688.
    89刘光清,薛强,仇华吉,等.猪繁殖与呼吸综合征病毒CH-1a株非结构基因的分子克隆及其基因特征的研究.中国预防兽医学报,2002,24:81-87.
    90 Mardassi H, Mounir S, Dea S. Molecular analysis of the ORF3-7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Arch Virol,1995,140:1405-1418.
    91 Meulenberg JJM, Petersen-Den Besten A. Identification and characterization of a sixth structural protein of Lelystad Virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particle. Virology,1996,225:44-51.
    92 Mardassi H, Gonin P, Gagnon CA, et al. A subset of porcine repro-ductive and respiratory syndrome virus (PRRSV) GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form. J Virol,1998,72:698-6306.
    93 Gonin P, Mardassi H, Gagnon CA,et al. A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Arch Virol,1998,143:1927-1940.
    94 Meulenberg JJM, van Nieuwstadt AP, van Essen-Zandbergen A, et al. Post-translational processing and identification of a neutralization domain of the GP4 protein encoded by ORP4 of Lelystad virus. J Virol,1997,71:6061-6067.
    95 Mardassi H, Massie B, Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology,1996,221:98-112.
    96 Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest,1992, 4:127-133.
    97 Meulenberg J. PRRSV, the virus. Vet Res,2000,31(1),11-21.
    98 Meulenberg JJM, Petersen-Den Besten A, De Kluyver EP, et al. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology,1995,206:155-163.
    99 Wissink EHJ, Kroese MVJ, Maneschijn-Bonsing G, et al. Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoprotein GP2a and GP5 for infectious virus production. J Gen Virol,2004,85:3715-3723.
    100 Plana duran J, Climent I, Sarrseca J, et al. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91 Involvement of ORF3 and ORF5 proteins in protection. Virus Genes,1997,14 (l):19-29.
    101 Meulenberg JJ, Hulst MM, De meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology,1993,192(1):62-72.
    102 Bautista EM, Meulenberg JJM, Choi CS, et al. Structural polypeptides of the American (VR-2332) strain of porcine reproductive and respiratory syndrome (PRRS) virus. Arch Virol, 1996,141:1357-1365.
    103 G Nodelijk, M Nielen, MCM De Jong, et al. A review of porcine reproductive and respiratory syndrome virus in Dutch breeding herds:population dynamics and clinical relevance. Prev Vet Med,2003,60(1):37-52.
    104 AA De Vries, ED Chirnside, MC Horzinek, et al. Structural proteins of equine arteritis virus. J Virol,1992,66(11):6294-303.
    105 Faaberg, K.S, P.G. Plagemann. The envelope proteins of lactate dehydrogenase-elevating virus and their membrane topography. Virology,1995,212(2):512-25.
    106 Verheije M H, Whiting T J M, Jansen H T, et al. Chimeric arteriviruses generated by swapping of the M protein ectodomain rule out a role of this domain in viral targeting. Virology,2002,303:364-373.
    107 Snijder, E.J., J.C. Dobbe, W.J. Spaan. Heterodimerization of the two major envelope proteins is essential for arterivirus infectivity. J Virol,2003,77(1):97-104.
    108陈振海,林天龙,俞伏松,等.表达PRRSV GP2a/GP2b, GP3,GP4,GP5和M蛋白重组腺病毒的构建.福建农业学报,2007,22(3):221-226.
    109 Lee C, Calvert J G, Welch Siao-Kun W, et al. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. J Virology,2005,33:147-162.
    110马艳,江云波,肖少波,等.体外共表达的猪繁殖与呼吸综合征病毒GP5和M蛋白可形成异源二聚体.微生物学报,2006,46(4):639-643.
    111 Suarez, P. Ultrastructural pathogenesis of the PRRS virus. Vet Res,2000.31(1):47-55.
    112 Duan X, Nauwynck HJ, Pensaert MB. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptivility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol,1997,142:2483-2497.
    113 HS Kim, J Kwang, IJ Yoon, et al. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch Virol,1993,133(3-4):477-83.
    114 PL Delputte, N Vanderheijden, HJ Nauwynck, et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol,2002,76(9):4312-20.
    115 Vanderheijden N, Delputte P L, Favoreel H W, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol,2003,77:8207-8215.
