黏接剂对体外培养细胞生长的影响及间接盖髓的基础和临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着患者对健康和美观要求的不断提高,复合树脂牙色材料被越来越多的应用于口腔临床,如:牙齿缺损的修复、牙周病松动牙的固定、正畸附件的黏接、牙槽骨和颌骨骨折的治疗等。复合树脂性能之所以能够明显改善,与黏接剂的发展和改进有很密切的关系。口腔黏接材料的发展,经历了从无机材料到有机高分子材料、从黏接牙釉质到黏接牙本质和软组织的历程。牙体黏接修复与传统非黏接修复相比有许多优点:黏接技术减小了修复材料与牙齿界面的微渗漏,从而降低了治疗后的敏感性和继发龋的发生;作用于牙体和修复材料的功能性压力被均匀地分配至牙(牙合)面,保护和增强被削弱的牙体结构;黏接技术也增加了牙体美观修复的可能性,以较少磨削牙齿而获得固位,得到最佳的治疗效果,使修复范围不断扩大。1955年Buonocore提出的“酸蚀技术”和复合树脂的问世,在几十年间口腔黏接材料和技术得到很大发展,为牙齿修复注入了全新的概念和理论。随着研究工作的日益深入,各种新型材料的不断涌现,为口腔黏接修复带来空前繁荣。但不同黏接剂性能和修复效果的对比研究较少。本研究拟观察几种树脂黏接剂(Durafill、Prime & Bond NT、Clearfil SE Bond)影响细胞生长的情况、黏接剂(Prime &Bond NT、Clearfil SE Bond)间接盖髓后的牙髓反应及人牙龋洞修复后的临床效果,评估几种复合树脂黏接剂的细胞毒性、对牙髓的保护作用和修复后敏感情况,从而为临床正确使用黏接剂,达到复合树脂修复牙缺损的最佳效
    
    布侧早砚J气月卜月叹创七学位论文
    果提供依据。
    研究共包括三个部分:
    l、树脂豁接剂Durafill、Prime&Bond NT、Clearfil SE Bond对体外培养的
    成纤维细胞毒性研究
     通过培养建系的鼠成纤维细胞(L929),将三种勃接剂及充填树脂制成
    固定模块,以RPMn 640培养液制成浸提液,并稀释成100%、75%、50%、
    25%。以4x104/ml、lxlo场1、0.6xlo4蒯个细胞的细胞悬液,分别接种
    于96孔板,培养24h,以不同浓度浸提液1 00林l替换,培养2、4、7d。用
    MTT法测定光吸收值,取平均值。结果显示:成纤维细胞培养2、4、7d三
    个时间点,三种猫接剂光吸收值不同(P<0 .05),其中Clearfil SE Bond较其
    它两组光吸收值大。随着时间延长,三种薪接剂的光吸收值均逐渐增大;在
    四种不同浓度的培养条件下,三种勃接剂光吸收值亦不同(P<0 .05),其中
    Clearfil SE Bond较其它两组光吸收值大,随着浓度增加,三种豁接剂的光
    吸收度逐渐减小。结果说明:三种勃接剂的细胞毒性均较弱(接触7d不超
    过2级),呈明显的时间、浓度依赖性,其中clearfil SE Bond的毒性最小(为
    l级)。
    2、复合树脂勃接体系Clearfil SE Bond、Prime&BondNTl’ed接盖髓效果的动
    物实验研究
     88颗成年犬尖牙、前磨牙、磨牙,在牙颊面颈部距牙龋1刃nrn备V类洞,
    近髓腔而不穿髓,实验样本平均剩余牙本质厚度553.6脚,分别用Prime&
    Bond NT、Clea币1 SE Bond盖髓即刻固化、及盖髓后20min固化,Clearfil AP一X
    树脂充填。对照组用Timelime盖髓,Clearfil AP一X树脂充填。术后30、90d,
    颈总动脉插管,灌注4%多聚甲醛固定,骨锯分离牙齿,固定、脱钙、脱水,
    包埋、5林m切片。苏木精一伊红染色、Mollary‘s三色法、Glam染色,观察修
    复性牙本质形成、牙髓反应及细菌渗漏情况。结果显示:30d、%d,NT组
    的炎症反应较SE组严重(P<0.05);且无修复性牙本质形成。SE组3Od有
    少量修复性牙本质形成,90d出现明显的修复性牙本质。氢氧化钙组较两实
    验组在牙髓反应和修复性牙本质形成方面均有明显优势(p<0.01)。延迟固化
    
    常.门阵皿大月卜祠叹创七拳亡七论丈
    使牙髓反应加重。结果说明:自酸蚀薪接剂较全酸蚀豁接剂对牙髓刺激性小,
    修复效果好,但尚达不到氢氧化钙组的盖髓效果。勃接剂即刻固化能减小其
    对牙髓的刺激。
    3、复合树脂豁接体系Clearfil SE Bond、Prime&Bond NT直接修复活髓牙缺
    损的临床研究
     通过对第四军医大学547名学员的口腔健康状况检查,遴选出52名学
    员的85牙(I类洞)进行复合树脂薪接体系直接修复。中龋57牙,分三组,
    一组用聚梭酸锌粘固剂垫底,其余两组分别涂Cle肚五1 SE Bond、P丘me&
    Bond NT,Clearfi1AP一X树脂修复。深龋28牙,分两组,其中一组用聚梭酸
    锌粘固剂垫底,另一组涂Clearfil SE Bond,Clearfil AP一X树脂修复。结果显
    示:术后Zd,中龋三组间敏感例数和敏感程度没有统计学差异(P>0.05),
