桥梁维修全寿命经济分析与优化的理论框架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于交通量、车辆荷载的增加和结构本身的自然老化,在我国近20年来建造的大量公路桥梁中,缺损与老化桥梁数量不断增加,亟待维修改造的桥梁数量日益增多。然而,受国家财力所限,能够投入的资金远不能满足需要。因此,如何合理分配使用有限的资金,以确保公路畅通与桥梁安全,怎样进行桥梁维修决策的经济分析与优化,是摆在我国桥梁界面前的一个非常迫切的问题。一直以来,关于桥梁维修经济分析与优化,国内外进行了不懈的探索,取得了一些成果。但是由于这方面的研究涉及桥梁工程、技术经济学、计算机技术和优化技术等多领域的知识,加上桥梁结构系统本身的复杂性以及目前对桥梁全寿命使用期内的各种不确定性影响因素缺乏全面深入的掌握,致使桥梁维修经济分析与优化的理论研究方面尚处于基础性探索阶段。在此背景下,本文就桥梁管理维修经济分析与优化的理论与方法展开研究,并初步建立了桥梁维修全寿命经济分析与优化的基本理论框架。根据文献检索,这样的框架在国内外都是首次提出的,论文所建立的模型和所提出的计算公式与分析方法比目前国外在维修分析中采用的更为简单有效。本论文所建立的这种理论框架,是一种新的探索与尝试,它将促进该方面研究的进一步发展。该理论框架具体包括以下内容和创新性成果:
     1.针对混凝土桥梁结构,建立了多种线性或非线性的劣化模型,建立了这些模型简单统一的计算公式;结合我国实际,给出了基于桥梁可靠度或状况评估值的线性劣化模型的具体参数。桥梁的结构形式繁多,不同的结构存在不同的劣化模式。论文建立的这些劣化模型,为不同劣化模式匹配合理的劣化模型提供更大的选择余地,而准确的桥梁劣化预测模型是维修优化工作的基础。
     2.建立了多种桥梁维修效果模型及其简单统一的指标计算公式。各种桥梁维修措施产生的维修效果是不同的,因此,建立其维修效果模型,是分析维修效果和进行维修优化的基础。本论文由于采用了所建立的生效函数法,从而使得所建立的维修效果模型既简单合理又便于进行桥梁维修全寿命经济分析与优化。
     3.针对混凝土桥梁结构,建立了有预防维修时的桥梁劣化模型,通过建立不同维修模式与无预防维修时的不同劣化模式组合后的各种情形的指标计算公式,为桥梁维修全寿命经济分析与优化打下了基础。
     4.提出了桥梁维修优化的经济分析方法。通过提出合理收益法,进一步给出了用于桥梁维修方案比较评价与优化的一系列经济指标;根据经济学原理,建立了桥梁维修的动态维修成本计算公式。经济学中的投资决策问题已有成熟的评价指标与评价方法。桥梁维修优化有四个主要目标:维修成本、桥梁使用寿命、桥梁状况或可靠度,这些目标会互相制约,需对其统筹兼顾。本论文运用合理收益法将桥梁使用寿命、桥梁状况和可靠度以货币收益的形式体现出来,从而使决策者得以用一种新的更加合理的方法对桥梁维修方案进行全寿命经济分析与优化,并可以移植更多的经济学概念与方法到桥梁维修优化中。
     5.提出了桥梁维修的基本优化方法与组合优化方法。通过建立首次重大维修时间、预防维修次数和维修效果指标等的计算公式并给出其计算步骤,提出了预防维修的基本优化方法;提出了结合型和叠加型桥梁维修组合优化方法,建立了它们的指标计算公式,并结合例子计算了它们的维修效果参数,给出了两种组合优化方法的优化步骤;提出了重大维修与预防维修的组合优化方法,分别给出了它们的指标计算公式以及优化例子。通过同时考虑重大维修与预防维修,既有利于改变人们忽视预防维修的传统观念,又使论文所建立的桥梁维修全寿命经济分析与优化的理论框架更完整更实用。
     6.基于上述成果,研究开发了桥梁维修全寿命经济分析与优化程序BMOP(Bridge Maintenance Optimization Program),并结合实际维修措施给出了运用该程序进行桥梁维修全寿命经济分析与优化的算例,初步展现出所建理论框架的应用价值。
Among great quantity of highway bridges built in China in recent 20 years,there are increasing damaging or aging bridges because of increasing of traffic and vehicle load as well as natural aging of bridge structure itself. However,the money that can be used to repair these bridges is far lower than the needed money since China is still a developing country and the money is limited. Therefore,how rationally to allocate and use the limited money in order to ensure running smoothly of highway and safety of bridges and how to carry out economic analysis and optimization in bridge maintenance decision are urgent problems with which Chinese bridge field must be faced. For economic analysis and optimization in bridge maintenance decision,there are lots of researches and achievements home and overseas for many years.