    116 Delputte P L, Costers S, Nauwynck H J. Analysis of porcine reproductive and respiratory sndrome virus attachment and internalization distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol,2005,86:1441-1445.
    117 Delputte, P.L., H.J. Nauwynck. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol,2004,78(15):8094-101.
    118 Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical prrs in china and molecular dissection of the unique hallmark. PLoS one,2007,2(6):526.
    119 吕健,孙志,张建武,等.高致病性猪繁殖与呼吸综合征病毒JX143株感染性克隆的构建.微生物与感染,2007,2(4):219-227.
    120 Li Y, W ang X, Bo K, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet J,2007,174(3): 577-584.
    121 Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis,2007,13(9):1434-1436.
    122 Yuan S, Nelsen CJ, M urtaugh MP, et al. Recombination between North American strains of porcine reproductive and respiratory syndrome virus. Virus Res,1999,61:87-98.
    123 Han J, W ang Y, Faaberg KS. Complete genome analysis Of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res,2006,122:175-182.
    124 Jens Nielsen, Anette B(?)tner. Hematological and immunological parameters of 4.5 month old pigs infected with PRRS virus. Veterinary Microbiology,1997,55:289-294.
    125 Roald Forsberg, Torben Storgaard, Henriette S. Nielsen, et al. The Genetic Diversity of European Type PRRSV is Similar to That of the North American Type but Is Geographically Skewed within Europe. Virology,2002,299:38-47.
    126 吴凤笋,李文刚,卢婷婷.猪繁殖与呼吸综合征疫苗研究进展.郑州牧业工程高等专科学校学报,2008,28(1):16-20.
    127 Ping Jiang, Wenming Jiang, Yufeng Li,et al. Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus. Veterinary Immunology and immunopathology.2004, 102(3):321-328.
    128 方六荣,肖少波,江云波,等.表达猪繁殖与呼吸综合征病毒(PRRSV) GP5的重组伪狂犬病毒TK^-/gG^-/GP5^+的构建及其生物学特性初步探讨.病毒学报,2004,3:249-254.
    129 Reginaldo G Bastos, Odir A Dellagostin, Raul G Barletta, et al. Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine,2004,22:467-474.
    130 J Plana-Duran, M Bastons, A Urniza., et al. Efficacy of an inactivated vaccine for prevention of reproductive failure induced by porcine reproductive and respiratory syndrome virus. Vet Microbiol,1997,55(1-4):361-70.
    131 Van Woensel, P. A., K. Liefkens, and S. Demaret. Effect on viraemia of an American and a European serotype PRRSV vaccine after challenge with European wild-type strains of the virus. Vet Rec,1998,142(19):510-2.
    132 D Nilubol, KB Platt, PG Halbur, et al. The effect of a killed porcine reproductive and respiratory syndrome virus (PRRSV) vaccine treatment on virus shedding in previously PRRSV infected pigs. Vet Microbiol,2004,102(1-2):11-8.
    133 C Alexopoulos, SK Kritas, CS Kyriakis, et al. Sow performance in an endemically porcine reproductive and respiratory syndrome (PRRS)-infected farm after sow vaccination with an attenuated PRRS vaccine. Vet Microbiol,2005,111(3-4):151-7.
    134 江云波,方六荣,肖少波,等.猪繁殖与呼吸综合征病毒(PRRSV) GP5-M在大肠杆菌中的融合表达及其ELISA诊断方法的建立.生物工程学报,2005,21:259-264.
    135 Gagnon C A, Lachapelle G, Langelier Y, et al. Adenoviral-expressed GP5 of porcine reproductive and respiratory syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions. Arch Virol,2003,148: 951-972.
    136 Barfoed AM, Blixenkrone-Moller M, Jensen MH., et al. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus. Vaccine,2004,22:3628-3641.
    137 Qiu HJ, Tian ZJ, Tong GZ., et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Vet Immunol Immunopathol,2005,106:309-319.
    138 Pirzadeh B, Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. J Gen Virol,1998,79: 989-999.
    139 金伟,鲁兴萌,万永继,等.家蚕病理学.北京:中国农业出版社,2001.
    140 吕鸿声,昆虫病毒与昆虫病毒病.北京:科学出版社,1985.
    141 Sumiko Gomi, Kei Majima, Susumu Maeda. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J of General Virology,1999,80:1323-1337.
