氟碳化合物封端的聚碳酸酯聚氨酯的合成及生物稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚醚聚氨酯材料具有优良的力学性能和生物相容性,在植入装置和人工器官中得到了广泛的应用。但在长期植入体内的过程中存在降解现象,限制了这类材料在长期植入领域的应用。体内炎性反应细胞所释放的酶、自由基、酸性物质等构成了复杂的破坏植入材料的化学体系。目前的研究发现聚碳酸酯聚氨酯具有较好的耐体内氧化性,但仍存在水解的问题。含氟高分子材料,如聚四氟乙烯,具有优良的生物稳定性和生物相容性,但力学性能较差。因此将含氟的化合物引入聚氨酯分子链中,综合两类材料的优点,将可能得到生物稳定性、生物相容性、和力学性能均优良的新型高分子材料。本论文以氟碳化合物封端来提高聚碳酸酯聚氨酯的生物稳定性。研究了脂肪族聚碳酸酯二醇和聚碳酸酯聚氨酯的合成工艺、反应机理及性能;以此为原料合成出一种新型氟碳化合物封端的聚碳酸酯聚氨酯材料,全面研究了其合成工艺、表面和本体结构、以及生物学性能和力学性能。
     在合成脂肪族聚碳酸酯二醇的过程中发现有两个因素影响反应原料(碳酸二乙酯和脂肪族二醇)的配比。一是“环状碳酸酯—脱羧”副反应消耗反应原料,其反应机理为:聚碳酸酯齐聚物的端羟基通过与邻近的碳酸酯键发生分子内的酯交换反应生成环状碳酸酯,环状碳酸酯脱羧后生成环醚(如四氢呋喃)。另一个因素是碳酸二乙酯本身随小分子产物乙醇蒸馏出来,约有10%的损失。为了合成出具有设计分子量的聚碳酸酯二醇,在配方设计时必须考虑副反应和蒸馏过程对原料的消耗,因此副反应机理的研究对脂肪族聚碳酸酯二醇的配方设计有指导意义。研究还表明以1,4-丁二醇、1,5-戊二醇、1,6-己二醇为原料的均聚合的聚碳酸酯二醇为结晶性化合物;以1,6-己二醇和1,5-戊二醇的混合二醇(摩尔比3:2)为原料的共聚合的聚碳酸酯二醇(PHPC)为一种无定形的液态低聚物。
     制得了具有优良回弹性的聚碳酸酯聚氨酯材料,其软段为共聚的聚碳酸酯
    
     四川大学博士学位论文
    二醇。以均聚的聚碳酸酯二醇和以共聚的聚碳酸酯二醇为软段的聚氨酯材料都
    具有软、硬段“微相分离”的结构,两相均为非晶态。两类聚氨酯材料都有优
    良的拉伸强度N0~60MPa)o
     以软段为共聚结构的聚碳酸酯聚氨酯为本体材料,以2,2,3,3,4,4,
    5,5,6,6,7,7,8,8,8-十五氟-l-辛醇(PDFOL)作封端剂,制备出了具
    有良好表面特性的新型氟碳化合物封端的聚碳酸酯聚氨酯材料(PCU-1058F),
    其表面氟含量为本体含量的 90~100倍,材料从表面至本体形成了三层结构:
    第一层(约0 A~50 A深度)为氟碳端基富集层,第H层(约50 A~100 A)
    为硬段富集层,第三层(ol00A)为本体材料。我们将这种独特的结构称为“三
    明治结构”。PCU上 材料保留了聚碳酸酯聚氨酯本身优良的力学性能。
     从表面形貌、分子量变化和表面化学结构的变化三个方面研究了材料的体
    外生物稳定性。采用玻璃棉-HZO。们。体系和磷酸缓冲液oBS,0.IM,pH习.4)
    分别模拟体内氧化降解和酸水解环境。老化 100天后聚醚聚氨酯出现严重氧化
    降解裂纹,聚碳酸酯聚氨酯(PCU)以及PCU-1058F在氧化和水解条件下均未
    出现降解裂纹。PCU-1058F在氧化和水解条件下,数均分子量分别下降了*%
    和4%:而同样条件下,肚U分别下降了36%和29%。XP S分析表明**U在氧
    化条件下材料表面的二-O基团含量提高了一倍(由于氧化人 而PCU刁 表
    面昼O基团含量基本不变。说明材料表面由于具有特殊的“三明治结构”,大
    大提高了材料的生物稳定性。本文的研究为生物稳定性聚氨酯的制备开辟了一
    条新的途径。
     所有的聚碳酸酯聚氨酯以及氟碳化合物封端的聚碳酸酯聚氨酯材料均通过
    了溶血试验。血小板粘附试验和动态凝血时间试验表明PCU-1058F由于氟碳端
    基的富集提高了材料的血液相容性。
Polyurethanes are one of the most important thermoplastic elastomers and have been widely used in medical-device manufacturing as well as in other applications. However, their long-term performances in biological environment are not acceptable to date. Particularly, they are known to degrade in vivo by hostile substances (enzymes, super oxide anion, hydroxyl radical, H2O2 and acids, etc.) released by macrophages and foreign body giant cells during inflammatory response stimulated by the foreign materials. In addition, fluoropolymers, such as polytetrafluoroethylene, have good chemical stability but poor mechanical properties. So, introducing fluorinated chains into the backbones of polyurethanes maybe will produce novel polyurethanes having good mechanical properties, acceptable biocompatibility and long-term biostability. In this dissertation, a fluorinated alcohol, 2,2, 3, 3,4,4, 5, 5,6, 6, 7, 7, 8, 8, 8-pentadecafluoro-l-octanol
    (PDFOL) was used as
    an end-capping reagent to polycarborate urethanes during
    synthesis these polyurethanes through bulk polymerization. And its hemocompatibility and biostability were also investigated in this thesis.
    As the starting materials for polycarbonate urethanes and fluorocarbon end-capped polycarbonate urethanes, a series of aliphatic polycarbonate diols were synthesized by carbonate interchange reaction of aliphatic diols with diethyl carbonate (DEC). Gas Chromatogram Analysis revealed that there were about 2.54% (by weight) tetrahydrofuran and very lillte (0.154%, by area) tetrahydropyran in the distillations of 1,4-butanediol/DEC and 1,5-pentanediol/DEC reaction systems, respectively. A "cycloalkylene carbonate-decarboxylation" mechanism was proposed for interpretation the formation of the side products. X-ray diffraction and DSC demonstrated that homopolycarbonate diols from 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were semicrystalline polymers while copolycarbonate diol from 1,6-hexanediol and 1,5-pentanediols (3:2, mole ratio), PHPC, was an amorphous polymer. It was a pale-yellow liquid at room temperature.
    Polycarbonate urethanes (PCU) were synthesized from aliphatic polycarbonate diols as soft segments and MDI/BDO as hard segments. IR spectra, DSC analysis and X-ray diffraction revealed that all polycarbonate urethanes had microphase separation structures and the two phases in bulk polymers were amorphous. The degree of
    
