用户名: 密码: 验证码:
HO-1基因转染脂肪间充质干细胞在支气管哮喘中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:脂肪间充质干细胞的分离、培养及鉴定
     目的:分离、培养小鼠脂肪间充质干细胞(Adipose-derived mesenchymal stemcells,ADSCs),通过流式细胞技术和干细胞多能分化诱导技术对干细胞进行鉴定,掌握体外干细胞培养技术,了解干细胞的生物学特性。
     材料与方法:用无菌技术切取6-8w的BALB/c小鼠腹股沟及腹部脂肪组织,用I型胶原酶消化获得ADSCs,将细胞培养在含10%胎牛血清(Fetal bovine serum,FBS)的L-Dulbeeo改良的eagle培养液(Dulbeco’s modified eagle medium,DMEM)培养基中,采用单纯贴壁法对鼠ADSCs进行分离,并在体外进行ADSCs传代培养、纯化。用倒置显微镜每天观察细胞生长,计算细胞贴壁率,绘制ADSCs的生长曲线,用流式细胞仪对ADSCs表面标志物CD90、CD44、CD11b、CD45进行鉴定,然后用不同的诱导液诱导ADSCs向成脂肪、成骨、成软骨细胞分化,并采用油红O染色、改良Gomori钙钴法、Von Kossa染色、阿尔新蓝染色等方法进行鉴定。
     结果:接种后第2d,细胞开始稀疏地贴附于培养瓶的表面,呈纺锤形,少数呈三角形、多角形。在第3d换液时,发现大多数细胞均已贴壁。至第5d左右,细胞呈集落样生长,形态呈成纤维细胞样梭形细胞。至第9-10d,细胞集落生长至80%融合,细胞呈均一的梭形,成旋涡状排列,2w左右,细胞可长满瓶底。传代细胞以均匀分布的方式生长,5-7d就几乎完全融合,1w左右即可以传代一次。细胞接种后2h左右,即有部分细胞出现贴壁,贴壁率为29.4%±1.3%,24h的贴壁率97.3%±1.8%。接种后第1d即有细胞生长,但前3d细胞生长比较缓慢,第4-8d细胞生长显著加快,至第8d,细胞生长接近融合。传至3代后,细胞的形态呈现均一的长梭形、成纤维状。经测定CD90、CD44阳性细胞达到96.6%和85.3%;CD11b、CD45阳性细胞均为0.5%,在不同的诱导环境下,可分化为成脂肪细胞、成骨细胞、成软骨细胞。表明所得细胞为ADSCs。
     结论:通过I型胶原酶和单纯贴壁法可以体外获得大量ADSCs,具有较强的增殖能力,细胞表面标志CD90、CD44阳性,CD11b、CD45阴性,体外具有很强的多向分化潜能。
     第二部分:携带HO-1基因慢病毒的包装和ADSCs的转染
     目的:制备携带血红素氧化酶-1(Heme oxygenase-1,HO-1)基因的慢病毒载体,并对其进行测序鉴定,在293T细胞中进行慢病毒包装,得到高滴度的携带HO-1基因的慢病毒,进行ADSCs的转染。
     材料与方法:从新鲜脾脏组织中抽提出小鼠总RNA,将总RNA反转录合成cDNA。根据小鼠HO-1基因(GeneBank序号:NM_010442.2),设计并合成HO-1基因引物,利用人工合成的引物,采用RT-PCR技术钓取目的基因HO-1的cDNA片段,再将目的基因片段与pMD18T载体连接,再将酶切线性化的pMD18T-HO-1与酶切线性化的pCDH-MCS-EF1-GFP-Puro载体连接,其产物转化感受态细菌XL10-gold。对长出的克隆先进行菌落鉴定,挑取符合预期的阳性克隆进行测序。然后在293T细胞内,进行慢病毒的包装,收集、浓缩病毒颗粒并检测病毒滴度,最后将携带HO-1基因的慢病毒转染ADSCs,并运用RT-qPCR和Western-Blot的方法检测ADSCs的HO-1mRNA和HO-1蛋白的表达情况。
     结果:琼脂糖电泳及测序证实成功构建了重组pCDH-CMV-HO-1载体,HO-1基因被成功导入pCDH-CMV-MCS-EF1-GFP-Puro载体,在293T细胞内,成功地包装成携有HO-1基因的慢病毒,病毒滴度为3×108TU/ml。成功地将携有HO-1基因的慢病毒转染至ADSCs,运用RT-qPCR和Western-Blot的方法能在ADSCs检测到高水平HO-1mRNA和HO-1蛋白的表达。
     结论:成功构建了携带HO-1基因的慢病毒,并成功地转染到ADSCs中,为下一步的小鼠哮喘模型体内实验提供优质的、HO-1基因修饰的ADSCs来源。
     第三部分:转HO-1基因的ADSCs治疗支气管哮喘的实验研究
     目的:以支气管哮喘小鼠为模型,研究转HO-1基因的ADSCs在支气管哮喘中的治疗作用,及其对参与哮喘发病的细胞因子的影响,比较单用ADSCs和转HO-1基因的ADSCs在哮喘中的作用,确定HO-1在哮喘肺部的抗炎作用,评估基因疗法在支气管哮喘治疗中的可行性。
     材料与方法:选用雌性BALB/c小鼠32只,体重18-22g,随机将小鼠分为:对照组、哮喘组、ADSCs/HO-1组和ADSCs组。哮喘组运用卵清蛋白(Ovalbumin,OVA)致敏并激发,制作小鼠哮喘动物模型,在实验d0、d7、d14天,给哮喘组小鼠注射OVA致敏液200μl,从d21天到d27天给予小鼠吸入3%的OVA溶液,每次30min,每天一次,在d20天,哮喘组经尾静脉注入0.1ml生理盐水。治疗组致敏、激发同哮喘组,在d20天,治疗组经尾静脉注入0.1ml2×106个ADSCs/HO-1和ADSCs。对照组以生理盐水代替OVA,实验方法同哮喘组,在d20天,哮喘组经尾静脉注入0.1ml生理盐水。在d28天,各组小鼠在测定肺功能后,进行肺泡灌洗,再收集肺组织观察各组肺部病理变化情况,检测支气管肺泡灌洗液(Bronchoaleolarlavage fluid,BALF)中炎症细胞和细胞因子的变化情况,并检测HO-1在肺组织中的表达情况。
     结果:成功建立支气管哮喘小鼠模型。肺组织冰冻切片可以检测到绿色荧光蛋白的表达。与对照组相比,哮喘组肺功能为气道阻力增高、肺的顺应性下降,肺泡灌洗液中细胞总数明显升高,分类中嗜酸粒细胞也明显升高,细胞因子IL-4、IL-5、IL-13、TNF-明显升高而细胞因子IFN-γ、IL-10明显降低,肺组织切片HE染色示气道周围有大量炎性细胞浸润,PAS染色示气道黏膜有较多杯状细胞增生,免疫组化染色示HO-1表达增加。治疗组能降低气道阻力、增加肺的顺应性,减少肺泡灌洗液中细胞总数和嗜酸粒细胞数,减少细胞因子IL-4、IL-5、IL-13、TNF-,增加细胞因子IFN-γ、IL-10,减少气道周围炎性细胞浸润和气道黏膜的杯状细胞,增加肺组织HO-1的表达,与ADSCs组相比, ADSCs/HO-1组作用更明显,各组间差异有统计学意义。
     结论:用OVA致敏和激发可以成功建立小鼠哮喘模型。经尾静脉途径注入的小鼠ADSCs可以在小鼠肺部炎症的趋化下,迁移并定植于小鼠肺部。转染HO-1基因的ADSCs和单独注入ADSCs均能减轻小鼠的气道高反应、气管周围的炎性细胞浸润、气管黏膜杯状细胞增生,调节BALF中多种炎症介质如IL-4、IL-5、IL-10、IL-13、IFN-γ、TNF-的产生,对支气管哮喘均有治疗作用,但转染HO-1基因的ADSCs作用更显著,HO-1在哮喘肺部具有抗炎作用。基因疗法治疗支气管哮喘是可行的。
Part Ⅰ: Isolation, cultivation and identification of mice adipose-derive mesenchymal stem cells in vitro
     Objective: To isolate, culture murine adipose-derived mesenchymal stem cells(ADSCs), to identify ADSCs by flow cytometry and stem cell pluripotent differentiationtechnology,to master stem cells culture techniques in vitro and understand the biologicalcharacteristics of ADSCs,
     Material and methods: To take inguinal and abdomen adipose tissue of BALB/cmice aged6-8weeks by sterile technique. Adipose tissue was digested with type Icollagenase and got ADSCs, the cells were cultured in Dulbeco’s modified eaglemedium(DMEM) containing10%fetal bovine serum(FBS), ADSCs were isolated byadherent, ADSCs were subcultured and purified in vitro. Cell growth was observed usingan inverted microscope every day. Cell adhesion rate was calculated and growth curve ofADSCs was draw. Stem cell surface markers CD90, CD44, CD11b and CD45wereidentified using flow cytometry. ADSCs were induced into adipocyte, osteocyte,chondrocyte using different induction medium. ADSCs were identified using oil red Ostaining, modified Gomori calcium cobalt method, Von Kossa staining, Alcian bluestaining method.