    深龋两组间敏感例数和敏感程度亦没有统计学差异,但是在中龋和深龋对应
    组间有统计学差异(p<0.05)。深龋组敏感例数多,表现较严重。随着修复时
    间延长,各实验组敏感例数和程度逐渐降低。在观察期内,各实验组牙髓活
    力均无异常改变。
     总之,豁接剂性能较以前有明显改善,细胞毒性和对牙髓的刺激达到了
    临床使用的安全要求,但不同翻接剂性能有差别。结合本实验结果,提示:
    自酸蚀勃接剂在深龋洞修复时较全酸蚀薪接剂更具优越性,更安全。
With the enhance of health and esthetic pursuits from patients, resin composites are widely used in oral clinic, like in the cases of restoring of dental defect, fixation of loosened teeth, bonding between orthodontic attachments and teeth, and treatment of fracture of alveolar bone and jaw. The performance of compound resin has been obviously improved, which has a lot to do with the development in the adhesive systems. With the improvement of dental bonding materials, from inorganic materials to organic macromolecule materials, they are used to bond enamel, dentine, even soft tissue. Bonding restorations have a number of advantages over traditional, non-adhesive methods. The adhesive techniques can reduce the microleakage at the restorative material-tooth interface, decrease the postoperative sensitivity and recurrent caries. Resulting functional stress, which occurs in both tooth structure and restorative materials, can be more widely distributed. The weakened tooth structure can be protected and reinforce
    d. Adhesive restorative techniques have also expanded the range of indications for esthetic restorative dentistry, allowing deteriorated or debonded restorations to be repaired or replaced with minimal loss of tooth structure. The occurrence of "etching technique" discovered by Buonocore in 1960s and the appearance of resin composites, dental bonding materials and the related techniques have given rise to many new concepts and theories. But there is little of contrastive study on the performances and restorative effects of different adhesives. In this study, several adhesives were used to estimate the cell cytotoxicity on mouse fibroblasts, observe the pulp response, and to examine the postoperative sensitivity of caries
    
    
    of human teeth. It was hoped to pave a way for the correct use of adhesives and to get better restorative effects of resins.
    1. Study on the cytotoxicity of adhesives (Durafill, Prime & Bond NT, Clearfil SE Bond) on mouse fibroblasts cultured in vitro.