    
    
    
    microphase separation increased with the increasing of molecular weights of the soft segments. All polycarbonate urethanes had high tensile strength (30-60MPa) and moderate elongation at break (300-450%). Particularly, the polycarbonate urethane from copolycarbonatediol, PHPC, exhibited improved flexibility and elastic recovery as compared to those from homopolycarbonatediols.
    PDFOL end-capped polycarbonate urethanes (PCU-1058F) were synthesized from PHPC as soft segment and MDI/BDO as hard segment. About 2% w/w PDFOL in the total reactants generated a polymer with nonwettable surface. Bulk elemental analysis and X-ray photoelectron spectrum (XPS) showed that the atom percents of fluorine at outermost surfaces were as much as 90 - 100 times of those in the bulk. Because of the high surface activity of fluorocarbon tails, PCU-1058F formed three different layers from outermost surfaces into the bulk materials, that is, firstly fiuorocarbon-dominated (about 0A-50A), then hard-segments dominated (about 50A-100 A) and finally the bulk-dominated (about >100 A), which were called "Sandwich Structure".
    The in vitro biostability of polycarbonate urethanes and fluorocarbon-terminated polycarbonate urethanes were test by Zhao's "Glass wool-H2O2/CoCl2" test system and PBS (0.1M, PH=3.4) test system. After 100 days in both tests, no stress cracks were observed on both materials. GPC analysis demonstrated that fluorocarbon-terminated polyurethane exhibited slower molecular weight decrease than fluorocarbon non-terminated ones. In the case of "Glass wool-H2O2/CoCl2" test, the content of C-O sharply increased as for polycarbonate ureth
引文
http://www.sigma-aldrich.com/sacatalog.nsf/ProductLookup/Aldrich25755?OpenDocument,Sigma-Aldrich Com., Product Information.
    Medtronic Corp., "Product Performance Report", March 2000.
    Ethicon, Inc., Sommerville, N. J., in: Technical Production Information. 1975.
    山西化工研究所编,聚氨酯弹性体手册,P.115,化学工业出版社,2001。
    顾汉卿,徐国凤,生物医学工程学丛书2:生物材料学,天津科技翻译出版公司,1993。
    D.F.威廉姆斯 主编,朱鹤孙 等译,医用与口腔材料,材料科学与技术丛书(第14卷),PP.129,科学出版社,1999。
    晨光化工厂编,“聚碳酸酯”,p.4,燃料化学工业出版社,1973。
    高家武,主编,高分子材料近代测试技术,北京航空航天大学出版社,1994。
    计剑,邱永兴,俞小杰,封麟先,“抗凝血聚氨酯材料的研究进展”,功能高分子学报,8(2):225-235(1995).
    王福坤,“医用弹性体”,世界橡胶工业,26(5):40-45,37(1999)
    程能林,胡声闻编,溶剂手册,下册,化学工业出版社。
    陈立班,黄斌,“脂肪族聚碳酸酯多元醇的制备”,专利公开号CN 1,060,299A,1992.
    船越真二,河合健二,“具有末端羟基的聚碳酸酯的制法”,专利公开号CN 1,145,078A,1997.
    陈同蕙,许美萱,管云林,周邦基,“聚碳酸脂多元醇的研究”,化学工业与工程,10(1):42-45(1993).
    陈同蕙,孙仁慧,“脂肪族聚碳酸酯多元醇的研究进展”,合成橡胶工业,20(2):121~123(1997).
    刘洪皋,刘家祺,李俊台,“UNIFAC模型在草酸二乙酯合成体系中的应用”,高校化学工程学报,12(2):113-117。
    