     Results: The cells sparsely attached to the surface of the flask as fusiform, a fewtriangular, polygon on the second day after inoculation. When the medium was changed onthe third day, most cells were adherent. On the fifth day, cells were colony-like growth, theshape of cells were the fibroblast-like spindle. On the ninth-tenth day, cell colonies were about80%confluence, cells were uniform spindle-shaped and spirally arrange. About twoweeks later, the cells could cover the bottom. Passaged cells grow in a uniformlydistributed manner, cells were almost completely confluent on the fifth-seventh day, aweek later cells could be subcultured one time. About2hours after cell inoculation, somecells were adherent, adherent rate was29.4%±1.3%, it was97.3%±1.8%24hours later.Cells began to grow on the first day after inoculation, but cell growth is relatively slowduring the first3days, cell growth was accelerated during the fourth-eighth day, cells werealmost confluent on the eighth day. Cell morphology showed uniform long spindle orfibrous until three generations. The determination of CD90, CD44-positive cells reached96.6%and85.3%, CD11b, CD45positive cells were reached0.5%, they could differentiateinto adipocytes, osteoblasts, and chondrocytes in different medium. It indicated that thecells were ADSCs
     Conclusion: we could get lots of adipose-derived mesenchymal stem cells by type Icollagenase and adherent in vitro, cell surface markers CD90, CD44were positive andCD11b, CD45were negative, the cells were with multipotent differentiation in vitro.
     Part2: Establishment of lentiviral vector with HO-1gene andtransfection for adipose-derived mesenchymal stem cells
     Objective: To prepare the lentiviral vector with HO-1gene and the HO-1genesequence was tested; lentiviruses were packed in293T cells, the high titer lentivirus withHO-1gene were obtained, ADSCs were transfected by lentivirus with HO-1gene.
     Material and methods: Total RNA was obtained from fresh spleen tissues of mice,total RNA was reversely transcribed to cDNA. According to mouse HO-1gene (GeneBanknumber: NM_010442.2), the primer of HO-1was designed and synthesized, the cDNAfragment of HO-1gene was obtained using RT-PCR technology and connected with thepMD18T vector. The pMD18T-HO-1was obtained. And then it was connected with thepCDH-MCS-EF1-GFP vector linearized by digestion, the product transformed thecompetent cells XL10-gold. The clone was identified; the positive clones were selected to be sequenced. Lentiviruses were packaged in293T cells, lentiviruses were collected andconcentrated, the titer of virus was determined. Finally ADSCs were transfected bylentiviruses with HO-1gene. The expression of HO-1on ADSCs was determined inRT-qPCR and Western-Blot way.
     Results: Agarose gel electrophoresis and sequencing confirmed that the recombinantVector pCDH-CMV-HO-1was successfully constructed; HO-1gene wassuccessfully introduced into the pCDH-CMV-MCS-EF1-GFP-Puro vector. Lentiviruseswith HO-1gene were successfully packaged in293T cells, the virus titer was3×108TU/ml. Lentiviruses with HO-1gene was successfully transfected into ADSCs, HO-1wasabundantly expressed in ADSCs.
     Conclusion: Lentiviruses with HO-1gene was successfully constructed, and ADSCswere successfully transfected with lentiviruses with HO-1gene.The high qualified ADSCswith HO-1gene were provided for the animal experiment.
     Part3: Experimental study about transplantation ofADSCs with HO-1gene in the treatment of asthma
     Objective: Mice were as models of asthma, the effect was researched about ADSCswith HO-1gene in the treatment of bronchial asthma, and the impact on cytokinesinvolved in the pathogenesis of asthma was discussed. The effect was compared betweenADSCs and ADSCs with HO-1gene in asthma. The feasibility of gene therapy in asthmawas evaluated.
     Material and methods:32female BALB/c mice were chosen, weight is18-22g,and animal model of asthma was established via OVA sensitization and challenging. Micewere divided into four groups: control group, asthma group, HO-1/ADSCs group andADSCs group. Mice were sensitized with200μl OVA on d0,7,14and challenged viainhaling3%OVA solution from d21to d27,30minutes every time, once a day. On thetwentieth day, the asthma group was injected with0.1ml natural saline through tail vein.The procedure of ADSCs group and HO-1/ADSCs group were same as that in the asthma group, but on the twentieth day, they were injected with0.1ml2×106ADSCs or ADSCswith HO-1gene. Control group received saline instead of OVA, the procedure is same asthat in the asthma group. On the twenty-eighth day, mice were sacrificed after spirometrytest to observe the changes of lung tissue, inflammatory cells, cytokines in BALF andexpression of HO-1in lung tissue.
     Results: Mice model of asthma was successfully established. Compared with thecontrol group, in asthma group airway resistance was increased, lung compliance wasdecreased, the total number of cells and eosinophils were significantly increased in BALF,cytokines like IL-4, IL-5, IL-13,TNF-were significantly increased and the cytokine likeIL-10, IFN-γ was significantly decreased. HE staining of lung tissue shows inflammatorycells infiltration around the airway, PAS staining showed mucus cells were increased inairway mucosa, expression of HO-1was increased through immune-histochemistrystaining. In treatment groups airway resistance could be reduced, lung compliance could beincreased, the total number of cells and eosinophils in BALF could be reduced, cytokineslike IL-4、IL-5、IL-13、TNF-could be reduced, cytokines like IFN-γ、IL-10could beincreased, infiltration of inflammatory cells around the airways and mucus cells in airwaymucosa could be reduced, HO-1expression in lung tissue could be increased. The effect inHO-1/ADSCs group was better than that in ADSCs group; the difference between thegroups was statistically significant.
     Conclusion: ADSCs with HO-1gene and ADSCs had therapeutic effect on asthma,but the effect in ADSCs with HO-1gene was better than that in ADSCs, the gene therapywas feasible in the treatment of asthma.
引文
1. Schneider BC, Constant SL, Patierno SR, et al. Exposure to particulate hexavalentchromium exacerbates allergic asthma pathology. Toxicol Appl Pharmacol,2012,259(1):38-44.
    2. Szefler SJ. Advances in pediatric asthma in2013: Coordinating asthma care. J AllergyClin Immunol,2014,133(3):654-661.
    3. Wade A, Chang C. Evaluation and Treatment of Critical Asthma Syndrome in Children.Clin Rev Allergy Immunol,2014.
    4. Philpott H, Gibson PR, Thien F, et al. Letter: an allergic phenotype in patients witheosinophilic oesophagitis and asthma. Aliment Pharmacol Ther,2013,37(7):755-756.