     However,theoretic study on economic analysis and optimization in bridge maintenance decision is still a primary and fundamental stage because of such research involving in multi-field knowledge such as bridge engineering,economics,computer technology and optimization technology,complex of bridge structure itself and lack of deep comprehension for various uncertainties during total lifetime of bridges. Based on such background,the theory and methods of life-cycle economic analysis and optimization in bridge maintenance decision are studied in this paper.
     The frame of a basic theory on life-cycle economic analysis and optimization in bridge maintenance decision is constructed. The frame is firstly presented in homeland and overseas according to literature indexing. The established models and the presented formulae and analysis methods in the paper are far more simple and efficient than those foreigners have been adopting in maintenance analysis. The theoretic frame built in the paper is a new exploring and attempt and will facilitate development in this aspect of study. It includes main contents and innovative achievements as follows:
     1. Various linear and non linear deterioration models for concrete bridge structuers are presented and simple and unified computing formulae of these models are given. Combined with Chinese standards,values of parameters of linear deterioration models of bridge reliability and estimated condition state are given. There are many categories of bridge structure and different bridge structures have different deterioration models. The deterioration models built in the paper provide more selection for different deterioration modes’matching rational deterioration models. Accurate prediction of bridge deterioration is a basis of bridge maintenance optimization.
     2. Multi-categories effect models of bridge maintenance are built and simple and unified index computing formulae of these models are given. Maintenance effect produced from various bridge maintenance actions varies with each other. Therefore,to establish various deterioration effect models is a foundation of maintenance effect analysis and optimization. The maintenance effect models established in the paper are simple and rational for the presented validity functions are used. By help of these models,it is easy to carry out life-cycle economic analysis and optimization in bridge maintenance decision.
     3. Bridge deterioration models with preventive maintenance are built for concrete bridge structuers. Establishment of indexes computing formulae of various combining cases between different maintenance modes and different deterioration modes without preventive maintenance provides a base for life-cycle economic analysis and multi-objective optimization in bridge maintenance decision.
     4. A method of economic analysis on bridge maintenance is presented. Some economic indexes used in comparison,assessment and optimization of bridge maintenance strategies are given by means of a presented rational profit method. Computing formulae of dynamic maintenance cost are built according to economics. For investment decision in economics,there are mature methods to assess different investment strategies. There are four main optimization goals in bridge maintenance. They are maintenance cost,bridge life,bridge condition state and bridge reliability. They restrain and influence one another and need to be planed as a whole. Through rational profit method,bridge life,bridge condition state and bridge reliability are converted into profit in the paper. This makes it possible to carry out life-cycle economic analysis and optimization for bridge maintenance strategies in a new and more rational method and to transplant more conceptions and methods from economics to bridge maintenance optimization.
     5. Basic and combining optimization methods of bridge maintenance are presented. Methods of basic optimization of preventive maintenance are presented through establishment of computing formulae of some parameters such as first essential maintenance time,preventive maintenance times and maintenance effect indexes and computing examples of these formulae. Lumping and overlapping combining optimization methods for bridge maintenance are presented. Indexes computing formulae and optimization steps of the two methods are given and their maintenance effect parameters are calculated through examples. Combining optimization methods between an essential maintenance and one or two preventive maintenance are presented. Indexes computing formulae and optimization examples of these methods are given , respectively. Synchronal consideration of essential and preventive maintenance helps those who neglect preventive maintenance traditionally to drop such a traditional idea. At the same time,this lets the built theoretic frame more complete and practical.