    
    马敏生,王庚超,张志平,等,“端羟基聚丁二烯聚氨酯弹性体的结晶行为”,合成橡胶工业,16(4):209-212(1993)。
    周雪鸿,郭学亮,朱凤珍,李德和,“聚丁二烯型热塑性聚氨酯弹性体的结构与形态”,合成橡胶工业,4(1):37-41(1991)。
    杲云,张志平,应圣康,等,“硬段含量对聚酯型聚氨酯弹性体形态与性能的影响”,合成橡胶工业,18(1):19-22(1995)。
    杲云,张志平,应圣康,等,“聚酯相对分子量对聚酯型聚氨酯弹性体形态与性能的影响”,合成橡胶工业,19(4):225-228(1996)。
    林思聪,蛋白质的天然构象与高分子生物材料的生物相容性,高分子通报,1988,No.1:1-10.
    Aida, T., Ishikawa, M., Inoue, S., "Alternating Copolymerization of Carbon Dioxide and Epoxide Catalyzed by the Aluminum Porphyrin-quaternary Organic Salt or -Triphenylphosphine System.Synthesis of Polycarbonate with Well-controlled Molecular Weight", Macromolecule, 19(1): 8-12(1986).
    Allegrezza Jr, A. E., Seymour, R. W., Ng, H. N., et al., "Segmental Orientation Studies of Block Copolymers: 2. Non-Hydrogen Bonded Polyurethanes", Polymer, 15:433-440 (1974).
    Ammons, V. G., "Catalyst for Making Polycarbonate Diols for Polycarbonate Urethanes", US,4,160,853 (1979).
    Anderheiden, D., Klee, D., Hocker, H., "Surface Modification of a Biocompatible Polymer Based on Polyurethane for Artificial Blood Vessels", Journal of Materials Science: Materials in Medicine, 3: 1-4(1992).
    Anderson, J. M., Hiltner, A., Zhao, Q. H., Wu Y., et al., "Cell/polymer Interactions in the Biodegradation of Polyurethanes", in: Biodegradable Polymers and Plastics, M. Vert, J. Feijen, A. Albertsson, et al., Editors, Royal Society of Chemistry, Cambridge, England, p. 122-136(1992).
    Anderson, J. M., "Inflammatory Response to Implants", Transactions of Ameriean Society of Artificial Intern Organs, Vol. ⅩⅩⅩⅣ: 101-107 (1988).
    Anderson, J. M., Hiltner, A., Wiggins, M. J., et al., "Recent Advances in Biomedical Polyuethane Biostability and B iodegradation", Polymer International, 46:163-171 (1998).
    Anderson, J. M. and Miller, K. M., "Biomaterial Biocompatibility and the Macrophage",Biomaterials, 5:5-10 (1984).
    
    
    Blackwell, J. and Gardner, K. H., "Structure of the Hard Segment in Polyurethane Elastomers",Polymer, 20:13-17 (1979)
    Boretos, J. W. and Pierce, W. S., "Segmented Polyurethane: A New Elastomer for Biomedical Applications", Science, 158: 1481(1967)
    Boretos, J. W., Pierce, W. S., Baier, R. E., et al., "Surface and Bulk Characterization of a Polyether Urethane for Artificial Hearts", Journal of Biomedical Materials Research, 9: 327(1975).
    Boretos, J. W., "Past, Present and Future Role of Polyurethanes for Surgical Implants", Pure and Application of Chemistry, 52:1851 (1980).
    Brunette, C. M., Hsu, S. L., MacKnight, W. J., "Hydrogen-Bonding Properties of Hard-Segment Model Compounds in Polyurethane Block Copolymers", Macromolecules, 15:71-77 (1982).
    Brunstedt, M. R., Ziats, N. P., Robertson, S. P., et al., "Protein Adsorption to Poly(ether urethane ureas) Modified with Acrylate and Methacrylate Polymer and Copolymer Additives", J. Biomed.Mater. Res., 27:367-377 (1993).
    Brunstedt, M. R., Ziats, N. P., Schubert, M., et al., "Protein Adsorption onto Poly(ether urethane ureas) Containing Methacrol 2138F: A Surface-Active Amphilic Additive", J. Biomed. Mater.Res., 27:255-267 (1993).
    Carter, K. R., Richter, R., Kricheldorf, H. R., et al, "Synthesis of Amine-Terminated Aliphatic Polycarbonate via Al(Et)_2(OR)-Initiated Polymerizations", Macromolecules, 30:6074-6076(1997).
    Chau, K. W. and P. H. Geil, "Domain Morphology in Polyurethanes", Polymer, 26:490-500(1985).
    Chen, Z., Ward, R., Tian, Y., et al., "Surface Composition of Biopolymer Blends Biospan-SP/Phenoxy and Biospan-F/Phenoxy Observed with SFG, XPS, and Contact Angle Goniometry",the Journal of Physical Chemistry B, 103:2935-2942 (1999).
    Cohn, D. and Cohen, H., "Improving the Biostability of Implantable Poly(ether urethane)s", six World Biomaterials Congress Transactions, Hawaii, USA ,May 15-20, 2000.
    Coleman, M. M., Lee, K. H., Skrovanek, D. J., et al., "Hydrogen Bonding in Polymers. 4. Infrared Temperature Studies of a Simple Polyurethane", Macromolecules, 19:2149-2157 (1986).
    