    Adhesives and corresponding filling resin were made into modules, which were dipped in RPMI1640 medium. Then the RPMI1640 medium were diluted to the concentration of 100%, 75%, 50%, 25% respectively. The mouse fibroblasts cultured in vitro in different cell-densities were inoculated. After 24 hours of culture, the impregnant of adhesives replaced the culturing liquid. MTT staining and spectrophotometric assay were used to determine the optical density (i.e. OD) and calculate the mean. Results: When the fibroblasts were cultured for 2,4 and 7 days, OD of the three adhesives were found to be different (P<0.05), with OD of Clearfil SE Bond being higher than the other two. OD of the three adhesives increased gradually with time. In the culture condition of four kinds of concentrations, OD of the three bonding agents were also different (P<0.05) , with OD of Clearfil SE Bond being higher than the other two. OD of the three adhesives decreased gradually as the concentration increased. Result: Cytotoxicity of the three adhesives was weak, and cytotoxicity increased with the culture time and concentration enhancement. Among the three adhesives, the cytotoxicity of Clearfil SE Bond was the least.
    2. Study on the effect of indirect capping pulp with adhesives systems (Prime & Bond NT, Clearfil SE Bond).
    Deep Class V cavities, close to the pulp cavity but not pulp-penetrating, were prepared on the buccal surface of 88 dens caninus, molars and premolars of dogs. The thickness of the remained dentine of the specimens was 553.6um. Specimens were treated respectively with Clearfil SE Bond and Prime & Bond NT cured instantly and after 20 minutes, and were then restored with resin composite Clearfil AP-X. The samples of the control group were restored with Clearfil AP-X after pulp capping with Timelime. The dogs were killed 30 or 90 days later and the teeth were extracted. After fixation, demineralization and paraffin embedding, serial sections were obtained and they were stained with H/E, Mallory s technique and Glam, ready for the observation of
引文
1. Buonocore MG A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Research 1955; 34:849-853
    2. Sano. H.., Ciucchi, B., Matthews, W. G. and Pashley, D. D. Tensile properties of mineralized and demineralized human and bovine dentin. Journal of Dental Research, 1994, 73:1205-1211.
    3. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB. Cytotoxicinteractive effects of dentin bonding components on mouse fibroblasts. Journal of Dental Research 1995; 74:1602-6
    4. Davidson CL, deGee A J, Feilzer AJ. The competition between composite detine bond strength and the polymerization contraction stress. J Dent Res 1984; 63:1396-1399.
    5. Buonocore MG Wileman W, Brudevold F. A report on a resin composition capable of bonding to human dentin surface. J Dent Research 1956; 35:846-851
    6. Nakabayashi, N., Kojima, K. and Masuhara, E., Promotion of adhesion by the infiltration of monomers into tooth substrates. Journal of Biomedical Materials Research, 1982,16,265-273
    7. Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. [J] J Dent, 1997, 25:355
    8. Fusuyama T. New Concepts in Operative Dentistry. Quintessence Publishing Co., Inc., Chicago, 1980
    9. Pashley DH. The effects of acid etching on the pulp-dentin complex. Oper Dent 1992; 17: 229-242.
    10. Kanca, J., Wet bonding: Effet of drying time and distance. America of Journal Dentistry. 1996b; 9:273-276
    11. Carvalho RM, Yoshiyama M, Pashley EL, Pashley DH. In virto study on the dimensional changes of human dentine after demineralization. Arch Oral Biol 1996;41:369-377
    12. Kanca, J., Resin bonding to wet subytrate I. Bonding to detine. Quintessence International, 1992, 23, 39-41
    13. Kanca, S., Effect of resin primer solvents and surface wetness on resin
    
    composite bond strength to dentine. American Journal of Dentistry, 1992, 5, 213-215
    14. Kanca J. A method for bonding to tooth structure using phosphoric acid as a dentine-enamel conditioner.Quintessence Int 1991;22:285-290.
    15. Meerbeek BV, Roshida Y, Lambrechts P, et al. A TEM study of two water-based adhesive systems bonded to dry and wet dentin [J]. J Dent Res, 1998, 77(1):50.