     6. Based on the above achievements,a program,called as BMOP,of life-cycle economic analysis and optimization in bridge maintenance decision is researched and developed. Combined with actual maintenance actions,examples of application of life-cycle economic analysis and optimization in bridge maintenance decision by using this program are given and this shows applicability and signification of the constructed theoretic frame.
引文
1 R. E. Minchin Jr., T. Zayed, A. J. Boyd, M. Mendoza. Best Practices of Bridge System Management—A Synthesis. Journal of Management in Engineering. 2006, 22(4):186~195
    2 K. L. Rens, C. L. Nogueira, D. J. Transue. Bridge Management and Nondestructive Evaluation. Journal of Performance of Constructed Facilities. 2005, 19(1):3~16.
    3 J. I. Dietrich, M. A. Inkala, V. J. Mannisto. Bridge Inspection Quality Management. Transportation Research Record. 2005, (1933):3~8.
    4 R. J. Woodward et al. Bridge Management in Europe . European Commission DG VII 4th Framework Programme, 1999-2001.
    5 P. D. Thompson et al. The PONTIS Bridge Management System. Structural Engineering International. 1998, 8 (4): 303~308.
    6 H. Hawk, E. P. Small. The BRIDGIT Bridge Management System. Structural Engineering International. 1998, 8 (4): 309~314.
    7 D. S. Turner, J. A. Richardson. Bridge Management System Data Needs and Data Collection—Characteristics of Bridge Management Systems. Proc., 7th Conf. on Bridge Mgmt., Transp. Res. Circular No. 423, National Academy Press, 1994, Washington: 5~15.
    8 Federal Highway Administration (FHWA). Asset Management Preserving a $1 Trillion Investment. FOCUS, 2000,Washington:1~2.
    9 American Association of State Highway and Transportation Officials (AASHTO). Guidelines for Bridge Management Systems. 1992, Washington, D.C.
    10 M. Liu, D. M. Frangopol. Optimizing Bridge Network Maintenance Management under Uncertainty with Conflicting Criteria: Life-Cycle Maintenance, Failure, and User Costs. Journal of Structural Engineering. 2006, 132(11):1835~1845.
    11 M. K. S?derqvist, M. Veijola. The Finnish Bridge Management System. Structural Engineering International. 1998, 8 (4): 315~319.
    12 Sun-Kon Kim, Kyung-Sik CHO, Jong-Hwa Kim. Development of Computerized Management System for Cable-Supported Bridge. IABSE Conference, Seoul, 2001.
    13 Lee, Sang-Ho; Jeong, Yeon-Suk. A System Integration Framework through Development of ISO 10303-Based Product Model for Steel Bridges. Automation in Construction. 2006, 15(2):212~228.
    14 J. de Brito, F. A. Branco, P. Thoft-Christensen, J. D. Srensen, An Expert System forConcrete Bridge Management, Engineering Structure. 1997, 19(7).
    15 Ichizou Mikami, Shigenori Tanaka and Akira Kurachi. Expert System with Learning Ability for Retrofitting Steel Bridges. Journal of Computing in Civil Engineering. ASCE, 1994, 8(1).
    16 Hitoshi Furuta, Jianhong He and Eiichi Watanabe. A Fuzzy Expert System for Damage Assessment Using Genetic Algorithms and Neural Networks. Journal of Computing in Civil Engineering. 1996, 11.
    17 赵复笑. 浅析中国桥梁管理系统. 辽宁交通科技. 2005, (6): 46~48.
    18 高光, 刘德福, 李正仁. 桥梁数据库的构思与实现. 桥梁建设. 1995, (4).
    19 唐继舜, 强士中, 郑凯峰. 桥梁工程设计数据库管理系统的研究. 桥梁建设. 1996, (2).
    20 王桂萱, 中村秀明, 晏班夫, 宫本文穗. 利用遗传及免疫算法进行桥梁维修管理计划的优化. 土木工程学报. 2005, 38(8): 128~134.
    21 Kim, Eungcheol; Jha, Manoj K.; Son, Bongsoo. Improving the Computational Efficiency of Highway Alignment Optimization Models through a Stepwise Genetic Algorithms Approach. Transportation Research Part B: Methodological. 2005, 39 (4): 339 ~360.