    5. Dal Negro RW, Guerriero M, Micheletto C. Pattern of airway inflammation andremodelling in mild persistent atopic asthma and in mild persistent asthma related togastroesophageal reflux. Eur Ann Allergy Clin Immunol,2012,44(6):236-242.
    6. Durham A, Adcock IM, Tliba O. Steroid resistance in severe asthma: currentmechanisms and future treatment. Curr Pharm Des,2011,17(7):674-684.
    7. Cates CJ, Lasserson TJ. Regular treatment with formoterol and an inhaledcorticosteroid versus regular treatment with salmeterol and an inhaled corticosteroidfor chronic asthma: serious adverse events. Sao Paulo Med J,2010,128(5):310-311.
    8. Perin P, Potocnik U. Polymorphisms in recent GWA identified asthma genes CA10,SGK493, and CTNNA3are associated with disease severity and treatment response inchildhood asthma. Immunogenetics,2014,66(3):143-151.
    9. Apter AJ. Advances in adult asthma diagnosis and treatment in2012: potentialtherapeutics and gene-environment interactions. J Allergy Clin Immunol,2013,131(1):47-54.
    10. Balantic M, Rijavec M, Skerbinjek Kavalar M, et al. Asthma treatment outcome inchildren is associated with vascular endothelial growth factor A (VEGFA)polymorphisms. Mol Diagn Ther,2012,16(3):173-180.
    11. Goodwin J, Spitale N, Yaghi A, et al. Cystic fibrosis transmembrane conductanceregulator gene abnormalities in patients with asthma and recurrent neutrophilicbronchitis. Can Respir J,2012,19(1):46-48.
    12. Laumonnier Y, Schmudde I, Kohl J. The role of complement in the diagnosis andmanagement of allergic rhinitis and allergic asthma. Curr Allergy Asthma Rep,2011,11(2):122-130.
    13. Kornerup KN, Page CP. The role of platelets in the pathophysiology of asthma.Platelets,2007,18(5):319-328.
    14. Vanders RL, Gibson PG, Wark PA, et al. Alterations in inflammatory, antiviral andregulatory cytokine responses in peripheral blood mononuclear cells from pregnantwomen with asthma. Respirology,2013,18(5):827-833.
    15. Xia H, Cai SX, Tong WC, et al. Effect of ribavirin upon secretion of thymic stromallymphopoietin in respiratory syncytial virus-induced asthma exacerbation of mice.Zhonghua Yi Xue Za Zhi,2009,89(20):1430-1434.
    16. Penn MS, Ellis S, Gandhi S, et al. Adventitial delivery of an allogeneic bonemarrow-derived adherent stem cell in acute myocardial infarction: phase I clinicalstudy. Circ Res,2012,110(2):304-311.
    17. Lee SH, Jang AS, Kwon JH, et al. Mesenchymal stem cell transfer suppresses airwayremodeling in a toluene diisocyanate-induced murine asthma model. Allergy AsthmaImmunol Res,2011,3(3):205-211.
    18. Da Silva CA, Reber L, Frossard N. Stem cell factor expression, mast cells andinflammation in asthma. Fundam Clin Pharmacol,2006,20(1):21-39.
    19. Tiwari M, Dwivedi UN, Kakkar P. Tinospora cordifolia extract modulates COX-2,iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model ofasthma. J Ethnopharmacol,2014.
    20. Ubel C, Sopel N, Graser A, et al. The activating protein1transcription factor basicleucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte-and mastcell-driven immune responses in the setting of allergic asthma. J Allergy Clin Immunol,2014,133(1):198-206e191-199.
    21. Pritchard KA, Jr., Feroah TR, Nandedkar SD, et al. Effects of experimental asthma oninflammation and lung mechanics in sickle cell mice. Am J Respir Cell Mol Biol,2012,46(3):389-396.
    22. Lee MY, Seo CS, Ha H, et al. Protective effects of Ulmus davidiana var. japonicaagainst OVA-induced murine asthma model via upregulation of heme oxygenase-1. JEthnopharmacol,2010,130(1):61-69.
    23. Mathias LJ, Khong SM, Spyroglou L, et al. Alveolar macrophages are critical for theinhibition of allergic asthma by mesenchymal stromal cells. J Immunol,2013,191(12):5914-5924.
    24. Kapoor S, Patel SA, Kartan S, et al. Tolerance-like mediated suppression bymesenchymal stem cells in patients with dust mite allergy-induced asthma. J AllergyClin Immunol,2012,129(4):1094-1101.
    25. Bonfield TL, Koloze M, Lennon DP, et al. Human mesenchymal stem cells suppresschronic airway inflammation in the murine ovalbumin asthma model. Am J PhysiolLung Cell Mol Physiol,2010,299(6): L760-770.
    26. Manners S, Alam R, Schwartz DA, et al. A mouse model links asthma susceptibility toprenatal exposure to diesel exhaust. J Allergy Clin Immunol,2013.
    27. Michaeloudes C, Chang PJ, Petrou M, et al. Transforming growth factor-beta andnuclear factor E2-related factor2regulate antioxidant responses in airway smoothmuscle cells: role in asthma. Am J Respir Crit Care Med,2011,184(8):894-903.
    28. Kim D, Kim SH, Park EJ, et al. Anti-allergic effects of PG102, a water-soluble extractprepared from Actinidia arguta, in a murine ovalbumin-induced asthma model. ClinExp Allergy,2009,39(2):280-289.
    29. Mo B, Zhang Z, Xu Y, et al. Expression of heme oxygenase-1in the peripheral bloodmononuclear cells from asthmatic patients. J Huazhong Univ Sci Technolog Med Sci,2005,25(4):385-388.
    30. Lee MY, Seo CS, Lee JA, et al. Anti-asthmatic effects of Angelica dahurica againstovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. FoodChem Toxicol,2011,49(4):829-837.
    31. Lee CM, Jung ID, Noh KT, et al. An essential regulatory role of downstream ofkinase-1in the ovalbumin-induced murine model of asthma. PLoS One,2012,7(4):e34554.
    32. Liu C, Xiang Y, Liu H, et al. Integrin beta4was downregulated on the airway epitheliaof asthma patients. Acta Biochim Biophys Sin (Shanghai),2010,42(8):538-547.
    1. Logan AC, Weissman IL, Shizuru JA. The road to purified hematopoietic stem celltransplants is paved with antibodies. Curr Opin Immunol,2012,24(5):640-648.
    2. Rahman MM, Madlambayan GJ, Cogle CR, et al. Oncolytic viral purging of leukemichematopoietic stem and progenitor cells with Myxoma virus. Cytokine Growth FactorRev,2010,21(2-3):169-175.
    3. Gokce A, Abd Elmageed ZY, Lasker GF, et al. Adipose tissue-derived stem celltherapy for prevention and treatment of erectile dysfunction in a rat model ofPeyronie's disease. Andrology,2014,2(2):244-251.
    4. Jafarzadeh N, Javeri A, Khaleghi M, et al. Oxytocin improves proliferation and neuraldifferentiation of adipose tissue-derived stem cells. Neurosci Lett,2014.
    5. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng,2001,7(2):211-228.
    6. Schipper BM, Marra KG, Zhang W, et al. Regional anatomic and age effects on cellfunction of human adipose-derived stem cells. Ann Plast Surg,2008,60(5):538-544.
    7. Hsieh CH, Shueng PW, Lin SC, et al. Helical irradiation of the total skin with dosepainting to replace total skin electron beam therapy for therapy-refractory cutaneousCD4+T-cell lymphoma. Biomed Res Int,2013,2013:717589.