    16. Walshaw PR, McComb D. Clinical considerations for optional dentinal bonding. [J] Quintessence Iht, 1996, 27: 619.
    17. Nakabayashi, N., Pashley DH. Hybridization of Dental Hard Tissues. Quintessence Publishing Co., Ltd., Chicago, 1998.
    18. Gwinnett AJ. Moist versus dry dentin: Its effect on shear bond strength. Am J Dent 1992; 5:127-129。
    19. Pashley D. H. and Carvalho R. M. Dentine permeability and dentine adhesion. J. Dent. 1997;25:355-372.
    20. Suzuki, K. and Nakai, H., Adhesion of restorative resin to tooth substance. Treatment of acid-etched dentin by aqueous solution of HEMA. Journal of the Japanese Society of Dental Materials Devices. 1993,12:34-44.
    21. Nakabayashi, N. and Takarada, K., Effect of HEMA on bonding to dentin. Dental Materials, 1992,8:125-130.
    22. Tay, F. R., Gwinnett, A. I., Pong, K. U. and Wei, S. H. Y., The overwet phenomenon, and optical micromorphological study of moisture in the acid etched, resin-dentine interface, American Journal of Dentistry, 1995, 9, 43-48
    23. Xie, J., Powers,J. M and McGuckin, R., In vitro bond strength of two adheisives to enamel and dentine under normal and contaminated conditions. Dental Materials, 1993, 9, 195-299
    24. Tay FR, Gwinnett A J, Wei SHY. Micromorphological spectrum from overdrying to overwetting acid-conditioned dentine in water-free, acetone-based, single-bottle primers/adhesive. Dental Material, 1996,12:236-244.
    25. Watanabe I, Nakabayashi N, Pashley DH. Bonding to ground dentin using a self-etching PhenyL-P primer. J Dental Reserch, 1994, 73, 1212-1220.
    
    
    26. Swift EJ. Bonding systems for restorative materials-a comprehensive review. Pediatric Dentistry,1998, 20, 80-84
    27. Perdigao J, Lambrechts P, Van Meerbeek B, Braem M, Yildiz E, Yucel T, Vanherle G The interaction of adhesive systems with human dentin. Am j dent 1996;9:167-173
    28. Tay FR, Pashley, D. H., Water treeing-a potential mechanism for degradation of dentine adhesive. America Journal of Dentistry, 2002;(in press)
    29. Shono Y, Terashita M, Pashley EL, Brewer PD, Pashley DH. Effects of cross-sectional area on resin-enamel tensile bond strength. Dental Materials,1997;13:290-296
    30. EdnaL. Pashley, Kelli A. Agee, David H. Pashley, Franklin R. Tay. Effects of one versus two applications of an unfilled, all-in-one adhesive on dentine bongding. Journal of Dentistry 2002; 30:83-90
    31. Wang Y, Mcmann TR, Spencer P. Morphologic and chemical characterization of the dentin/self-etch interface, J Dent Res 2001; 80(Special issue). Abstract 1715.
    32. Bowen RL. Adhesive bonding of various material to hard tooth tiddues. J Dent Res 1965; 44:895-902
    33. American Dental Association Council on Dental Matericals. Instruments and equipment. Dentine bonding systems: an update. JADA 1987, 114:91-95
    34. Jacobsen T. Some effects of water on dentin bonding. Dent Mater 1995; 11:132-136
    35. Kanca J. A method for bonding to tooth structure using phosphoric acid as a dentin-enamel conditioner. Quintessence Int. 1991; 22:285-290
    36. Gwinnett AJ. Quantitative cntribution of resin infiltration/hybridization to dentin bonding. Am J Dent 1993; 6:7-9
    37. Watanabe I, Nakabayashi N. Bonding durability of photocured phenyl-p in TEGDMA to smear layer-retained bovine dentin. Quintessence Int 1993; 24: 335-342
    38. San, H., Shono, T., Sonoda, H., Takatsu,T., Ciucchi, B., Carvalho, R. and Pashley, D. H., Relationship between surface area for adhesion and tension bond strength. Evaluation of a microtensile bond test. Dental Materials,
    
    1994,10, 236-240.