    
    Colovos, G. C., Bonk, H. W. and Ulrich, H., "Thermoplastic Polyurethanes. An Altemative for Food and Medical Applications", SPE Technical Conference, Denver, CO, November, 1977.
    Coury, A. J., Hobot, M. C., Carlson, K., "Biostable, Segmented Aliphatic Polyurethanes and Process", US, 4,873,308 (1989).
    Duguay, D. G., Labow, R. S., Santerre, J. P. and MeLean, D. D., "Development of a Mathematical Model Describing the Enzymatic Degradation of Biomedical Polyurethanes. 1.Background, Rationale and Model Formation", Polymer Degradation and Stability, 47: 229-249(1995).
    Ferreri, E., Giavarini, F., Tonelli, G., et al., "Fluorinated Polyurethanes and Polyurethane-ureas, and Methods for Preparing Them", US 5,332,798 (1994)
    Guidoin, R., Sigot, M., King, M., et al., "Biocompatibility of the Vascugraft: Evaluation of a Novel Polyester Urethane Vascular Substitute by an Organotypic Culture Technique",Biomaterials, 13(5): 218-288 (1992).
    Gunatillake, P. A., Meijs, G. F., Mccarthy, S. J., et al., "Synthesis and Characterization of a Series of Poly(alkylene carbonate) Macrodiols and the Effect of Their Structure on the Properties of Polyurethanes", Journal of Applied Polymer Science, 69:1621-1633 (1998).
    Hergenrother, R. W., Wabers, H. D., and Cooper, S. L., "Effect of Hard Segment Chemistry and Strain on the Stability of Polyurethanes: in vivo Biostability", Biomaterials, 14(6): 449-458(1993)
    Hsu, S.-H., Chen, J.-Y., "Enhanced Biostability by Using Butenediol as Chain Extenders in the Synthesis of Poly(ether)urethanes", Polymer Degradation and Stability, 650): 341-345, 1999.
    Hsu, S.-H. and Huang, T.-B., "The Suscepitibility of Poly(ether)urethanes to Enzymatic Degradation after Oxidative Pretreatment", Polymer Degradation and Stability, 67: 171-178(2000).
    Huang, B., Marois, Y., Roy, R., et al., "Cellular Reaction to the Vascugraft~R Polyesterurethane Vascular Prosthesis: In vivo Studies in Rats", Biomaterials, 13(4): 209-216 (1992).
    Inlenfeld, J. W., Mathis, T. R., Riddle, L. M. and Cooper, S. L., "Measurements of Transient Thrombus Deposition of Polymeric Materials", Thrombus Research, 14:953 (1979)
    Ishihara, K., Tanaka, S., Furukawa, N., et al., "Improved Blood Compatibility of Segmented Polyurethanes by Polymeric Additives Having Phospholipid Polar Groups. I. Molecular Design of
    
    Polymeric Additives and their Functions", Journal of Biomedical Materials Research, 32: 391-399(1996).
    Ishihara, K., Tanaka, S., Furukawa, N., et al., "Improved Blood Compatibility of Segmented Polyurethanes by Polymeric Additives Having Phospholipid Polar Groups. Ⅱ. Dispersion State of the Polymeric Additive and Protein Adsorption on the Surface", Journal of Biomedical Materials Research, 32: 401-408(1996).
    Ito, E., Suzuki, K., Yokoyama, M., et al., "Active Platelet Movement on Hydrophobic/Hydrophilic Microdomain-Structured Surfaces", J. Biomed. Mater. Res., 42: 148-155 (1998).
    Kajiyama, T. and Takhara, A., "Surface Properties and Platelet Reactivity of Segmented Poly(etherurethanes) and Poly(etherurethaneureas)", J. Biomater. Appl., 6:42-71 (1991).
    Kannpitsas, A., Pissis, P., Ribelles, J. L., et al., "Molecular Mobility and Hydration Properties of Segmented Polyurethanes with Varing Structure of Soft- and Hard-Chain Segments", J. Appl. Polymer Sci., 71, 1209-1221(1999).
    Kao, W. J., Zhao, Q. H., Hiltner, A., et al., "Theoretical Analysis of In vivo Macrophage Adhesion and Foreign Body Giant Cell Formation on Polydimethylsiloxane, Low Density Polyethylene, and Polyetherurethanes", Journal of Biomedical Materials Research, 28:73-79(1994).
    Kao, J. W., Hiltner, A., Anderson, J. M., et al., "Theoretical Analysis of In vivo Macrophage Adhesion and Foreign Body Giant Cell Formation on Strained Poly(etherurethane urea) Elastomers", Journal of Biomedical Materials Research, 28:819-829(1994).
    Kim, Y. H., Han, D. K., "Perfiuorocarbon-grafted Polyurethanes with Improved Blood Compatibility and Process for Their Preparation", US 5,242,995 (1993).
    Ko, T.-M., Lin, J.-C. and Cooper, S. L., "Surface Characterization and Platelet Adhesion Studies of Plasma-Sulphonated Polyethylene", Biomaterials, 14(9): 657-664 (1993).
    Koberstein, J. T. and Gancarz, I., "The Effects of Morphological Transitions on Hydrogen Bonding in Polyurethanes: Preliminary Results of Simultaneous DSC-FTIR Experiments", J. Polymer Sci., Part B: Polymer Physics, 24:2487-2498 (1986).
    L. H. Peebles, Jr., "Hard Block Length Distribution in Segmented Block Copolymers",Macromolecules, 9 (1): 58-61 (1976).
    