    8. Pinnix CC, Fontanilla HP, Hayes-Jordan A, et al. Whole abdominopelvicintensity-modulated radiation therapy for desmoplastic small round cell tumor aftersurgery. Int J Radiat Oncol Biol Phys,2012,83(1):317-326.
    9. Staehler M, Haseke N, Zilinberg E, et al. Complete remission achieved withangiogenic therapy in metastatic renal cell carcinoma including surgical intervention.Urol Oncol,2010,28(2):139-144.
    10. Madonna R, Pizzi SD, Tartaro A, et al. Transplantation of Mesenchymal CellsImproves Peripheral Limb Ischemia in Diabetic Rats. Mol Biotechnol,2014,13(1):123-127.
    11. Yamada S, Shimada M, Utsunomiya T, et al. Trophic effect of adipose tissue-derivedstem cells on porcine islet cells. J Surg Res,2013,49(2):32-41.
    12. Komiyama S, Sakakura C, Murayama Y, et al. Adipose-derived stem cells enhancetissue regeneration of gastrotomy closure. J Surg Res,2013,185(2):945-952.
    13. Moon KM, Park YH, Lee JS, et al. The effect of secretory factors of adipose-derivedstem cells on human keratinocytes. Int J Mol Sci,2012,13(1):1239-1257.
    14. Kim WS, Park BS, Kim HK, et al. Evidence supporting antioxidant action ofadipose-derived stem cells: protection of human dermal fibroblasts from oxidativestress. J Dermatol Sci,2008,49(2):133-142.
    15. Han C, Zhao Q, Lu B. The role of nitric oxide signaling in food intake; insights fromthe inner mitochondrial membrane peptidase2mutant mice. Redox Biol,2013,1(1):498-507.
    16. Fan W, Sun D, Liu J, et al. Adipose stromal cells amplify angiogenic signaling via theVEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a3Dmultimodality imaging study. PLoS One,2012,7(9): e45621.
    17. Cerenius Y, Stahl K, Svensson LA, et al. The crystallography beamline I711at MAX II.J Synchrotron Radiat,2000,7(Pt4):203-208.
    18. Razavi S, Ahmadi N, Kazemi M, et al. Efficient transdifferentiation of humanadipose-derived stem cells into Schwann-like cells: A promise for treatment ofdemyelinating diseases. Adv Biomed Res,2012,1:12.
    19. Chieregato K, Castegnaro S, Madeo D, et al. Epidermal growth factor, basic fibroblastgrowth factor and platelet-derived growth factor-bb can substitute for fetal bovineserum and compete with human platelet-rich plasma in the ex vivo expansion ofmesenchymal stromal cells derived from adipose tissue. Cytotherapy,2011,13(8):933-943.
    20. Maddox JR, Liao X, Li F, et al. Effects of Culturing on the Stability of the PutativeMurine Adipose Derived Stem Cells Markers. Open Stem Cell J,2009,1:54-61.
    21. Gabbay JS, Heller JB, Mitchell SA, et al. Osteogenic potentiation of humanadipose-derived stem cells in a3-dimensional matrix. Ann Plast Surg,2006,57(1):89-93.
    22. Braun J, Kurtz A, Barutcu N, et al. Concerted regulation of CD34and CD105accompanies mesenchymal stromal cell derivation from human adventitial stromalcell. Stem Cells Dev,2013,22(5):815-827.
    23. Wang WZ, Fang XH, Williams SJ, et al. The effect of lipoaspirates cryopreservationon adipose-derived stem cells. Aesthet Surg J,2013,33(7):1046-1055.
    24. Kim EK, Lim S, Park JM, et al. Human mesenchymal stem cell differentiation to theosteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J CellPhysiol,2012,227(4):1680-1687.
    25. Sakai T, Xu Y. Stem cells decreased neuronal cell death after hypoxic stress in primaryfetal rat neurons in vitro. Cell Transplant,2012,21(1):355-364.
    26. Dzeja PP, Chung S, Faustino RS, et al. Developmental enhancement of adenylatekinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation.PLoS One,2011,6(4): e19300.
    27. Krock B, Skuli N, Simon MC. The tumor suppressor LKB1emerges as a critical factorin hematopoietic stem cell biology. Cell Metab,2011,13(1):8-10.
    28. Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. ProgNeurobiol,2011,93(2):182-203.
    29. Nakano I, Kornblum HI. Methods for analysis of brain tumor stem cell and neuralstem cell self-renewal. Methods Mol Biol,2009,568:37-56.
    30. Zang Y, Yu LF, Nan FJ, et al. AMP-activated protein kinase is involved in neural stemcell growth suppression and cell cycle arrest by5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D. J Biol Chem,2009,284(10):6175-6184.
    31. Peymani M, Ghoochani A, Ghaedi K, et al. Dual effects of peroxisome proliferator-activated receptor gamma on embryonic stem cell self-renewal in presence andabsence of leukemia inhibitory factor. Eur J Cell Biol,2013,92(4-5):160-168.
    32. Wada K, Nakajima A, Katayama K, et al. Peroxisome proliferator-activated receptorgamma-mediated regulation of neural stem cell proliferation and differentiation. JBiol Chem,2006,281(18):12673-12681.
    33. Biemann R, Fischer B, Bluher M, et al. Tributyltin affects adipogenic cell fatecommitment in mesenchymal stem cells by a PPARgamma independent mechanism.Chem Biol Interact,2014,214C:1-9.
    34. Vanella L, Sodhi K, Kim DH, et al. Increased heme-oxygenase1expression inmesenchymal stem cell-derived adipocytes decreases differentiation and lipidaccumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell ResTher,2013,4(2):28.
    35. Kakinuma S, Ohta H, Kamiya A, et al. Analyses of cell surface molecules on hepaticstem/progenitor cells in mouse fetal liver. J Hepatol,2009,51(1):127-138.
    36. Jelnes P, Santoni-Rugiu E, Rasmussen M, et al. Remarkable heterogeneity displayedby oval cells in rat and mouse models of stem cell-mediated liver regeneration.Hepatology,2007,45(6):1462-1470.
    37. Ren Y, Wu H, Zhou X, et al. Isolation, expansion, and differentiation of goatadipose-derived stem cells. Res Vet Sci,2012,93(1):404-411.
    38. Bunnell BA, Flaat M, Gagliardi C, et al. Adipose-derived stem cells: isolation,expansion and differentiation. Methods,2008,45(2):115-120.
    1.贺正华,白念岳,郭曲练.人白细胞介素10基因慢病毒载体的构建和重组.中国普通外科杂志,2008,17(8):763-797.
    2. Chandrakasan S, Malik P. Gene Therapy for Hemoglobinopathies: The State of theField and the Future. Hematol Oncol Clin North Am,2014,28(2):199-216.
    3. Zhu Z, Yu A, Hou M, et al. Effects of Sox9gene therapy on the healing of bone-tendonjunction: An experimental study. Indian J Orthop,2014,48(1):88-95.
    4. Carr D, Wallace JM, Aitken RP, et al. Uteroplacental adenovirus VEGF gene therapyincreases fetal growth velocity in growth-restricted sheep pregnancies. Hum GeneTher,2014,38(2):193-203.
    5. Ibragimova I, Cairns P. Assays for hypermethylation of the BRCA1gene promoter intumor cells to predict sensitivity to PARP-inhibitor therapy. Methods Mol Biol,2011,780:277-291.
    6. Buckley SM, Rahim AA, Chan JK, et al. Recent advances in fetal gene therapy. TherDeliv,2011,2(4):461-469.
    7. Befekadu E, Onofrei C, Colice GL. Tiotropium in asthma: a systematic review. JAsthma Allergy,2014,7:11-21.
    8. Herbert C, Shadie AM, Bunting MM, et al. Anti-Inflammatory and Anti-RemodellingEffects of ISU201, a Modified Form of the Extracellular Domain of Human BST2, inExperimental Models of Asthma: Association with Inhibition of Histone Acetylation.PLoS One,2014,9(3): e90436.