    39. Yoshiyama, M., Carvalho, R. M., Sano, H., Homer, J. A., Brewer, P. D, and Pashley, D. H., Comparision of interracial morphology and strength of bonds made to superficial and deep dentine. American Journal of Dentistry, 1996, 8, 297-302
    40. Sano, H., Takatsu, T., Ciucchi, B. Homer, J. A., Matthews,w. G and P ashley, D. H., Nanolenkage:leakage within the hybrid layer. Operative Dentistry, 1995,20,18-25
    41. Gwinnett, A. J., Quantitative contribution of resin infiltration/hybridization to dentin bonding. American Journal of Dentistry, 1993, 6:7-9
    42. Nakabayashi,N., Nakamura, M. and Yasuda, N., Hybrid layer as a dentin bonding mechanism. Journal of Esthetic Dentistry, 1991,3, 133-138
    43. Pashley D.H., Ciuuhi B., Sano H. and Homer, J. A., Permeability of dentin to adhesive agents. Quintessence International, 1993,249,618-631
    44. Sano H. Takatsu, T., Ciuuhi B.,Russell, C. M. and Pashley D.H..Tensile properties of resin-infiltrated demineralized human dentin. Journal of Dental Research, 1995,74,1093-1102
    45. Pashley. D. H., Sano, H., Ciucchi, B., Carvalho, R. M. and Russell, C. M., Bond strength versus dentin structures: a modeling approach. Archives of Oral Biology, 1995,40, 1109-1118.
    46. Prati, C., Efickson, R. L., Tao, L., Simpson, M. D. and Pashley, D. H., Measurement of dentin permeability and wetness by use of the Periotron device. Dental Materials, 1992,7,268-273
    47. Ciucchi B., Bouillaguet, S., Holz, J. and Pashley, D. H., Dentinal fluid dynamics in human teeth,in vivo. Journal of Endodontology, 1995,21,191-194
    48. Hamirattisai C., Inokoshi, S., Hosoda, H. and Shimada, Y., Interfacial morphology of an adhesive composite resin and etched caries-affected dentine. Operative Dentistry, 1992,17,222-228
    49. Hamirattisai C., Inokoshi, S., Shimada, Y. and Hosoda, H., Adhesive interface between resin and dentin of cervical erosion/abrasion lesions. Operative Dentistry, 1993,18,138-143.
    
    
    50. Van Meerbreek,B., Braem, M., Lambrechts, P. and Vanherle, G, Morphological characterization of the interface between resin and sclerotic dentine. Journal of Dentistry, 1994, 22, 141-146
    51. Kaga M, Noda M, Ferracane J.L, Nakamura W, Oguchi H, Sano H. The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dental Materials 2001; 17:333-39
    52. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod 1996; 22:244-8
    53. Harold A, Okmoto A, Iwaku M, Hume WR. HEMA release from light-cured glass ionomer and compomer cements. Journal of Dental Research, 1997; 76(SI): 316.
    54. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB. Cytotoxicinteractive effects of dentin bonding components on mouse fibroblasts. Journal of Dental Research 1995; 74:1602-6.
    55. Gerzina TM, Hume WR. Effect of hydrostatic pressure on the diffusion of monomers through dentin in vitro. J Dent Res 1995; 74:369-73
    56. Hanks CT, Strawn SE, Wataha JC, Craig RG. Cytotoxic effects of resin components on cultured mammalian fibroblasts. Journal of Dental Research 1991; 70:1450-5
    57. Grieve AR, Alani A, Saunders WP. The effects on the dental pulp of a composite resin and two dentine bonding agents and associated bacterial microleakage. Int Endod J 1991; 24: 108-18.
    58. Chigira H, Manabe A, Hasegawa T, Yukitani W, Fujimitsu T, Itoh K, Hisamitsu H, Wakumoto S. Efficacy of various commercial dentin bonding systems. Dent Mater 1994; 10: 363-8.
    59. Imazato S, Ehara A, Torii M, Ebisu S. Antibacterial activity of dentin primer containing MDPB at, er curing. J Dent 1998; 26:267-71.