    
    L. H. Peebles, Jr., "Sequence Length Distribution in Segmented Block Copolymers",Macromolecules, 7 (6):872-882 (1974).
    Lai, K.-H., Silvers, H. N., "Process for Preparing Polycarbonate", US 4,131,731 (1978).
    Lee, H. S., Wang, Y. K., Hsu, S. L., "Spectroscopic Analysis of Phase Separation Behavior of Model Polyurethanes", Macromolecules, 20:2089-2095 (1987).
    Leung , L. M. and Koberstein, J. T., "DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-based Polyurethane Block Coploymers ", Macromolecules, 19:706-713 (1986).
    Li, C. and S. L. Cooper, "Direct Observation of the Micromorphology of Polyether Polyurethanes Using High-voltage Electron Microscopy", Polymer, 31:3-7 (1990).
    Lin, T.-L., Yu, T. L., Liu, W.-J., et al., "Phase Segregation of Crosslinked Polyurethanes by Small Angle X-ray Scattering", Polymer J., 31(2): 120-126 (1999).
    Luu, H.-M. D., Biles, J. and White, K. D., "Characterization of Polyesteruethanes Degradation Products", Journal of Applied Biomaterials, 5:1-7(1994).
    Lyman, D. J., Rev. Macromol. Chem., 1: 355(1966).
    Matsumura, S., Harai, S., Toshima, K., "Lipase-catalyzed Polymerization of Diethyl Carbonate and Diol to Aliphatic Poly(alkylene carbonate)", Macromol. Chem. Physic., 201(14), 1632-1639(2000)
    Martin, D. J., Meijs, G. F., Gunatillake, P. A., et al., "The Influence of Composition Ratio on the Morphology of Biomedical Polyurethanes", J. Appl. Polymer Sci., 71,937-952 (1999).
    Martin, D. J., Meijs, G. F., Gunatillake, P. A., et al., "The Effect of Soft Segment Length on Morphology and Properties of a Series of Polyurethane Elastomers. Ⅱ. SAXS-DSC Annealing Study", J. Appl. Polymer Sci., 64, 803-817 (1997).
    Martin, D. J., Meijs, G. F., Gunatillake, S. P., et al., "The Influence of Composition Ratio on the Morphology of Biomedical Polyurethanes", J. Appl. Polymer Sci., 71, 937-952 (1999).
    Martin, D. J., Warren, L. A. P., Gunatillake, P. A., "Polydimethylsiloxane/Polyether-Mixed Macrodiol-based Polyurethane Elastomer: Biostability", Biomaterials, 21:1021-1029 (2000).
    Mathur, A. B., Collier, T. O., Kao, W. J., et al., "In vivo Biocompatibility and Biostability of
    
    
    Modified Polyurethanes", Journal of Biomedical Materials Research, 36:246-257 (1997).
    McNally, A. K. and Anderson, J. M., "Complement C3 Participation in Monocyte Adhension to Different Surfaces", Proc. Natl. Acad. Sci., USA, 91:10119-10123 (1994).
    Meijs, G. F., McCarthy, S. J., Rizzardo, E., et al., "Degradation of Medical-Grade Polyurethane Elastomer: The Effect of Hydrogen Peroxide In vitro", Journal of Biomedical Materials Research, 27:345-356(1993).
    Molika, S. A., Pickering, T. L., Rokick, A., et al., "Catalyst for the Copolymerization of Epoxides With CO_2", US 5,026,676 (1991).
    Muller, E., Leverksen, Kallert, W., et al, "Hydrolysis Resistant Elastometric Poly(carbonate urethanes)", US, 3, 509,233 (1970)
    Mller, A. J., Keul, H. and Hcker, H., "Lithium and Potassium alcohoates of poly(ethylene glycol)s as initiators for the Anionic Polymerization of 2,2-Dimethyltrimethylene Carbonate. Synthesis of AB and ABA Block Copolymers ", Eur. Polymer J., 27(12): 1323-1330 (1991).
    Ng, H. N., Allegrezza, A. E., Seymour, R. W., Cooper, S. L., "Effect of Segment Size and Polydispersity on the Properties of Polyurethane Block Polymers", Polymer, 14:255-260 (1973).
    Nojiri, C., Kido, T., Sugiyama, T., et al., "Can Heparin Immobilized Surface Maintain Nonthrombogenic Activity During in vivo Long-term Implantation?", ASAIO Journal, 42: M468-M475(7996).
    Noishiki, Y., "Vascular Prostheses—Small Grafts, Their Matrices, and Cell Technologies", Asian Medicine Journal, 36(8): 407-412 (1993).
    Park, K., Mao, F. W. and Park, H., "Morphological Characterization of Surface-induced Platelet Activation", Biomaterials, 11:24-31 (1990).
    Pentz, W. J. and Krawiec, R. G., "Hydrolytic Stability of Polyurethane Elastomer", Rubber Age,12, 1975.
    Peppas, N. A., and Langer, R., "New Challenges in Biomaterials", Science, 263, 1715-1720(1994).
    Piejko, K.-E., Bomer, B., Buysch, H.-J., et al., "Process for the Preparation of Aliphatic Polycarbonates with Alkoxy Silane Initiator", US, 4,879.367 (1989).
    
    
    Pinchuk, L., "Crack-resistant polycarbonate urethane polymer prostheses", US 5,133,742 (1992).
    Pinchuk, L., "Crack-resistant polycarbonate urethane polymer prostheses and the like", US 5,229,431 (1993).
    Pinchuk, L., "A Review of the Biostability and Carcinogenicity of Polyurethanes in Medicine and the New Generation of 'Biostable' Polyurethanes", Journal of Biomaterials Science: Polymer Edition, 6(3): 225-267(1994).
    Pkhakadze, G., Grigorieva, M., Gladir, I., Momot, V., "Biodegrable Polyurethanes", Journal of Materials Science: Materials in Medcine, 7:265-267(1996).
    Pokharkar, V. and Sivaram, S., "Poly(alkylene carbonate)s by the Carbonate Interchange Reaction of Aliphatic Diols with Dimethyl Carbonate: Synthesis and Characterization", Polymer, 36(25):4851-4854 (1995).
    Robinson, I. M., "Polymeric Carbonate Diols of Copolyether Glycols and Polyurethanes Prepared Therefrom", US 4,476,293 (1984).
    Rocicki, A., "Making Poly(alkylene carbonates) of Controlled Molecular Weight",US, 4,943,677 (1990).
    Sanchez, M., Deffieux, A., Bordenave, L., et al., "Synthesis of Hemocompatible Materials. Part 1:Surface Modification of Polyurethanes Based on Poly (chloroalkylvinylether)s by RGD Fragments", Clinic Materials, 15:253-258(1994).
    Santerre, J. P., Labow, R. S., Duguay, D. G., et al., "Biodegradation Evaluation of Polyether and Polyester-urethanes with Oxidative and Hydrolytic Enzymes", Journal of Biomedical Materials Research, 28:1187-1199(1994).
    Re, A., Giavarini, F., "Fluorinated Polyurethanes Endowed with Improved Mechanical Properties, Containing Rubber-like Polyoxyperfluoroalkylene-structure Blocks and Hydrogenated Rigid Blocks", US 5,026,814 (1991).
    Reed, A. M., Szycher, M., "A Solution Grade Biostable Polyurethane Elastomer: ChronoFlex AR", Journal of Biomaterials Application, 8:210-236 (1994).
    Santerre, J. P. and Labow, R. S., "The Effect of Hard Segment Size on the Hydrolytic Stability of Polyether-urea-urethanes when Exposed to Cholesterol Esterase", Journal of Biomedical Materials Research, 35:371-381 (1997).
    
