水泥混凝土路面耐久性评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前水泥混凝土路面早期病害严重,由路面耐久性不足引发的病害严重制约了水泥路面的发展。但现有的水泥路面耐久性评价体系不够完善,不能满足水泥路面发展的要求,迫切需要一种完善的评价体系对路面进行评价,为路面提供设计、养护、维修等参考依据。为完善路面的评价体系,本文从路面裂缝、断板、脱空、错台等几种典型病害引起的路面耐久性不足出发,分析病害的产生机理和影响因素;从路面组成材料和结构两方面,提出耐久性评价指标,建立水泥混凝土路面耐久性评价体系。
     本文提出断裂韧性、弯拉强度和基层材料冲刷系数作为材料耐荷性评价指标。通过二次正交回归实验分析得出符合耐久性的耐荷性指标和材料配合比设计建议值。耐候性方面,研究得出含气量是控制材料抗冻和抗盐冻剥蚀性能的主要因子,将含气量作为抗冻耐久性的控制指标,同时给出了满足耐候性的路面材料含气量取值范围。
     结构耐久性方面,以脱空半径为板底脱空的评价指标,优化了冲刷脱空预估模型,按照板底脱空半径对路面损坏状况进行了分级;路面错台以错台量为评价指标,分析半刚性基层错台产生机理,对错台量进行了预估,建立了错台量、标准轴载作用次数和冲刷系数之间的关系;接缝传荷方面,传力杆松动是传荷能力衰减的直接原因,提出考虑松动量的接缝传荷能力计算公式,通过控制传力杆直径和地基模量来降低传荷能力的衰减;针对刚性基层路面温度翘曲作用下产生开裂状况严重程度,分析了板厚、温度梯度、基层模量对面板工作性能的影响,提出用板厚和基层模量来控制温度翘曲,来提高路面的耐久性。
     综合以上分析,系统提出了路面耐久性评价体系和评价流程。最后本文从材料组成、配合比和结构设计方面,提出了提高水泥耐久性的措施。
The early disease of cement concrete pavement is serious at present, the disease caused by the road of insufficient durability has seriously restricted the development of the cement pavement. But the existing evaluation system of durability of concrete pavement is not perfect, can not meet the needs of the development of cement pavement. Therefore a perfect evaluation system for pavement is urgent need, to provide a reference for pavement design, maintenance and rehabilitation. To improve the road evaluation system, this paper based on several typical diseases caused by insufficient durability roads, such as cracks, broken plates, disengaging, dislocation, analyzed the generation mechanism of pavement disease and influencing factors; from the perspective of road material and structure composition, proposed evaluation index of concrete durability, and established the durability evaluation system of the concrete pavement.
     In this paper, fracture toughness, flexural-tensile strength and the index of the anti-scour ability of the base course are proposed as the evaluation index of the load-resistant performance. Through quadratic regression testing design and laboratory experiment, concludes the suggested value the index of the load-resistant performance and the optimum mixture ratio of cement concrete to meet the durability requirements. In the perspective of weathering resistance, obtained a result that air content is the main factor of the control of the performance of material frost-resistance and the deicer -scaling resistance, selected air control as the control parameter of the durability of concrete. As the same time, the range of pavement materials air content was given to meet the weathering resistance.
     In the perspective of Structural durability, Radius of the cavity was proposed as the index of the cavity beneath slab, and the prediction model of the erosion and cavity beneath slab was simplified, and the pavement condition classification was divided according the radius of cavity beneath slab; the amount of the faulting was selected as the index of faulting, the amount of the faulting was predicted and the relation was established among the amount of the faulting, the number of standard axle loads and the anti-scour coefficient; aspect of joint load-transfer, dowel bars'looseness is the immediate cause of the attenuation of load transfer, and the calculation formula of load transfer ability was proposed which considers the amount of looseness, and it can reduce the attenuation of joint load-transfer capacity by control the dowel bar diameter and the foundation modulus; according to condition that the influence of temperature warping was serious, analyzed the influences of thickness, temperature gradient, the base modulus to the workability of the panel and proposed using the thickness of the panel and base modulus to control the temperature warping and improve the durability of the concrete pavement.
     Synthesizes the above analysis, in this paper, Making a systematic suggestion for the concrete durability evaluation system and the process of comprehensive evaluation. At last, from the perspective of the material composition, mixture ratio and structure design, several advices and measures were proposed to improve the durability of cement concrete pavement.