    142 Okano K, Mikhailov VS, Maeda S. Colocalization of baculovirus IE-1 and two DNA binding proteins, DBP and LEF-3, to viral replication factories. Journal of Virology,1999, 73:110-119.
    143 Kovacs, G.R, Choi, J, Guarino, et al. Functional dissection of the Autographa californica nuclear polyhedrosis virus immediate-early 1 transcriptional regulatory protein. Journal of virology,1992,66:7429-7437.
    144 Lu A, Miller LK. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J. Virology,1995,69:975-982.
    145 Carson, D.D., Guarino, L.A., Stjmmers, M.D. Functional mapping of an AcMNPV immediate early gene which augments expression of the IE-1 trans-activated 39 k gene. Virology,1988,162:444-451.
    146 Guarino, L.A., Summers, M.D. Functional mapping of a trans-activating gene required for expression of a baculovirus delayed-early gene. Journal of Virology,1986,57:563-571.
    147 Kool, M., Voeten, J.T.M., Goldbach, R.W., et al. Functional mapping of regions of the Autographa californica nuclear polyhedrosis viral genome required for DNA replication. Virology,1994,198(2):680-689.
    148 Kool, M., Ahrens, C.H., Vlak, J.M., et al. Replication of baculovirus DNA. J Gen Virol, 1995,76(9):2103-2118.
    149 Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    150 Uhlirova M, Foy BD, Beaty BJ, et al. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci USA.2003,100(26):15607-15612.
    151 Tabunoki H, Higurashi S, Ninagi O,et al. A carotenoid binging protein plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Letters,2004, 567(223):175-178.
    152 夏定国,张国政,王文兵,等.dsRNA对家蚕核型多角体病毒复制增殖的抑制效果.蚕业科学,2006,32(2):206-210.
    153 Flores-Jasso C Fabian, Victor Julian Valdes, Alicia Sampieri, et al. Silencing structural and nonstructural genes in baculovirus by RNA interference. Virus Research,2004,102: 75-84.
    154 Valdes, V.J, SamPieri A, SePulveda J, et al. Using Double-stranded RNA to Prevent in Vitro and in Vivo Viral Infections by Recombinant Baculovirus. J Biol Chem.2003,278: 19317-19324.
    155 徐颖,朱成钢,金勇丰,等.dsRNA对家蚕核多角体病毒(BmNPV)复制的抑制作 用.科学通报,2004,49(11):1073-1078.
    156 Ohtsuka, D., Nakatsukasa T., Bando H. et al. Use of Bombyx mori U6 promoter for inducing gene-silencing in silkworm cells. Insect Biotechnology and Sericology,2008,77, 125-131.
    157 Isobe R, KOjima K, Matsuyama T, et al. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms, Archives of Virology,2004,149(10): 1931-1940.
    158 Kanginakudru, S., Royer, C., Edupalli, S. V., et al. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran celll ines and in transgenic silkworms. Insect Molecular Biology,2007,16:635-644.
    159 Song K Y, Schwartz F. Accurate modification of a chromosomal plasmid by homologous recombination in human cells. Proc Natl Acad Sci USA,1987,84:6820-6824.
    160 Palmiter RD, Sandgren EP, Avarbock MR, et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA,1991,88:478-482.
    161 Thomas KR. High frequency targeting of genes to specific sites in the mammalian genome. Cell,1986,44:419.
    162 Pourcel C, Tiollais P, Farza H. Transcription of S gene in transgenic mice is associated with hypomethylation at specific site and with Dnase 1 sensitivity. J Virl,1990,64:931-935.
    163 S.Kanginakudru, C.Royer, S.V.Edupalli, et al. Targeting ie-lgene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect molecular biology,2007,16(5):635-644.
    164陈秀,赵昀,张峰,等.新霉素抗性基因在家蚕中的插入和表达.生物化学与生物物理学报,1999,31(1):90-92.
    165 Napoli, C, C. Lemieux, R. Jorgensen. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell,1990,2(4):279-289.
    166 Guo, S.. K.J. Kemphues. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995, 81(4):611-20.
    167 Konet, D. S., Anderson, J., Piper, J., et al. Short-hairpin RNA expressed from polymerase Ⅲ promoters mediates RNA interference in mosquito cells. Insect Molecular Biology,2007,16,199-206.