    22 季云峰, 张启伟. 新一代桥梁管理系统的研究与发展. 世界桥梁. 2004, (1): 61 ~65.
    23 L. C. Neves, D. M. Frangopol. Condition, Safety and Cost Profiles for Deteriorating Structures with Emphasis on Bridges. Reliability Engineering and System Safety. 2005, 89 (2): 185~198.
    24 K. Maute, D. M. Frangopol. Reliability-Based Design of MEMS Mechanisms by Topology Optimization. Comput Struct. 2003, (81): 813 ~824.
    25 D. M. Frangopol, Kiyohiro Imai. Reliability of Long Span Bridges Based on Design Experience with the Honshu–Shikoku Bridges. Journal of Constructional Steel Research. 2004, 60: 373 ~392.
    26 D. M. Frangopol, L. C. Neves. Life-Cycle Maintenance Strategies for Deteriorating Structures Based on Multiple Probabilistic Performance Indicators. System-Based Vision for Strategic and Creative Design, F. Bontempi, ed., Vol. 1, Sweets & Zeitlinger, Lisse, 2003: 3~9.
    27 P. Thoft-Christensen. Advanced Bridge Management Systems. Structural Engineering Review. 1995,7(3): 151~163.
    28 D. M. Frangopol, M. Miyake, J. S. Kong, et al. Reliability- and Cost-Oriented Optimal Bridge Maintenance Planning. In: Recent Advances in Optimal Structural Design. Reston, Virginia, ASCE, 2002: 257 ~270.
    29 D. M. Frangopol, P. C. Das. Management of Bridge Stocks Based on Future Reliability and Maintenance Costs. In: Current and Future Trends in Bridge Design, Construction, and Maintenance, London: Thomas Telford, 1999: 45 ~58.
    30 D. M. Frangopol, E. S. Gharaibeh, J. S. Kong, et al. Optimal Network-Level Bridge Maintenance Planning Based on Minimum Expected Cost. J. Transp. Res. Board, 2000, 2(1696): 26 ~33.
    31 M. Liu, D. M. Frangopol. Time-Dependent Bridge Network Reliability: Novel Approach. J. Struct. Engrg. 2005, 131(2): 329 ~337.
    32 L. C. Neves, D. M. Frangopol, P. S. Cruz. Cost of Life Extension of Deteriorating Structures under Reliability-Based Maintenance. Computers & Structures. 2004, 82: 1077~1089.
    33 D. M. Frangopol, A. C. Estes. Lifetime Bridge Maintenance Strategies Based on System Reliability. IABSE Struct Engng Int. 1997, 7(3): 193 ~198.
    34 D. M. Frangopol, J. S. Kong, E. S. Gharaibeh. Reliability-Based Life-Cycle Management of Highway Bridges. Journal of Computing in Civil Engineering. 2001, 15(1): 27 ~34.
    35 AASHTO. AASHTO LRFD Bridge Design Specifications. Washington DC: American Association of State Highway and Transportaion Officials, 1998.
    36 J. S. Kong. Lifetime Maintenance Strategies for Deteriorating Structures. PhD. Thesis, Department of Civil,.Environmental, and Architectural Engineering, University of Colorado,Boulder, Colorado. 2001.
    37 R. Jiang, W. J. Zhang, P. Ji. Required Characteristics of Statistic al Distribution Models for Life Cycle Cost Estimation. Int. J. Production Economics. 2003, 83: 185 ~194.
    38 V. V. Dimitri, M. G. Stewart. Life-Cycle Cost Analysis of Reinforced Concrete Structures in Marine Environments. Structural Safety. 2003, 25: 343 ~362.
    39 吴海军, 陈艾荣. 寿命周期成本分析方法在桥梁工程中的应用. 公路. 2004, (12).
    40 J. M. van Noortwijk, D. M. Frangopol. Two Probabilistic Life-Cycle Maintenance Models for Deteriorating Civil Infrastructures. Probabilistic Engineering Mechanics. 2004, 19 (4): 345 ~359.