引文
[1]徐世娘.混凝土双K断裂参数计算理论及规范化测试方法[J].三峡大学学报,2002,(1):227
    [2]郝培文,胡长顺,张炳乾.半刚性基层材料抗冲刷性能的研究[J].西安公路交通大学学报,2000
    [3]张擎.考虑冲刷脱空的水泥混凝土路面设计研究[D].西安:长安大学,2009
    [4]张显安.水泥混凝土路面板下脱空状况的分析与评定[D].长沙:长沙理工大学.2005
    [5]赵茂才.水泥混凝土路面板下脱空对使用寿命的影响分析[J].公路交通科技,2004,21(2):1-3
    [6]JTG D40-2002公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2002
    [7]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998
    [8]Friberg B F. Design of dowels in t ransverse joint s of concrete pavements[J]. Transactions of ASCE,1940,105:1076-1095
    [9]张宁,黄晓明.重复荷载下传力杆接缝运行特性[J].东南大学报,1998,28(2):89-95
    [10]桂柳高速公路K373+000-K441+000段旧水泥混凝土路面检测与调查报告[R].2006
    [11]JTJ 073.1-2001公路水泥混凝土路面养护技术规范[S].北京:人民交通出版社,2001
    [12]李鑫.水泥混凝土路面结构分析和开裂机理、维修技术研究[D].长沙:长沙理工大学,2007
    [13]杨颖.水泥混凝土路面断板和裂缝分析[J].黑龙江交通科技,2004,6:23-24
    [14]苏泉.水泥混凝土路面断板发生机理及预防[D].天津:河北工业大学,2002
    [15]罗晓勇,施养杭.混凝土断裂的研究现状与展望[J].四川建筑科学研究.2008,34(6):94-99
    [16]T.C. Powers. A working hypothesis for further studies of frost resistance. Journal of the American Concrete institute, Vol 16 (4):245-272.
    [17]张国强.混凝土抗盐冻研究[D].北京:清华大学,2005
    [18]Power T.C,. A working hypothesis for further studies of frost resistance. Journal of The American Concrete Institute,1945,16 (4)
    [19]傅智,李红.道路水泥混凝土含气量控制研究[J].公路,1998(4):1-7.
    [20]杨全兵,傅智,罗翥.水泥混凝土路面盐冻破坏的主要影响因素研究[J].科技成果推广,2004(33):34-36
    [21]尹红娣,孙雪飞.混凝土抗冻性试验分析[J].黑龙江交通科技,2008(10):20-22
    [22]朱唐亮.水泥混凝土板底脱空研究[J].山西建筑,2009,35(35):265-266
    [23]周文献,孙立军,阐胜男.水泥混凝土路面脱空与压浆处治研究综述[J].公路,2004,(12):194~199
    [24]盛燕萍.基于抗冲刷性能的水泥混凝土路面半刚性基层材料组成设计研究[D].西安: 长安大学,2010
    [25]潘艳珠,王端宜,谭宝龙.水泥混凝土路面板底脱空的原因及防治措施[J].广州大学学报,2006,5(1):71-72
    [26]杨庆国,易志坚,刘占芳.水泥混凝土路面错台机理研究[J].重庆交通大学学报,2008,27(5):712-715
    [27]肖益民,王之妍.水泥混凝土路面错台原因分析及处治方法[J].工程与建设,2007,21(4):632-634
    [28]鲍传富.浅析水泥混凝土路面错台病害综合治理[J].道路交通,2008,4(4):29-31
    [29]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2004
    [30]JTG E30-2005,公路工程水泥及水泥混凝土试验规程[S].北京:人民交通出版社,2005
    [31]唐春安,朱万成.混凝土损伤与断裂数值试验[M].北京:科学出版社,2003
    [32]邓学钧.路基路面工程[M].北京:人民交通出版社,2009
    [33]陈少峰,孙立,李振宝.混凝土盐冻破坏的试验研究[J].公路,2006(2004)216-219
    [34]郭宏星.含气量对混凝土抗冻性能的影响[J].建筑与工程,2007(29):455-456
    [35]锁利军,王秉纲,陈拴发,杨斌.接缝设传力杆水泥混凝土面层结构力学分析[J].长安大学学报,2008,28(3):30-35
    [36]龚先兵.基于水泥混凝土路面脱空板使用寿命的脱空等级划分方法[J].铁道科学与工程学报,2009,6(2):18-21
    [37]蒋应军,戴经梁.传力杆与混凝土界面的接触应力[J].中国公路学报,2007,20(2):29-33
    [38]NCHRP, mechanistic-empirical design of new and rehabilitated pavement structures part2-dsign inputs chapter 5 evaluation of existing pavements for rehabilitation[S], American:American Association of State Highway and Transportation Officials,2004
    [39]牛开民,俞建荣,陈荣生.碾压混凝土路面横向缩缝间距的研究[J].公路交通科技,1997,14(1)
    [40]W. A. Yrjanson. Econcrete in Pavement Design.International Conference on Concrete Pavement Design,Purdue.1997, pp:234-246
    [41]胡力群.半刚性基层材料抗冲刷性能试验研究[D].西安:长安大学,2003
    [42]Van Wijk, A. J., and Lovell, C.W. (1985). Erosion of subbase materials under rigid pavements[J]. Proc.3rd Int. Conf. On Concrete Pavement Design and Rehabilitation. Purdue University
    [43]HANSENEC, JOHANNESENR, ARMAGHANIJM. Field effects of water pumping beneath concrete pavements labs[J]. Journal of Transportation Engineering, ASCE,1991
    [44]邓学钧.路基路面工程[M].北京:人民交通出版社,2004
    [45]于晓中,居襄.混凝土的强度和破坏[J].水利学报.1983,2:22-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700