    168 Wakiyama, M., Matsumoto, T., Yokoyama, S. Drosophila U6 promoter-driven short hairpin RNAs effectively induce RNA interference in Schneider 2 cells. Biochemical and Biophysical Research Communications,2005,331:1163-1170.
    169 H Ngo, C Tschudi, K Gull, et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA,1998,95(25):14687-92.
    170 Sanchez Alvarado, A. and P.A. Newmark. The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair Regen,1998,6(4):413-20.
    171 Wargelius, A., S. Ellingsen, A. Fjose. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun,1999,263(1): 156-161.
    172 Lohmann, J.U., I. Endl, and T.C. Bosch. Silencing of developmental genes in Hydra. Dev Biol,1999,214(1):211-214.
    173 AP McCaffrey, L Meuse, TTT Pham, et al. RNA interference in adult mice. Nature,2002, 418(6893):38-39.
    174 SM Elbashir, J Harborth, W Lendeckel, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498.
    175 Khvorova, A., A. Reynolds, and S.D. Jayasena, Functional siRNAs and miRNAs exhibit strand bias. Cell,2003,115(2):209-16.
    176 Paddison, P. J. Caudy, A. A. Bernstein, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev,2002,16:948-58.
    177 W Zhang, R Singam, G Hellermann, et al. Attenuation of dengue virus infection by adeno-associated virus-mediated siRNA delivery. Genet Vaccines Ther,2004,2(1):8.
    178 SM Elbashir, J Martinez, A Patkaniowska, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J,2001,20(23): 6877-6888.
    179 A Reynolds, D Leake, Q Boese, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-30.
    180 Ding, Y. and C.E. Lawrence. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res,2003,31(24):7280-7301.
    181 Tuschl, T. Expanding small RNA interference. Nat Biotechnol,2002,20(5):446-8.
    182 G Sui, C Soohoo, EB Affar, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA,2002,99 (8):5515-20.
    183 Yu, J.Y., S.L. DeRuiter, et al. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA,2002,99(9):6047-52.
    184 Sharp, P.A. RNA interference. Genes Dev,2001,15(5):485-90.
    185 Hammond, S.M., A.A. Caudy, and G.J. Hannon. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet,2001,2(2):110-9.
    186 S Jana, C Chakraborty, S Nandi, et al. RNA interference:potential therapeutic targets. Appl Microbiol Biotechnol,2004,65(6):649-57.
    187 Hutvagner, G. and P.D. Zamore. RNAi:nature abhors a double-strand. Curr Opin Genet Dev,2002,12(2):225-32.
    188 Nykanen, A., B. Haley, and P.D. Zamore. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell,2001,107(3):309-21.
    189 AP McCaffrey, H Nakai, K Pandey, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol,2003,21(6):639-644.
    190 SL Uprichard, B Boyd, A Althage., et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA,2005,102(3):773-778.
    191 Kapadia, S.B., A. Brideau-Andersen, and F.V. Chisari. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA,2003,100(4): 2014-2018.
    192 V Bitko, S Barik, TH Eberhard, et al. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol,2001,1:34.
    193 Q Ge, L Filip, A Bai, et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA,2004,101(23):8676-8681.
    194 Gitlin, L., S. Karelsky, and R. Andino. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature,2002,418(6896):430-434.
    195 T Yamamoto, H Miyoshi, N Yamamoto, et al. Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood,2006,108(10):3305-12.
    196 XF Qin, DS An, ISY Chen, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA,2003,100(1):183-188.
    197 Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature biotechnology,2002,20(5):500-5.
    198 Z Wang, L Ren, X Zhao, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol,2004,78(14):7523-7527.
    199 YonghuaBao, YongchenGuo, LiyingZhang, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by RNA interference in Marc-145 cells. Mol Biol Rep, 2012,39(3):2515-2522.
    200 M Sun, X Liu, S Cao, et al. Inhibition of porcine circovirus type 1 and type 2 production in PK-15 cells by small interfering RNAs targeting the Rep gene. Vet Microbiol,2007,123: 203-209.
    201 王海燕,刘文博,高崧,等.载体表达的siRNA分子对猪圆环病毒2型复制的抑制作用.微生物学报,2008,48(11):1507-1513.