    9. Lee BJ, Jeung YJ, Lee JY, et al. Potential masking of airway eosinophilicinflammation by combination therapy in asthma. Allergy Asthma Immunol Res,2014,6(2):175-178.
    10. Puthalapattu S, Ioachimescu OC. Asthma and Obstructive Sleep Apnea: Clinical andPathogenic Interactions. J Investig Med,2014,20(2):99-116.
    11. Hanania NA, Wenzel S, Rosen K, et al. Exploring the effects of omalizumab in allergicasthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med,2013,187(8):804-811.
    12. Seo JW, Cho SC, Park SJ, et al.1'-Acetoxychavicol acetate isolated from Alpiniagalanga ameliorates ovalbumin-induced asthma in mice. PLoS One,2013,8(2):e56447.
    13. Asosingh K, Cheng G, Xu W, et al. Nascent endothelium initiates Th2polarization ofasthma. J Immunol,2013,190(7):3458-3465.
    14. Shin IS, Lee MY, Jeon WY, et al. EBM84attenuates airway inflammation and mucushypersecretion in an ovalbumin-induced murine model of asthma. Int J Mol Med,2013,31(4):982-988.
    15. Donohue KM, Miller RL, Perzanowski MS, et al. Prenatal and postnatal bisphenol Aexposure and asthma development among inner-city children. J Allergy Clin Immunol,2013,131(3):736-742.
    16. Shin IS, Shin NR, Jeon CM, et al. Inhibitory effects of Pycnogenol(R)(Frenchmaritime pine bark extract) on airway inflammation in ovalbumin-induced allergicasthma. Food Chem Toxicol,2013,62:681-686.
    17. Michaeloudes C, Chang PJ, Petrou M, et al. Transforming growth factor-beta andnuclear factor E2-related factor2regulate antioxidant responses in airway smoothmuscle cells: role in asthma. Am J Respir Crit Care Med,2011,184(8):894-903.
    18. Abdureyim S, Amat N, Umar A, et al. Anti-inflammatory, immunomodulatory, andheme oxygenase-1inhibitory activities of ravan napas, a formulation of uighurtraditional medicine, in a rat model of allergic asthma. Evid Based ComplementAlternat Med,2011,18(5):77-86.
    19. Lee NH, Lee MY, Lee JA, et al. Anti-asthmatic effect of Sanguisorba officinalis L. andpotential role of heme oxygenase-1in an ovalbumin-induced murine asthma model.Int J Mol Med,2010,26(2):201-208.
    20. Kim SH, Choi GS, Ye YM, et al. Toluene diisocyanate (TDI) regulates haemoxygenase-1/ferritin expression: implications for toluene diisocyanate-induced asthma.Clin Exp Immunol,2010,160(3):489-497.
    21. Kitada O, Kodama T, Kuribayashi K, et al. Heme oxygenase-1(HO-1) proteininduction in a mouse model of asthma. Clin Exp Allergy,2001,31(9):1470-1477.
    22. Shaoqing Y, Ruxin Z, Yingjian C, et al. A meta-analysis of the association of exhaledcarbon monoxide on asthma and allergic rhinitis. Clin Rev Allergy Immunol,2011,41(1):67-75.
    23. Xu X, Zhong LL, Jiao SM, et al. Effect of budesonide on the heme oxygenase-1expression in lung tissues of rats with asthma. Zhongguo Dang Dai Er Ke Za Zhi,2008,10(3):376-380.
    24. Lee MY, Seo CS, Ha H, et al. Protective effects of Ulmus davidiana var. japonicaagainst OVA-induced murine asthma model via upregulation of heme oxygenase-1. JEthnopharmacol,2010,130(1):61-69.
    25. Wang X, Leiendecker-Foster C, Acton RT, et al. Heme carrier protein1(HCP1)genetic variants in the Hemochromatosis and Iron Overload Screening (HEIRS) Studyparticipants. Blood Cells Mol Dis,2009,42(2):150-154.
    26. Mantzouratou A, Mania A, Apergi M, et al. Meiotic and mitotic behaviour of aring/deleted chromosome22in human embryos determined by preimplantation geneticdiagnosis for a maternal carrier. Mol Cytogenet,2009,2:3.
    27. Meulenkamp TM, Tibben A, Mollema ED, et al. Predictive genetic testing forcardiovascular diseases: impact on carrier children. Am J Med Genet A,2008,146A(24):3136-3146.
    28. Archibald AD, Massie J, Smith MJ, et al. Population-based genetic carrier screeningfor cystic fibrosis in Victoria. Med J Aust,2014,200(4):205-206.
    29. Essop FB, Krause A. Diagnostic, carrier and prenatal genetic testing for fragile Xsyndrome and other FMR-1-related disorders in Johannesburg, South Africa: a20-yearreview. S Afr Med J,2013,103(12Suppl1):994-998.
    30. Nogrady N, Kiraly M, Borbas K, et al. Antimicrobial resistance and geneticcharacteristics of integron-carrier shigellae isolated in Hungary (1998-2008). J MedMicrobiol,2013,62(Pt10):1545-1551.
    31. Miao L, Wang F, Xie ZH, et al. Act of Arc siRNA via lentivirus on the memoryconsolidation of amygdala-kindled rats. Zhonghua Yi Xue Za Zhi,2013,93(11):860-863.
    32. Synge B. Lentivirus infections in sheep and goats: how big is the burden? Vet J,2013,197(3):521-522.
    33. Niu J, Xing C, Yan C, et al. Lentivirus-mediated CD/TK fusion gene transfectionneural stem cell therapy for C6glioblastoma. Tumour Biol,2013,34(6):3731-3741.
    34. Thomas AM, Shea LD. Polysaccharide-modified scaffolds for controlled lentivirusdelivery in vitro and after spinal cord injury. J Control Release,2013,170(3):421-429.
    1. Arjun R, Ulaganathan M, Shashi KS, et al. Mepacrine alleviates airwayhyperresponsiveness and airway inflammation in a mouse model of asthma. IntImmunopharmacol,2008,8(6):893-899.
    2. Liu T, Laidlaw TM, Katz HR, et al. Prostaglandin E2deficiency causes a phenotype ofaspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl AcadSci U S A,2013,110(42):16987-16992.
    3. Wei L, Cheng C, Jing S,et al. Disparate effects of eplerenone, amlodipine andtelmi-sartan on podocyte injury in aldosterone-infused rats. Nephrol Dial Transplant,2011,26(3):789-799.
    4. Le BK, Ringde′n O. Immunomodulation by mesenchymal stem cells and clinicalexperience. J Intern Med,2007,262(5):509-525.
    5. Brandsma CA, Hylkema MN. Heme oxygenase-1prevents smoke induced B-cellinfiltrates: a role for regulatory T cells? Respir Res,2008,6:9-17.
    6. Barnes PJ. New therapies for asthma: is there any progress? Trends Pharmacol Sci,2010,31(7):335-343.
    7. Pearce N, Ait-Khaled N, Beasley R, et al. Worldwide trends in the prevalence ofasthma symptoms: phase III of the International Study of Asthma and Allergies inChildhood (ISAAC). Thorax,2007,62(9):758-766.
    8. Shin YS, Takeda K, Gelfand EW. Understanding asthma using animal models. AllergyAsthma Immunol Res,2009,1(1):10-18.
    9. Ricciardolo FL, Nijkamp F, De Rose V, et al. The guinea pig as an animal model forasthma. Curr Drug Targets,2008,9(6):452-465.
    10. Choi JP, Kim YM, Choi HI, et al. An important role of tumor necrosis factor receptor-2on natural killer T cells on the development of dsRNA-enhanced Th2cell response toinhaled allergens. Allergy,2014,69(2):186-198.