    
    Schubert, M. A., Wiggins, M. J., Anderson, J. M., et aL, "Role of Oxygen in Biodegradation of Poly(etherurethane urea) Elastomers", Journal of Biomedical Materials Research, 34:519-530(1997).
    Schubert, M. A, Wiggins, M. J., Defife, K. M., et al., "Vitamin E as an Antioxidant for Poly(etherurethane urea): In vivo Studies", Journal of biomedical Materials Research, 32: 493-504 (1996).
    Schubert, M. A., Wiggins, M. J., Anderson, J. M., et al., "Comparison of Two Antioxidants for Poly(etherurethane urea) in an Accelerated in vitro Biodegradation System", Journal of biomedical Materials Research, 34:493-505 (1997).
    Schneider, N. S. and Matton, R. W., "Thermal Transition Behavior Polybutadiene Containing Polyurethanes", Polymer Engineering and Science, 19 (15): 1122-1128 (1979).
    Skarja, G. A. and Brash, J. L., "Physicochemical Properties and Platelet Interactions of Segmented Polyurethanes Containing Sulfonate Groups in the Hard Segment", Journal of Biomedical Materials Research, 34: 439-455(1997).
    Smith, R., Williams, D. F. and Oliver, C., "The Biodegradation of Poly(ether urethanes)", Journal of Biomedical Materials Research, 21:1149-1166(1987).
    Soldani, G., Varelli, G., Minnocci, A., Dario, P., "Manufacturing and Microscopical Characterization of Polyurethane Nerve Guidance Channel Featuring a Highly Smooth Internal Surface", Biomaterials, 19: 1919-1924(1998).
    Stokes, K. B. and Urbanski, P. W., "The Biodegradation of Nonbiodegradable Polymers", in: Degradation Phenomena on Polymeric Biomaterials, H. Plank, M. Dauner, M. Renardy, Editors,Springer-Verlag Berlin Heidelberg, p.37-57 (1992).
    Stokes, K., Urbanski, P. and Upton, J., "The in vivo Auto-oxidation of Polyether Polyurethane by Metal Ions", Journal of Biomaterials Science: Polymer Edition, 1(3): 207-230(1990).
    Stokes, K. and McVenes R., "Polyurethanes Elastomer Biostability", Journal of Biomaterials Application, 9:321-354(1995).
    Stokes, K. and Cobian, K., "Polyether Polyurethanes for Implantable Pacemaker Electrodes",Biomaterials, 3:225 (1982).
    Suyama, T., Tokiwa, Y., "Enzymatic Degradation of an Aliphatic Polycarbonate:
    
    Poly(tetramethylene carbonate)", Enzyme Microb. Tech., 20(2): 122-126 (1997)
    Szycher, M., Pokier V. L. and Dempsey D. J., "Development of an Aliphatic Biomedical-Grade Polyurethane Elastomer", Journal of Elastomers and Plastics, 15:81-95(1983).
    Szycher, M. and Siciliano, A. A., "In vivo Testing of a Biostable Polyurethanes", Journal of Biomaterials Applications, 6:110-130(1991).
    Szycher, M. and Reed, A. M., "Biostable Polyuerthane Products", US 5,254,662 (1992).
    Szycher, M. and McArthur, W. A., "Surface Fissuring of Polyurethanes following in vivo Exposure", in: Corrosion and Degradation of Implant Materials, ASTM STP 859, Fraker and Griffin, eds., Philadelphia, PA, p. 308-321(1985).
    Szycher, M., "Biostable Polyurethane Products", US, 5,254,662 (1993).
    Szycher, M., "Polyurethanes in Vascular Grafts", Rubber World, 1998 April: 44-46.
    Takahara, A., Jun-ichi Tashita, Kajiyama, T., et al, "Microphase Separated Structure and Blood Compatibility of Segmented Poly(urethaneureas) with Different Diamines in the Hard Segment", Polymer, 25: 978-986(1985).
    Takahara, A., Jun-ichi Tashita, Kajiyama, T., et al., "Microphase Separated Structure, Surface Composition and Blood Compatibility of Segmented Poly(urethaneureas) with Various Soft Segment Components", Polymer, 25:987-996(1985).
    Takahara, A., Coury, A. J., Hergenrother, R. W., et al., "Effect of Soft Segment Chemistry on the Biostability of Segmented Polyurethanes. Ⅰ. In vitro Oxidation", Journal of Biomedical Materials Research, 25:341-356(1991).
    Takahara, A., Coury, A. J., Hergenrother, R. W., et al., "Effect of Soft Segment Chemistry on the Biostability of Segmented Polyurethanes. Ⅱ. In vitro Hydrolytic Degradation and Lipid Sorption", Journal of Biomedical Materials Research, 26:801-818(1992).
    Takahara, A., Takshashi, K. and Kajiyama, T., "Effect of Polyurethane Surface Chemistry on its Lipid Sorption Behavior", Journal of Biomatreials Science: Polymer Edition, 5(3): 183-196(1993).
    Tang, L., Lucas, A. H., and Eaton, J. W., "Inflammatory Response to Implanted Polymeric Biomaterials: Role of Surface-Absorbed Immunogloblin G", J. Lab. Clin. Med., 122:292-300(1993).
    