    202 Lindenbach, B.D., J.Y. Sgro, P. Ahlquist. Long-distance base pairing in flock house virus RNA1 regulates subgenomic RNA3 synthesis and RNA2 replication. J Virol,2002,76(8): 3905-19.
    203 CD Novina, MF Murray, DM Dykxhoorn, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med,2002,8(7):681-6.
    204 Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature biotechnology,2005,23(6):709-17.
    205 Song E, Lee SK, Dykxhoorn DM, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. Journal of virology,2003,77(13):7174-81.
    206 Song Y, Wan MB, Li WJ, et al. Construction of X-gene defect HBV expression plasmid and cells transfection study. Chinese journal of hepatology,2003,11(8):508-509.
    207 J Kronke, R Kittler, F Buchholz, et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol,2004,78(7):3436-46.
    208 Saxena, S., Z.O. Jonsson, and A. Dutta. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem,2003,278(45):44312-443129.
    209 H Kawasaki, E Suyama, M Iyo, et al. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res,2003,31(3):981-987.
    210 AL Jackson, SR Bartz, J Schelter, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol,2003,21(6):635-637.
    211 D Boden, O Pusch, F Lee, et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol,2003,77(21):11531-11535.
    212 AT Das, TR Brummelkamp, EM Westerhout, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol,2004,78(5):2601-2605.
    213 T de los Santos, Q Wu, S de Avila Botton, et al. Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and-mouth disease virus. Virology,2005,335(2):222-231.
    214 O'Brochta D A, Atkinson P W. Transposable elements and gene transformation in non-dnosophilid insects. Insect Biochem. Molecular.Biol,1996,26(8-9):739-753.
    215 Cary L C, Goebel M, Corsaro B, et al. Transposon mutagenesis baculoviruse:analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology,1989,172:156-169.
    216 Bauser C A, Elick T A, Fraser M J. Protein from nuclear extracts of two lepidopteran cell lines recognize the ends of TTAA-specific transposons piggybac and tagalong. Insect Mol Biol,1999,8(2):223-230.
    217 Elick T A, Lobo N, Fraser M J. Analysis of cis-acting DNA elements required for piggybac transposable elements excision. Mol Gen Genetic,1997, (255):605-610.
    218 Fraser M J, Cary L, Boonvisudhi K, et al. Assay for movement of the lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology,1995, 211:397-407
    219 Fraser M J, Ciszczon T, Elick T, et al. Precise excision of TTAA-special lepidopteran transposons TFP3 and IFP2 from the baculovirus genome in cell lines from two species of lepidopteran. Insect Mol. Bio.,1996, (5):141-151.
    220 Elick T, Bauser C A, Princip N M, et al. PCR analusis of insertion site specificity, transcription and structural uniformity of the lepidopteran transponsable element IFP2 in the TN-368 cell genome. Genetica,1996, (97):127-139.
    221 Tamura T, Thibert C, Royer C, et al. A piggyBac-derived vector efficiently promotes germ-line transformation in the silkworm Bombyx mori L. Nature Biotechnology,2000,18: 81-84.
    222 Handler A M, Harrell R A. Germline transportation of Drosophila melanogaster with the piggybac transposon vector. Insect Mol Biol,1999,8(4):449-457.
    223 Handler A M, Mcombs S D, Fraser M J, et al. The lepidopteran transposon vector, piggybac, mediates germ-line transformation in the Mediterranean fruit fly. Science Genetics, 1988,195:7520-7525.
    224 Handler A M, McCombs S D. The piggyBac transformation in the oriental fruit fly and closely related elements exist in its genome. Insect Molecular biology,2000,9:605-612.
    225 Lobo N, Li X, Fraser M J. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet,1999,261: 803-810.
    226 Thomas J L, Da Rocha M, Besse A, et al.3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L from the embryonic stage onwards. Insect Biochemistry and Molecular Biology,2002,32:247-253.
    227 Sheng Ding, Xiaohui Wu, Gang Li,et al. EfficientTransposition of the piggyBac (PB) transposon in MammalianCells and Mice. Cell,2005,122(3):473-183.
    228 Anthony G Uren, Harald Mikkers, Jaap Kool, et al. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites.Nature protocols,2009, 4(5):789-798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700