    11. Fuchs B, Braun A. Improved mouse models of allergy and allergic asthma-chancesbeyond ovalbumin. Curr Drug Targets,2008,9(6):495-502.
    12. Kool M, Soullie T, Van NM, et al. Alum adjuvant boosts adaptive immunity byinducing uric acid and activating inflammatory dendritic cells. J Exp Med,2008,205(4):869-882.
    13. Dai MM, Wu H, Li H, et al. Effects and mechanisms of Geniposide on rats withadjuvant arthritis. Int Immunopharmacol,2014,20(1):46-53.
    14. Deacon RM. Housing, husbandry and handling of rodents for behavioral experiments.Nat Protocol,2006,1(2):936-946.
    15. Conrad ML, Yildirim AO, Sonar SS, et al. Comparison of adjuvant and adjuvant-freemurine experimental asthma models. Clin Exp Allergy,2009,39(8):1246-1254.
    16. Krampera M, Pizzolo G, Aprili G, et al. Mesenchymal stem cells for bone, cartilage,tendon and skeletal muscle repair. Bone,2006,39(4):678-683.
    17. Augello A, Kurth TB, De Bari C. Mesenchymal stem cells: a perspective from in vitrocultures to in vivo migration and niches. Eur Cell Mater,2010,20,121-133.
    18. Phinney DG, Prockop DJ. Concise review: mesenchymal stem multipotent stromalcells: the state of transdifferentiation and modes of tissue repair–current views. StemCells,2007,25(11):2896-2902.
    19. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multi-potentmesenchymal stromal cells. The International Society for Cellular Therapy positionstatement. Cytotherapy,2006,8(4):315-317.
    20. Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells areresistant to oxidative stress via enhanced activation of Akt and increased secretion ofgrowth factors. Stem Cells,2009,27(12):3021-3031.
    21. Cho KS, Park HK, Park HY, et al. IFATS collection: Immunomodulatory effects ofadipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells,2009,27(1):259-265.
    22. Cho KS, Roh HJ. Immunomodulatory effects of adipose-derived stem cells in airwayallergic diseases. Curr Stem Cell Res Ther,2010,5(2):111-115.
    23. Dicker A, Le BK, Astrom G, et al. Functional studies of mesenchymal stem cellsderived from adult human adipose tissue. Exp Cell Res,2005,308(2):283-290.
    24. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adiposetissue-derived adult stem cells: comparison with bone marrow mesen-chymal stemcells. Br J Haematol,2005,129(1):118-129.
    25. Zhu W, Chen J, Cong X, et al. Hypoxia and serum deprivation-induced apoptosis inmesenchymal stem cells. Stem Cells,2005,24(2):416-425.
    26. Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lungand cell culture models. Antioxid Redox Signal,2005,7(1-2):80–91.
    27. Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenalvisceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy inZucker diabetic fatty rats. PLoS One,2014,9(1): e87936.
    28. Xia ZW, Xu LQ, Zhong WW, et al. Heme oxygenase-1attenuates ovalbumin inducedairway inflammation by up-regulation of Foxp3T-regulatory cells, interleukin-10, andmembrane-bound transforming growth factor-β1. Am J Pathol,2007,171(6):1904-1914.
    29. Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic and anti-oxidativeeffects of bone marrow mesenchymal stem cells with transient overexpression of hemeoxygenase-1on myocardial ischemia.Am J Physiol Heart Circ Physiol,2010,298(5):1320-1329.
    30. Vanella L, Sodhi K, Kim DH, et al. Increased heme-oxygenase1expression inmesenchymal stem cell-derived adipocytes decreases differentiation and lipidaccumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell ResTher,2013,4(2):1339-1350.
    31. Kirkby KA, Adin CA. Products of heme oxygenase and their potential therapeuticapplications. Am J Physiol Renal Physiol,2006,290(3):563-571.
    32. Ou-Yang HF, Huang Y, Hu XB, et al. Suppression of allergic airway inflammation in amouse model of asthma by exogenous mesenchymal stem cells. Experimental Biologyand Medicine,2011,236(12):1461-1467.
    33. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment andrepopulation of NOD/SCID mice on CXCR4. Science,1999,283(5403):845–848.
    34. Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stemcells strongly express functionally active CXCR4receptor capable of promotingmigration to bone marrow. Blood,2004,104(9):2643-2645.
    35. Xie J, Wang W, Si JW, et al. Notch signaling regulates CXCR4expression and themigration of mesenchymal stem cells. Cell Immunol,2013,281(1):68-75.
    36. Kitada O, Kodama T, Kuribayashi K, et al. Heme oxygenase-1(HO-1) proteininduction in a mouse model of asthma. Clinical and Experimental Allergy,2001,31(9):1470-1477.
    37. Bai L, Lennon DP, Eaton V, et al. Human bone marrow-derived mesenchymalstemcells induce Th2-polarized immune response and promote endogenous repair in animalmodels of multiple sclerosis. Glia,2009,57(11):1192-1203.
    38. Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-β tosuppress allergic responses in a mouse model of ragweed induced asthma.Proc NatiAcad Sci,2010,107(12):5652-5657.
    39. Goodwin M, Sueblinvong V, Eisenhauer P, et al. Bone marrow derived mesenchymalstromal cells Inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells,2011,29(7):1137-1148.
    40. Cho KS, Park HK, Park HY, et al. IFATS collection: Immunomodulatory effects ofadipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells,2009;27(1):259-265.
    41. Gerhard R, Queisser S, Tatge H, et al. Down-regulation of interleukin-16in humanmast cells HMC-1by Clostridium difficile toxins A and B. Naunyn SchmiedebergsArch Pharmacol,2011,383(3):285-295.
    42. Sheikh SZ, Hegazi RA, Kobayashi T, et al. An anti-inflammatory role for carbonmonoxide and heme oxygenase-1in chronic Th2-mediated murine colitis. J Immunol,2011,186(9):5506-5513.
    43. Keshavan P, Deem TL, Schwemberger SJ, et al. Unconjugated bilirubin inhibitsVCAM-1-mediated transendothelialleukocyte migration. J Immunol,2005,174(6):3709-3718.
    44. Pincheira R, Castro AF, Ozes ON, et al. Type1TNF receptor forms a complex withand uses Jak2and c-Src to selectively engage signaling pathways that regulatetranscription factor activity. J Immunol,2008,181(2):1288-1298.
    45. Keatings VM, O'Connor BJ, Wright LG, et al.Late response to allergen is associatedwith increased concentrations of tumor necrosis factor-alpha and IL-5in inducedsputum. J Allergy Clin Immunol,1997,99(5):693-698.
    46. Babu SK, Puddicombe SM, Arshad HH.Tumor necrosis factor alpha (TNF-)autoregulates its expression and induces adhesion molecule expression in asthma. ClinImmunol,2011,140(1):18-25.
    47. Lee JA, Sung HN, Jeon CH, et al. A carbohydrate fraction, AIP1from Artemisiaiwayomogi suppresses pulmonary eosinophilia and Th2-type cytokine production in anovalbumin-induced allergic asthma. Down-regulation of TNF-expression in the lung.Int Immunopharmacol,2008,8(1):117-125.
    48. Liu N, Chen R, Du H,et al. Expression of IL-10and TNF-alpha in Rats with CerebralInfarction after Transplantation with Mesenchymal Stem Cells. Cell Mol Immunol.2009,6(3):207-213.
    49. Pietila M, Lehtonen S, Tuovinen E, et al. CD200Positive Human Mesenchymal StemCells Suppress TNF-Alpha Secretion from CD200Receptor Positive Macrophage-Like Cells. PLoS One,2012,7(2):1-12.
    50. Miettinen JA, Pietila M, Salonen RJ. Tumor necrosis factor alpha promotes theexpression of immunosuppressive proteins and enhances the cell growth in a humanbone marrow-derived stem cell culture. Exp Cell Res,2011,317(6):791-801.