    60. Imazato S, Imai T, Russell RRB, Torii M, Ebisu S. Antibacterial activity of cured dental resin incorporating the antibacterial monomer MDPB and an adhesion-promoting monomer. J Biomed Mater Res 1998; 39:511-5.
    61. Satoshi Imazato, Yoshifumi Kinomoto, Hisashi Tarumi, Shigeyuki Ebisu, Franklin R, Tay. Antibacterial activity and bonding characteristics of an
    
    adhesive resin containing antibacterial monomer MDPB. Dental Materials 2003; 19:313-319
    62. Tanumiharja M, Burrow MF, Tyas MJ. Microtensile bond strengths of seven dentin adhesive systems. Dent Mater 2000; 16:180-7.
    63. Stanley HR. Trashing the dental literature—Misleading the general practitioners: A point of view. J Dent Res 1996; 75:1624-1626
    64. Rathbun MA, Craig RG, Hanks CT, Filisko FE. Cytotoxicity of a Bis-GMA dental composite before and after leaching in organic solvents. J Biomed Mater Res, 1991; 25:443-457
    65. Rueggeberg FA, Margeson DH. The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res, 1990; 69:1652-1658
    66. Sayegh F, Reed A. Tissue reaction to a new restorative material. J Prosthet Dent 1969; 22:468-478
    67. Gwinnett AJ, Tay FR. Early and intermediate time response of the dental pulp to an acid technique in vivo. American Journal of Dentistry, 1998; 10:35-44
    68. Tay FR. Pang WR, Gwinnett AJ, Wey SHY. A scanning electron microscopic study of the extent of resin penetration into human coronal dentin following a total etch technique in vivo. Cells and Materials, 1994; 4:317-29
    69. Cox CF, Keall CL, Keal HJ. Biocompatibility of dental materials in the absence of bacterial infection. Operative Dentistry 1987; 12:146-152.
    70. Brannstrom M,Nyborg H. Pulpal reaction to composite resin restorations. Journal of Prosthetic Dentistry 1982; 27:181-189.
    71. Cox, C. F.; Keall, C. L.; Keall, H. J.; Oetro, E.; and Bergenholtz, G. Biocompatibility of surface-sealed dentin materials against exposed pulps, J Prosthet Dent 1987; 57:1-8
    72. Onoe N. Study of adhesive bonding system as a direct pulp capping agent. Japanese Journal of Conservative Dentistry 1995;37:429-436.
    73. Akimoto N, Momoi Y, Kohno A, et al. Biocompa-tibility of Clearfil Liner Bong and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence International 1998;29:177-188.
    
    
    74. Kitasako Y, Inokoshi S, Tagami J, et al. Effects of direct resin pulp capping technique on short-term response of mechanically exposed pulps. Journal of Dentistry 1999;27:257-63.
    75. Pashley DH. Dynamics of the pulpo-dentin complex. Critical Review in Oral Biology and Medicing 1996;7:104-133.
    76. Versluis A, Tantbirojn D, Douglas WH. Dose incremental filling technique reduced polymerization shrinkage stresses? J Dent Res 1996; 75; 871-8.
    77. Labella R, Lambrechts P, Van Meerbeek B, Vanherle G Polymerization shrinkage and elasticity of fiowable composites and filled adhesives. Dent Master 1999;15:128-37
    78. Mehl A, Hickle R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without soft-stan-polymenzation'. Jdent 1997; 25:321-330.
    79. Rueggeberg FA, Caughman WF, Curtis Jr JW. Effect of light intensity and exposure duration on cure of resin composite. Operat Dent 1994; 19: 26-32.
    80. Sakaguchi RL, Berge HX, Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent 1998; 26:695-700.
    81. Silikas N, Eliades C,; Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000; 16: 292-6.
    82. Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. AM J Dent 1998; 10: 17-22.
    83. Rueggeberg FA, Caughman WF, Curtis Jr JW, Davis HC. Factors affecting cure at depths within light-activated resin composites. AM J Dent 1993; 6: 91-5.
    84. Shigeru Uno, Toru Tanaka, Asuka Natsuizaka, Tomoko Abo. Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light sourca. Dent Mater 2003;19: 147-152.