    41 D. Singh, R. L. K. Tiong. Development of Life Cycle Costing Framework for Highway Bridges in Myanmar. International Journal of Project Management. 2005, 23 (1): 37~44.
    42 O. O. Ugwu, M. M. Kumaraswamy, F. Kung, S. T. Ng. Object-Oriented Framework for Durability Assessment and Life Cycle Costing of Highway Bridges. Automation in Construction. 2005, 14 (5): 611~632.
    43 D. M. Frangopol, M. Liu. Life-Cycle Cost Analysis for Highways Bridges:Accomplishments and Challenges. ASCE Structures Congress 2004, Nashville, Tennessee, May 22–26, 2004.
    44 J. M. van Noortwijk, H. E. Klatter. The Use of Lifetime Distributions in Bridge Maintenance and Replacement Modeling. Computers and Structures. 2004, 82: 1091~1099.
    45 J. M. van Noortwijk. Explicit Formulas for the Variance of Discounted Life-Cycle Cost. Reliab Eng Syst Safety. 2003,80(2): 185~95.
    46 J. S. Kong, D. M. Frangopol. Evaluation of Expected Life-Cycle Maintenance Cost of Deteriorating Structures. J Struct Eng. 2003,129(5):682~91.
    47 R. B. Corotis. The Political Realities of Life Cycle Costing. First International Conference on Bridge Maintenance, Safety, and Management. IABMAS, Barcelona, July 14 ~17, 2002.
    48 P. C. Das. Reliability Based Bridge Management Procedures. Bridge Management. M. J. Ryall, G. A. R. Parke, and J. E. Harding, eds., Thomas Telford, 2000. London: 1~11.
    49 J. S. Kong, D. M. Frangopol. Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. J. Struct. Eng. 2003, 129(6): 818~828.
    50 J. S. Kong, D. M. Frangopol, E. S. Gharaibeh. Life Prediction of Highway Bridges with or without Preventive Maintenance. Probabilistic Mechanics and Structural Reliability, A. Kareem, A. Haldar, B. F. Spencer, and E. A. Johnson, eds., ASCE, Reston, Virginia, 2000: 200~300.
    51 J. E. Roberts, R. Shepard. Bridge Management for the 21st Century. Journal of the Transportation Research Board, TRR, 2000, 2(1996): 197~203.
    52 E. P. Small, T. Philbin, M. Fraher, G. Romack. Current Studies of Bridge Management System Implementation in the United States. Transportation Research Circular 498(I), TRB-NRC, Washington, D.C., A-1. 2000, 1~16.
    53 K.-Y. Lin. Reliability-Based Minimum Life Cycle Cost Design of Reinforced Concrete Girder Bridges. PhD. Thesis, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder. Colorado. 1995.
    54 P. R. Vassie. A Whole Life Cost Model for the Economic Evaluation of Durability 0ptions for Concrete Bridges. Safety of Bridges, P.C. Das, ed., Thomas Telford, 1997: l45~150.
    55 D. M. Frangopol, K.-Y. Lin, A. C. Estes. Life-Cycle Cost Design of Deteriorating Structures. Journal of Structural Engineering, ASCE, 1997, 123(10): 1390~1401.
    56 R. Flanagan, G. Norman, J. Meadows, G. Rorinson. Life Cycle Costing:Theory andPractice. BSP Professional Books, London. 1989.
    57 J. M. Van Noortwijk. 0ptimal Maintenance Decisions for Hydraulic Structures under Isotropic Deterioration. PhD. Thesis. Delft University of Technology, Delft, The Netherlands. 1996.
    58 D. M. Frangopol. Life-Cycle Cost Analysis for Bridges. Chapter 9 in Bridge Safety and Reliability, D.M. Frangopol, eds., ASCE, Reston, Virginia. 1999: 210~236.
    59 M. A. Ehlen. Life-Cycle Costs of Fiber-Reinforced-Polymer Bridge Decks. J. Mater. Civ. Eng., 1999, 11(3): 224~230.
    60 A. C. Berg, L. C. Bank, M. G. Oliva, J. S. Russell. Construction and Cost Analysis of an FRP Reinforced Concrete Bridge Deck. Construction and Building Materials. 2006, (20): 515~526.