    
    Tang, L. and Eaton, J. W., "Fibrin(ogen) Mediates Acute Inflammatory Responses to Biomaterials", J. Exp. Med., 178:2147-2156 (1993).
    Tang, Y. W., Santerre, J. P., Labow, R. S., et al., "Synthesis of Surface-Modifying Macromolecules for Use in Segmented Polyurethanes", J. Appl. Polymer Sci., 62: 1133-1145(1996).
    Tang, Y. W., Cornelius, R. M., Molloy, M. A., et al., "Inhibition of Polyurethane Biodegradation by Surface Grafting of Polyethylene Oxide", Six World Biomaterials Congress Transactions, Hawaii, USA,May 15-20, 2000.
    Tang, Y. W., Santerre, J. P., Labow, R. S., et al., "Synthesis of Surface-Modified Macromolecules for Use in Segmented Polyurethanes", Journal of Applied Polymer Science, 62:1133-1145(1996).
    Tang, Y. W., Santerre, J. P., Labow, R. S., et al., "Use of Surface-Modifying Macromolecules to Enhance the Biostability of Segmented Polyurethanes", Journal of biomedical Materials Research, 35:371-381 (1997).
    Tanzi, M. C., Mantovani, D., Petrini, P., et al., "Chemical Stability of Polyether Urethanes versus Polycarbonate Urethanes", Journal of Biomedical Materials Research, 36:550-559 (1997).
    Tonelli, G., Trombetta, T., Scicchitano, M., et al., "New Fluorinated Thermoplastic Elastomers", J. Appl. Polymer Sci., 59:311-327 (1996).
    Van Bogart, J. W. C., Bluemke, D. A. and Cooper, S.L., "Annealing-Induced Morphological Changes in Segmented Elastomers", Polymer, 22:1428-1438 (1981).
    Wabers, H. D., McCoy, T. J., Okkema, A. T., et al., "Biostability and blood-contacting properties of sulfonate grafted polyurethane and Biomer", Journal of Biomaterials Science: Polymer Edition, 4(2): 107-133(1992).
    Ward, R. S., "Surface-modified Endgroups for Biomedical Polymers", US 5,589,563 (1996).
    Ward, R. S., Coviello, R., Gill, R. S., et al., "Surface Activity and Enhanced in vivo Biostability of a Segmented Polyetherurethane with Polydimethylsiloxane End Groups", Fifth World Biomaterials Congress, Tornoto, Canada, May 29 - June 2, 1996.
    Ward, R. S., "The Effect of Phase Separation and End Group Chemistry on the in vivo Biostability of Polyurethanes", 42nd Annual Conference of the American Society of Artificial Internal Organs,
    
    Washington, D. C., May 2- 4, 1996.
    Ward, R., Tian, Y., Chen, Z., et al., "Environmentally Induced Surface Rearrangement of Polyurethanes Using SFG, AFM, XPS and Contact Angle Goniometry", 25th Annual Meeting of the Society for Biomaterials, Providence, Rhode Island, USA, April 28 -May 2, 1999.
    Ward, R. S., "Tailored Polyurethanes with Functional Blocks for Biomedical Applications",American Chemical Society Symposium "Contemporary Biomaterials Through Precise Control of Macromolecular Chemistry and Architecture ", Williamsburg, Virginia, November 19-22, 1998.
    Ward, R. S., Tian, Y., White, K., "Improved Polymer Biostability Via Oligomeric End Groups Incorporated during Synthesis ', 216th National Meeting for the American Society, Boston,Massachusetts, August 23-27, 1998.
    Ward, R. S., "Surface Modification Prior to Surface Formation: Control of Polymer Surface Properties via Bulk Composition", Medical Plastics and Biomaterials, Volume 2, Number 2, Spring 1995.
    Ward, R. S., White, K. A., Gill, R. S., "Development of Biostable Thermoplastic Polyurethanes with Oligomeric Polydimethylsiloxane End Groups", 21th Meeting of the Society for Biomaterials, San Francisco, California, USA, March 18-22, 1995.
    Ward, R. S. and White, K. A., "Development of a new Family of Polyurethaneurea Biomaterials",Eighth CIMTEC Forum on New Materials, Florence, Italy, June 29 - July 4, 1994.
    White, K. A., Ward, R. S., Jacob, J. T., "In vivo Evaluation of Polyurethanes", the 24th Annual Meeting of the Society for Biomaterials, San Diego, California, USA, April 22-26, 1998.
    Wick, "Biocompatible Polyurethanes", US, 5,109,677 (1983).
    Williams, D. F. and Zhong, S. P., "Are Free Radical Involved in Biodegradation of Implanted Polymers?", Advanced Materials, 3(12): 623-626.
    Williams, D. F., Definitions in Biocompatibility. Amsterdam: Elsevier, 1987.
    Yokota, M., Shimizu, A., Komiya, K., et al., "Thermoplastic Polyurethanes", US, 5,070,173(1991).
    Yoon, S. C. and Ratner, B. D., "Surface Structure of Segmented Poly(ether urethanes) and Poly(ether urethane ureas) with Various Perfiuoro Chain Extenders. An X-ray Photoelectron Spectroscopic Investigation", Macromolecules, 19:1068-1079 (1986).
    