    
    
    86. Hussain RF, Nouri AM, Oliver RT. A new approach for measurement of cytotoxicity using colometric assay. J Immunol Methods, 1993,160:89-96.
    87. Stanley HR, Swerdlow H, Buonocore MG. Pulp reactions to anterior restorative materials. J AM Dent Assoc 1967; 75:132-141.
    88. Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: Their formation following direct pulp capping. Oper Dent 1996; 21:4-11.
    89. Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. AM J Dent 1998 Jan; 11 Spec No: S55-63.
    90. Cox CF, Bergenholtz G, Heys DR, Syed SA, Fitzgerald M, Heys PJ. Pulp capping of dental pulp mechanically exposed to oral microflora: A1-2 year observation of wound healing in the monkey. J Oral Pathol 1985; 14:156-168.
    91. Costa CAS, Vaerten MA, Edwards CA, Hanks CT. Cytotoxicity of current dental adhesive systems on immortalized odontoblast-cell line MDPC-23. Dent Mater 1999; 15: 434-41.
    92. Hank CT, Wataha JC, Parsell RR, Strawn SE. Delineation of cytotoxic c oncentration of two dentin bonding agents in vitro. J Endod 1992; 18: 589-96.
    93. Hank CT, Strawn SE, Wataha JC, et al. Cytotoxic effects of resin components on cultured mammalian fibroblasts. Journal of Dental Research 1991; 70: 1450-1455.
    94. Gerzina TM, Hume WR. Diffusion of monomers from bonding resin-resin composites combinations through dentine in vitro. Journal of Dentistry 1996; 24:125-128.
    95. Elbaum R, Rcmusat M, Brouillet JL. Biocompatibility of an enamel and dentin adhesive. Quintessence International 1992; 23: 773-782.
    96. Hebling J, Giro EMA, Costa CAS. Human pulp response after an adhesive system application in deep cavities. Journal of Dentistry 1999; 27: 557-564.
    97. Lyon HE, Mitchell RJ. Pulp protection and basing procedures: A survey of
    
    dental schools. Oper Dent 1983; 8:106-111.
    98. Matthews WG Showman CD, Pashley DH. Air blast-induced evaporative water loss from human dentine, in vitro. Arch Oral Biol 1993; 38:517-523.
    99. Moulding MB, Loney RW. The effect of cooling techniques on intrapulpal temperature during direct fabrication of provisional resorations. Int J Prosthodont 1991; 4: 332-336.
    100. Miller BC, Charbeneau GT. Sensitivity of teeth with and without cement bases under amalgam restorations: A clinical study. Oper Dent 1984; 9:130-135.
    101. Brannstrom M, Astrom A. The hydrodynamics of the dentin: Its possible relationship to dentinal pain. Int Dent J 1972; 22: 219-227.
    102. Pashley DH, Matthews WG. The effects of outward forced convective flow on inward diffusion in human dentine in vitro. Arch Oral Biol 1993; 38:577-582.
    103. Brannstrom M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 1984; 9: 57-68.
    104. Brannstrom M, Johnson G. Movements of the dentine and pulp liquids on application of thermal stimuli. Acta Ondontol Scand 1970; 28: 59-70.
    105. Silvestri AR, Cohen SH, Wetz JH. Character and frequency of discomfort immediately following restorative procedures. J Am Dent Assoc 1977; 95: 85-89.
    106. Suguki M., Jordan R. E., and Boksman L. Posterior composite resin restorative-clinical considerations. P. 455 In G. Vanberle et al. (eds.) Posterior Composite Resin Dental Restorative Materials. St. Paul: 3M Co., 1985.
    107. Pashley DH, Matthews WC. Zhang Y, Johnson M. Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli. Archives of Oral Biology 1996; 41: 1065-71.
    108. Hashieh IA, Franquin JC, Cosset A, Dejou J, Campa J. Relationship between dentine hydraulic conductance and the cytotoxicity of four dentine bonding resins in vitro. Journal of Dentistry 1998; 26: 473-7.
    109. Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. Journal of Dentistry 1997; 25: 355-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700