    61 M. Scott, A. Rezaizadeh, A. Delahaza, C. G. Santos, M. Moore, B. Graybeal, G. Washer. A Comparison of Nondestructive Evaluation Methods for Bridge Deck Assessment. NDT&E International. 2003 (36): 245~255.
    62 P. D. Cady, R. E. Weyers. Predicting Service Life of Concrete Bridge Decks Subject To Reinforcement Corrosion. Corrosion Forms and Control for Infrastructure, ASTM Spec. Tech. Publ., No. 1137, 1992: 328~338.
    63 L.C. Neves, D. M. Frangopol, P. S. Cruz. Cost of Life Extension of Deteriorating Structures under Reliability-Based Maintenance. Computers & Structures, 2004, (82): 1077~1089.
    64 D. Singh, Robert L. K. Tiong. Development of Life Cycle Costing Framework for Highway Bridges in Myanmar. International Journal of Project Management. 2005, (23): 37~ 44.
    65 K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons; 2001.
    66 D. M. Frangopol, K. Maute. Life-Cycle Reliability-Based Optimization of Civil and Aerospace Structures. Comput Struct. 2003,81: 397~ 410.
    67 M. Liu, Y. K. Wen, S. A. Burns. Life Cycle Cost Oriented Seismic Design Optimization of Steel Moment Frame Structures with Risk-Taking Preference. Engineering Structures. 2004, 26: 1407~1421.
    68 M. Liu, S. A. Burns, Y. K. Wen. Optimal Seismic Design of Steel Frame Buildings Based on Life Cycle Cost Considerations. Earthquake Engineering and Structural Dynamics. 2003, 32: 1313~1332.
    69 P. C. Das. Prioritization of Bridge Maintenance Needs. Case Studies in Optimal Designand Maintenance Planning of Civil Infrastructure Systems. D.M. Frangopol, eds., ASCE, Reston, Virginia, 1999: 26~44.
    70 A. Miyamoto, K. Kawamura, H. Nakamura. Bridge Management System and Maintenance Optimization for Exiting Bridges. Computer-Aided Civil and Infrastructure Engineering. 2000, (5): 45 ~55.
    71 P. C. Das, D. M. Frangopol, A. S. Nowak. “Preface”. Current and Future Trends in Bridge Design, Construction, and Maintenance. P. C. Das, D. M. Frangopol, and A. S. Nowak, eds., Thomas Telford, London. 2001.
    72 T. Vidal, A. Castel, R. Francois. Analyzing Crack Width to Predict Corrosion in Reinforced Concrete. Cement and Concrete Research. 2004, 34: 165 ~174.
    73 Makoto Kitagawa. Maintenance of Steel Bridges on Honshu-Shikoku Crossing Yukikazu Yanaka. Journal of Constructional Steel Research, 2002, 58: 131~150.
    74 M. Liu, D. M. Frangopol. Optimal Bridge Maintenance Planning Based on Probabilistic Performance Prediction. Engineering Structures. 2004, 26: 991~1002.
    75 M. Liu, D. M. Frangopol. Multiobjective Maintenance Planning Optimization for Deteriorating Bridges Considering Condition, Safety, and Life-Cycle Cost. Journal Of Structural Engineering. MAY, 2005: 833~842.
    76 M. Liu, S. A. Burns, Y. K. Wen. Multiobjective Optimization for Performance Based Seismic Design of Steel Moment Frame Structures. Earthquake Eng. Struct. Dyn. 2005, 34(3): 289~306.
    77 K. Deb. Multiobjective Optimization Using Evolutionary Algorithms. Wiley. U. K. Chichester, A. C. Estes, D. M. Frangopol. Bridge Lifetime System Reliability under Multiple Limit States. J. Bridge Eng. 2001, 6 (6): 523 ~528.
    78 C. Liu, A. Hammad, Y. Itoh. Multiobjective Optimization of Bridge Deck Rehabilitation Using a Genetic Algorithm. Comput. Aided Civ. Infrastruct. Eng. 1997, 12: 431~443.
    79 A. Miyamoto, K. Kawamura, H. Nakamura. Development of Bridge Management System for Existing Bridges. Advance in Engineering software. 2001, 32: 821 ~ 833.