    
    Yoon, S. C. and Ratner, B. D., "Surface and Bulk Structure of Segmented Poly(ether urethanes) with Perfluoro Chain Extenders. 2. FTIR, DSC, and X-ray Photoelectron Spectroscopic Studies", Macromolecules, 21:2392-2400 (1988).
    Yoon, S. C. and Ratner, B. D., "Surface and Bulk Structure of Segmented Poly(ether urethanes) with Perfluoro Chain Extenders. 3. Effects of Annealing, Casting Solvent, and Cast Conditions", Macromolecules, 21:2401-2404 (1988).
    Yoon, S. C., Sung, Y. K. and Ratner, B. D., "Surface and Bulk Structure of Segmented Poly(ether urethanes) with Perfluoro Chain Extenders. 4. Role of Hydrogen Bonding on Thermal Transitions", Macromolecules, 23:4351-4356 (1990).
    Yoon, S. C., Ratner, B. D., Béla, I., et al., "Surface and Bulk Structure of Segmented Poly(ether urethanes) with Perfluoro Chain Extenders. 5. Incorporation of Poly(dimethylsiloxane) and Polyisobutylene Macroglycols", Macromolecules, 27:1548-1554 (1994).
    Yu, T. L., Lin, T. L., Tsai, Y. M., et al., "Morphology of Polyurethanes with Triol Monomer Crosslinked on Hard Segments", J. Polymer Sci., Part B: Polymer Physics, 37: 2673-2681(1999).
    Zdrahala, R. J. and Zdrahala, I. J., "Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future", Journal of Biomaterials Applications, 14: 67-90(1999).
    Zdrahala, R. J. and Mcgary, C. W., Jr., "Thermoplastic Polyurethanes. Softening in 37℃ Nsaline", Materials Research Society Symposia Proceeding, 55:407(1986).
    Zdrahala, R. J., Solomon, D. D., Lentz, D. J. and Mcgary, C. W., Jr., 1987, "Thermoplastic Polyurethanes. Materials for Vascular Catheters", in Polyurethanes in Biomedical Engineering Ⅱ (Planck, H. et al., Eds., Elsevier, Amsterdam), P. 1.
    Zhang, D., Gracias, D. H., Ward, R., et al., "Surface Studies of Polymer Blends by Sum Frequency Vibrational Spectroscopy, Atomic Force Microscopy, and Contact Angle Goniometry", the Journal of Physical Chemistry B, 102: 6225-6230, 1998.
    Zhang, D., Ward, R. S., Shen, Y. R., et al., "Environment-Induced Surface Structural Changes of a Polymer: an in situ IR+Visible Sum-Frequency Spectroscopic Study", the Journal of Physical Chemistry B, 101:9060-9064 (1997).
    Zhang, Z., King, M. W., Guidoin, R., et al., "Morphological, Physical and Chemical Evaluation of
    
    the Vascugraft Arterial Prosthesis: Comparison of a Novel Polyurethane Device with other Microporous Structures", Biomaterials, 15(7): 483-501 (1994).
    Zhang, Z., King, M. W., Marois, Y., et al., "In vivo Performance of the Polyesterurethane Vascugraft Prosthesis Implanted as a Thoracoabdominal Bypass in Dogs: an Exploratory Study",Biomaterials, 15(13): 1099-1112 (1994).
    Zhang, Z., King, M. W., Guidoin, R., et al., "In vitro Exposure of a Novel Polyesterurethane Graft to Enzymes: a Study of the Biostability of the Vascugraft Arterial Prosthesis", Biomaterials, 15(14): 1129-1144(1994).
    Zhang, Z., Marois, Y., Guidoin, R. G., et al., "Vascugraft Polyurethane Arterial Prosthesis as Femoro-poplioteal and Femoro-peroneal Bypass in Humans: Pathological, Structural and Chemical Analyses of Four Excised Grafts", Biomaterials, 18(2): 113-124 (1997).
    Zhao, Q., Agger, M. P., Fitzpatrick, M., et al., "Cellular Interactions with Biomaterials: In vivo Cracking of Pre-stressed Pellethane 2363-80A ", Journal of Biomedical Materials Research, 24:621-637(1990).
    Zhao, Q., Topham, N., Anderson, J. M., et al., "Foreign-body Giant Cells and Polyurethane Biostability: In vivo Correlation of Cell Adhesion and Surface Cracking", Journal of Biomedical Materials Research, 25:177-183(1991).
    Zhao, Q. H., Anderson, J. M., Hiltner, A., et al., "Theoretical Analysis on Cell Size Distribution and Kinetics of Foreign-body Giant Cell Formation In vivo on Polyurethanes Elastomers", Journal of Biomedical Materials Research, 26:1019-1038(1992).
    Zhao, Q. H., McNally, A. K., Rubin, K. R., et al., "Human Plasma α_2-Macroglobulin Promotes in vitro Oxidative Stress Cracking of Pellethane 2363-80A: In vivo and In vitro Correlations", Journal of Biomedical Materials Research, 27:379-389(1993).
    Zhao, Q., Donovan, M., Schroeder, P., et al., "In vitro Modulation of Macrophage Phenotype and Inhibition of Polymer Degradation by Dexamethasone in a Human Macrophage/Fe/Stress System", Journal of Biomedical Materials Research, 46:475-484 (1999).
    Zhao, Q., Casas-Bejar, J., Urbansky, P., Stokes, K., "Glass Wool-H_2O_2/CoCl_2 Test System for in vitro Evaluation of Biodegradative Stress Cracking in Polyurethanes Elastomer", Journal of Biomedical Materials Research, 29:467-475 (1995).
    Zhong, X., "Sensitive Detection and Prevention of Protein Adsorption on Biomaterial (Lipid
    
    Bilayer) Surfaces", Ph.D Degree Thesis, Department of Biomedical Engineering, Case Western Reserve University, USA, May 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700