    51. Pae HO, Oh GS, Choi BM, et al. Carbon monoxide produced by heme oxygenase-1suppresses T cell proliferation via inhibition of IL-2production. J Immunol,2004,172(8):4744-4751.
    52. Groux H, Cottrez F. The complex role of interleukin-10in autoimmunity. JAutoimmun,2003;20(4):281-285.
    53. Liu WH, Liu JJ, Wu J. Novel Mechanism of Inhibition of Dendritic Cells Maturationby Mesenchymal Stem Cells via Interleukin-10and the JAK1/STAT3SignalingPathway. PLoS One,2013;8(1):1-13.
    54. Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppressimmune responses? Int Immunol,2009;21(10):1105-1111.
    55. Bansal S, Biswas G, Avadhani NG. Mitochondria-targeted heme oxygenase-1inducesoxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts andin chronic alcohol hepatotoxicity. Redox Biol,2014,2:273-283.
    56. Xia ZW, Xu LQ, Zhong WW, et al. Heme oxygenase-1attenuates ovalbumin inducedairway inflammation by up-regulation of foxp3T-regulatory cells, interleukin-10, andmembrane-bound transforming growth factor-1. Am J Pathol,2007;171(6):1904-
    1914.
    57. Han Y, Lan N, Pang C, et al. Bone marrow-derived mesenchymal stem cells enhancecryopreserved trachea allograft epithelium regeneration and vascular endothelialgrowth factor expression. Transplantation,2011;92(6):620–626.
    58. Shimizu T, Shimizu S. Azithromycin inhibits mucus hypersecretion from airwayepithelial cells. Mediators Inflamm,2012;1-6.
    1. He XY, Simpson JL, Wang F. Inflammatory phenotypes in stable and acute childhoodasthma. Paediatr Respir Rev,2011,12(3):165-169.
    2. Urbano FL.Review of the NAEPP2007Expert Panel Report (EPR-3) on asthmadiagnosis and treatment guidelines. J Manag Care Pharm,2008,14(1):41-49.
    3. Stemmy EJ, Benton AS, Lerner J, et al. Extracellular cyclophilin levels associate withparameters of asthma in phenotypic clusters. J Asthma,2011,48(10):986-993.
    4. Jensen ME, Wood LG, Gibson PG. Obesity and childhood asthma-mechanisms andmanifestations. Curr Opin Allergy Clin Immunol,2012,12(2):186-192.
    5. Busse WW, Lemanske RF. Asthma. N Engl J Med,2001,344:350-362.
    6. Thompson EE, Myers RA, Du G, et al. Maternal microchimerism protects against thedevelopment of asthma. J Allergy Clin Immunol,2013,132(1):39-44.
    7. Weiss DJ, Kolls JK, Ortiz LA, et al.Stem cells and cell therapies in lung biology andlung diseases. Proc Am Thorac Soc,2008,5(5):637–667.
    8. Friedenstein AJ, Gorskaja JF, Kulagina NN,Fibroblast precursors in normal andirradiated mouse hematopoietic organs.Exp Hematol,1976,4(5):267-274.
    9. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerativemedicine. J Cell Physiol,2007,213(2):341-347.
    10. Takashima Y,Era T,Nakao K,et al. Neuroepithelial cells supply an initial transient waveof MSC differentiation. Cell,2007,129(7):1377-1388.
    11. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotentmesenchymal stromal cells. The International Society for Cellular Therapy positionstatement. Cytotherapy,2006,8(4):315-317.
    12. Devine SM, Cobbs C, J ennings M, et al. Mesenchymal stem cells distribute to a widerange of tissues following systemic infusion into nonhuman primates. Blood,2003,101(8):2999-3001.
    13. Ennis WJ, Sui A, Bartholomew A. Stem Cells and Healing: Impact on Inflammation.Adv Wound Care (New Rochelle),2013,2(7):369-378.
    14. Glennie S, Soeiro I, Dyson PJ, et al.Bone marrow mesenchymal stem cells inducedivision arrest anergy of activated T cells. Blood,2005,105(7):2821-2827.
    15. Giuliani M, Fleury M, Vernochet A,et al. Long-lasting inhibitory effects of fetal livermesenchymal stem cells on T-lymphocyte proliferation. PloS One,2011,6(5):e19988.
    16. Shi M, Liu ZW, Wang FS.Immunomodulatory properties and therapeutic applicationof mesenchymal stem cells. Clin Exp Immunol,2011,164(1):1-8.
    17. Meirelles Lda S, Fontes AM, Covas DT, et al.Mechanisms involved in the therapeuticproperties of mesenchymal stem cells. Cytokine Growth Factor Rev,2009,20(5-6),419-427.
    18. Groh ME, Maitra B, Szekely E,et al.Human mesenchymal stem cells requiremonocytemediated activation to suppress alloreactive T cells. Exp Hematol,2005,33(8):928-934.
    19. Tse WT, Pendleton JD, Beyer WM,et al. Suppression of allogeneic T-cell proliferationby human marrow stromal cells: implications in transplantation. Transplantation,2003,75(3):389-397.
    20. Berardis S, Lombard C, Evraerts J, et al. Gene expression profiling and secretomeanalysis differentiate adult-derived human liver stem/progenitor cells and humanhepatic stellate cells. PLoS One,2014,9(1): e86137.
    21. Liotta F, Angeli R, Cosmi L, et al. TLR3and TLR4are expressed by human bonemarrow-derived mesenchymal stem cells and can inhibit their T-cell modulatoryactivity by impairing notch signalling. Stem Cells,2008,26(1):279-289.
    22. Augello A,Tasso R,Negrini SM,et al. Bone marrow mesenchymal progenitor cellsinhibit lymphocyte proliferation by activation of the programmed death1pathway.Eur J Immunol,2005,35(5):1482-1490.
    23. Asari S, Itakura S, Ferreri K, et al. Mesenchymal stem cells suppress B-cell terminaldifferentiation. Exp Hematol,2009,37(5):604-615.
    24. Corcione A, Benvenuto F, Ferretti E, et al.Human mesenchymal stem cells modulateB-cell functions. Blood,2006,107(1):367-372.
    25. Bernardo M, Locatelli F, Fibbe W, et al. Mesenchymal stromal cells. Ann N Y AcadSci,2009,1176(1):101-117.
    26. Krampera M,Cosmi L,Angeli R,et al.Role for interferon-gamma in theimmunomodulatory activity of human bone marrow mesenchymal stem cells. StemCells,2006,24(2):386-398.
    27. Deng W, Han Q, Liao L,et al.Effects of allogeneic bone marrow-derived mesenchymalstem cells on T and B lymphocytes from BXSB mice.DNA Cell Biol,2005,24(7):458-63.
    28. Bach M, Schimmelpfennig C, Stolzing A. Influence of murine mesenchymal stem cellson proliferation, phenotype, vitality, and cytotoxicity of murine cytokine-inducedkiller cells in coculture. PLoS One,2014,9(2): e88115.
    29. Carrion F,Nova E,Ruiz C,et al.Autologous mesenchymal stem cell treatment increasedT regulatory cells with no effect on disease activity in two systemic lupuserythematosus patients. Lupus,2010,19(3):317-322.
    30. Ghannam S, Pène J, Torcy-Moquet G,et al.Mesenchymal stem cells inhibit humanTh17cell differentiation and function and induce a T regulatory cell phenotype. JImmunol,2010,185(1):302-312.
    31. Tipnis S, Viswanathan C, Majumdar AS. Immunosuppressive properties of humanumbilical cord-derived mesenchymal stem cells: role of B7-H1and IDO. ImmunolCell Biol,2010,88(8):795-806.