    80 H. Furuta, T. Kameda, Y. Fukuda, D. M. Frangopol. Life Cycle Cost Analysis for Infrastructure Systems: Life Cycle Cost vs. Safety Level vs. Service Life. D. M. Frangopol, E. Brühwiler, M. H. Faber, and B. Adey, eds., Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management. ASCE, Reston, Va. 2004: 19~25.
    81 H. P. Xu, J. M. Humar. Damage Detection in a Girder Bridge by Artificial Neural Network Technique. Computer-Aided Civil and Infrastructure Engineering. 2006, 21 (6): 450 ~ 464.
    82 赖红松, 董品杰, 祝国瑞. 求解多目标规划问题的Pareto多目标遗传算法. 系统工程. 2003, 21(5).
    83 盛昭翰, 曹忻. 最优化方法基本教程. 南京: 东南大学出版社, 1992.
    84 J. M. van Noortwijk, H. E. Klatter. The Use of Lifetime Distributions in Bridge Maintenance and Replacement Modelling. Computers & Structures. 2004, 82: 1091 ~ 1099.
    85 D. M. Frangopol, K. Maute. Special Issue: Advances in Probabilistic Mechanics and Structural Reliability, Computers and Structures. 2004, 82(13-14): 969 ~ 970.
    86 Rijkswaterstaat. Workshop on Optimal Maintenance of Structures, Oct.4-6, 2000, Delft, The Netherlands. Utrecht: Ministry of Transport, Public Works and Water Management, Civil Engineering Division; 2000.
    87 V. Gattulli, L. Chiaramonte. Condition Assesment by Visual Inspection for a Bridge Management System. Computer-Aided Civil and Infrastructure Engineering. 2005, 20 (2): 95-107.
    88 M. Jiang, K. I. Sinha. Bridge Service Life Prediction Model using the Markov Chain. Transp. Res. Rec. 1223, Transportation Research Circular, Washington, D.C. 1989.
    89 G. Hearn, D. M. Frangopol, T. Szanyi. Report on Bridge Management Practices in the United States, University of Colorado, Boulder, Colorado. 1995.
    90 P. Thoft-Christensen. Modeling of the Deterioration of Reinforced Concrete Structures. Proceeding from IFIP WG 7.5 Working Conference in Arbor, Michigan, USA. 2000.
    91 J. S. Kong, D. M. Frangopol. The LCADS User’s Manual, Department Of Civil, Environmental, and Architectural Engineering, University 0f Colorado, Boulder, Colorado. 2000.
    92 D. Kececioglu. Maintenance, Availability and Operational Readiness Engineering. V0l.1, lst edition , Prentice Hall Inc, New Jersey. 1995.
    93 O. D. Dijkstra, S. E. Van Manen, F. B. J. Gijsbers. Probabilistic Maintenance Planning for the Tubular Joints in the Steel Gates in the Eastern Scheldt Storm Surge Barrier. Heron, Delf and Rijswijk, 1994, 39(2): 35 ~ 63.
    94 Maunsell Ltd. Serviceable Life of Highway Structures and Their Components, Report to Highway Agency, Birmingham. 1999.
    95 张树仁,王宗林. 桥梁病害诊断与改造加固设计. 人民交通出版社,2006: 1~36.
    96 A. McKenzie, Economic Analysis and Special Studies. Mn/DOT Office of Investment Management. 2001. (http://www.oim.dot.state.mn.us/EASS/).
    97 G. P. Tilly. Principles of Whole Life Costing. In: P. C. Das, editor. Safety of Bridges. London: Thomas Telford. 1997:138 ~ 144.
    98 S. Troive, H. Sundquist. Optimisation of Design Parameters for Lowest Life-Cycle Cost of Concrete Bridges. In: L. Dunaszegi, editor. Proc 5th Int Conf on Developments in Short and Medium Span Bridge Engineering’98, Calgary, July 1998. Montreal (Quebec): The Canadian Society for Civil Engineering; 1998: 1101~1113.
    99 O. Koskisto. Reliability-Based Optimization of Plant Precast Concrete Building Systems. Acta Polytechnica Scandinavica Civil Engineering and Building Construction Series No.
    108. Espoo (Finland): The Finnish Academy of Technology. 1997.
    100 M. Allen, M. Raulli, K. Maute, D. M. Frangopol. Reliability-Based Analysis and Design Optimization of Electrostatically Actuated MEMS. Computers and Structures. 2004, 82: 1007~1020.
    101 K. Imai, D. M. Frangopol. System Reliability of Suspension Bridges. Struct Safety. 2002, 24(4): 219 ~259.
    102 A. Castel, R. Francois, G. Arliguie. Mechanical Behavior Model of Corroded Reinforced Concrete, C. R. Acad. Sci. Mech. 2002, (330): 45 ~ 50.
    103 S. A. Oke, M. K. O. Ayomoh. An Optimal Preventive Maintenance Model Using Goal Programming. International Journal of Industrial Engineering: Theory Applications and Practice. 2005, 12 (4): 354~ 364.
    104 M. Bertolini, M. Bevilacqua. A Combined Goal Programming - AHP Approach to Maintenance Selection Problem. Reliability Engineering and System Safety. 2006, 91 (7): 839~848.
    105 S. M. Bateni, D. S. Jeng, B. W. Melville. Bayesian Neural Networks for Prediction of Equilibrium and Time-Dependent Scour Depth around Bridge Piers. Advances in Engineering Software. 2007, 38 (2): 102-111.
    106 Y. M. Wang, T. M. S. Elhag. A Comparison of Neural Network, Evidential Reasoning and Multiple Regression Analysis in Modelling Bridge Risks. Expert Systems with Applications. 2007, 32 (2): 336 ~348.
    107 M. K. Jha, J. Abdullah. A Markovian Approach for Optimizing Highway Life-Cycle with Genetic Algorithms by Considering Maintenance of Roadside Appurtenances. Journal of the Franklin Institute, Modeling, Simulation and Applied Optimization. 2006, 343(4-5): 404~419.
    108 G. Morcous, Z. Lounis. Maintenance Optimization of Infrastructure Networks Using Genetic Algorithms. Automation in Construction. 2005, 14(1): 129~142.
    109 K. C. Fu, Y. J. Zhai, S. J. Zhou. Optimum Design of Welded Steel Plate Girder Bridges Using a Genetic Algorithm with Elitism. Journal of Bridge Engineering. 2005, 10(3): 291~301.
    110 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与发展. 浙江大学学报, 2002 (4).
    111 黄明, 沈德建. 海洋环境下混凝土中钢筋的防腐蚀设计. 混凝土. 2006, (11).
    112 张宝胜,干伟忠, 陈涛. 杭州湾跨海大桥混凝土结构耐久性解决方案. 土木工程学报, 2006, (6): 72~77.
    113 吴金岳,吴松贵,徐旭峰,徐乃欣. 环氧涂层钢筋及其应用. 腐蚀与防护. 2004, 25(3): 105~108.
    114 徐永模. 迁移性阻锈剂—钢筋混凝土阻锈剂的新发展. 硅酸盐学报. 2002, 30(1): 94~101.
    115 李伟. 钢筋阻锈剂的防腐机理及相关规范. 有色矿山. 2000, 29(4): 49~51.
    116 洪乃丰. 混凝土中钢筋腐蚀与阻锈剂. 混凝土. 2001(6): 25~28.
    117 王东晖. 杭州湾大桥混凝土结构防腐方案构思. 铁道标准设计. 2003, (5).
    118 刘宏, 周履. 钢筋混凝土结构的阴极保护. 国外桥梁. 1997(3): 75~79.
    119 杜荣归, 黄若双 等. 钢筋混凝土结构中阴极保护技术的应用现状及研究进展. 材料保护. 2003, 36(4).
    120 孟繁强, 陈向上, 刘斌, 薛致远, 孟庆海. 用阴极保护防止混凝土结构的钢筋腐蚀.腐蚀与防护. 2003, 24(7): 297~299.
    121 张春兰. 钢筋混凝土沉箱群阴极保护系统及运行状况. 腐蚀与防护. 2002, 23(5): 212~214.
    122 许贤敏. 新的钢筋砼结构阴极保护系统. 国外建筑科学. 1997,15(3): 55~58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700