    32. English K, Ryan JM, Tobin L,et al.Cell contact, prostaglandin E(2) and transforminggrowth factor beta1play non-redundant roles in human mesenchymal stem cellinduction of CD4+CD25(High) forkhead box P3+regulatory T cells. Clin ExpImmunol,2009,156(1):149-60.
    33. Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva arecapable of immunomodulatory functions and ameliorate inflammation-related tissuedestruction in experimental colitis. J Immunol,2009,183(12):7787-7798.
    34. Sioud M, Mobergslien A, Boudabous A, et al.Evidence for the involvement ofgalectin-3in mesenchymal stem cell suppression of allogeneic T-cell proliferation.Scand J Immunol,2010,71(4):267-274.
    35. Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD micefrom diabetes by inducing regulatory T cells.Diabetologia,2009,52(7):1391-1399.
    36. Gonzalez-Rey E,Gonzalez MA,Varela N,et al.Human adiposederived mesenchymalstem cells reduce inflammatory and T cell responses and induce regulatory T cells invitro in rheumatoid arthritis.Ann Rheum Dis,2010,69(1):241-248.
    37. Najar M, Rouas R, Raicevic G, et al.Mesenchymal stromal cells promote or suppressthe proliferation of T lymphocytes from cord blood and peripheral blood: theimportance of low cell ratio and role of interleukin-6. Cytotherapy,2009,11(5):570-583.
    38. Crop MJ, Baan CC, Korevaar SS, et al.Human adipose tissue-derived mesenchymalstem cells induce explosive T-cell proliferation. Stem Cells Dev,2010,19(12):1843-1853.
    39. Tuettenberg A,Becker C,Correll A,et al. Immune regulation by dendritic cells and Tcells-basic science, diagnostic, and clinical application. Clin Lab,2011,57(1-2):1-12.
    40. Nauta AJ,Kruisselbrink AB,Lurvink E,et al. Mesenchymal stem cells inhibitgeneration and function of both CD34+-derived and monocytederived dendritic cells. JImmunol,2006,177(4):2080-2087.
    41. Ramasamy R, Fazekasova H, Lam EW,et al. Mesenchymal stem cells inhibit dendriticcell differentiation and function by preventing entry into the cell cycle. Transplantation,2007,83(1):71-76.
    42. Magatti M, De Munari S, Vertua E, et al.Amniotic mesenchymal tissue cells inhibitdendritic cell differentiation of peripheral blood and amnion resident monocytes. CellTransplantation,2009,18(8):899-914.
    43. Spaggiari GM, Abdelrazik H, Becchetti F,et al. MSCs inhibit monocyte-derived DCmaturation and function by selectively interfering with the generation of immatureDCs: central role of MSC-derived prostaglandin E2.Blood,2009,113(26):6576-6583.
    44. Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue derivedmesenchymal stem cells are more potent suppressors of dendritic cells differentiationcompared to bone marrow-derived mesenchymal stem cells. Immunol Lett,2009,126(1-2):37-42.
    45. Shi M, Liu ZW, Wang FS, et al.Immunomodulatory properties and therapeuticapplication of mesenchymal stem cells. Clin Exp Immunol,2011,164(1):1-8.
    46. Starck L, Popp K, Pircher H, et al. Immunotherapy with TCR-redirected T cells:comparison of TCR-transduced and TCR-engineered hematopoietic stem cell-derivedT cells. J Immunol,2014,192(1):206-213.
    47. Spaggiari GM,Capobianco A, Abdelrazic H, et al. Mesenchymal stem cells inhibitnatural killer-cell proliferation, cytotoxicity, and cytokine production: role ofindoleamine2,3-dioxygenase and prostaglandin E2. Blood,2008,111(3):1327-1333.
    48. Engela AU, Baan CC, Litjens NH, et al. Mesenchymal stem cells control alloreactiveCD8(+) CD28(-) T cells. Clin Exp Immunol,2013,174(3):449-458.
    49. Ryan JM, Barry F, Murphy JM, et al.Interferon-gamma does not break, but promotesthe immunosuppressive capacity of adult humanmesenchymal stemcells. Clin ExpImmunol,2007,149(2):353-363.
    50. Spaggiari GM, Capobianco A, Becchetti S, et al.Mesenchymal stemcell natural killercell interactions: evidence that activated NK cells are capable of killing MSCs,whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood,2006,107(4):1484-1490.
    51. Prigione I, Benvenuto F, Bocca P, et al.Reciprocal interactions between humanmesenchymal stem cells and gammadelta T cells or invariant natural killer T cells.Stem Cells,2009,27(3):693-702.
    52. Deuse T, Stubbendorff M, Tang-Quan K.Immunogenicity and immunomodulatoryproperties of umbilical cord lining mesenchymal stem cells. Cell transplantation,2011,20(5):655-667.
    53. Ennis WJ, Sui A, Bartholomew A. Stem Cells and Healing: Impact on Inflammation.Adv Wound Care (New Rochelle),2013,2(7):369-378.
    54. DelaRosa O, Lombardo E, Beraza A, et al.Requirement of IFNgamma-mediatedindoleamine2,3-dioxygenase expression in the modulation of lymphocyteproliferation by human adiposederived stem cells. Tissue Engineering,2009,15(10):2795-2806.
    55. Tse WT,Pendleton JD,Beyer WM, et al. Suppression of allogeneic T-cell proliferationby human marrow stromal cells: implications in transplantation. Transplantation,2003,75(3):389-397.
    56. Yao C, Sakata D, Esaki Y, et al. Prostaglandin E2-EP4signaling promotes immuneinflammation through Th1cell differentiation and Th17cell expansion. Nat Med,2009,15(6):633-640.
    57. Windmolders S, De Boeck A, Koninckx R, et al. Mesenchymal stem cell secretedplatelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrialappendage Stem Cells. J Mol Cell Cardiol,2014,66:177-188.
    58. Eruslanov E, Kaliberov S, Daurkin I, et al. Altered expression of15-hydro-xyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: amechanism for immune evasion in cancer. J Immunol,2009,182(12):7548-7557.
    59. Maggini J, Mirkin G, Bognanni I, et al. Mouse bone marrow–derived mesenchymalstromal cells turn activated macrophages into a regulatory-like profile. PLoS One,2010,5(2):e9252.
    60. Park HK, Cho KS, Park HY, et al. Adipose-derived stromal cells inhibit allergic airwayinflammation in mice. Stem Cells Dev,2010,19(11):1811-1818.
    61. Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-β tosuppress allergic responses in a mouse model of ragweed induced Asthma.Proc NatlAcad Sci,2010,107(12):5652-5657.
    62. Bonfield TL, Koloze M, Lennon DP,et al. Human mesenchymal stem cells suppresschronic airway inflammation in the murine ovalbumin asthma model. Am J PhysiolLung Cell Mol Physiol,2010,299(6):L760-770.
    63. Goodwin M, Sueblinvong V, Eisenhauer P, et al. Bone marrow derived mesenchymalstromal cells Inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells,2011,29(7):1137-1148.
    64. Lee SH, Jang AS, Kwon JH,et al. Mesenchymal stem cell transfer suppresses airwayremodeling in a toluene diisocyanate-induced murine asthma model. Allergy AsthmaImmunol Res,2011,3(3):205-211.
    65. Firinci F, Karaman M, Baran Y, et al. Mesenchymal stem cells ameliorate thehistopathological changes in a murine model of chronic asthma. IntImmuno-pharmacol,2011,11(8):1120-1126.
    66. Ou-Yang HF, Huang Y, Hu XB, et al. Suppression of allergic airway inflammation in amouse model of asthma by exogenous mesenchymal stem cells. Exp Biol Med,2011,236(12):1461-1467.
    67. Guo M, Sun Z, Sun QY, et al. A modified haploidentical nonmyeloablativetransplantation without T cell depletion for high-risk acute leukemia: successfulengraftment and mild GVHD. Biol Blood Marrow Transplant,2009,15(8):930-937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700