高性能的可伸缩图像编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,数字图像已在诸多领域有着广泛的应用。日益增长的海量数据,给存储器的容量,通信信道的带宽以及计算机的处理速度带来了前所未有的极大压力。如何有效地组织、存储、传输和恢复图像数据,或探索和研究压缩比更高,质量更好,复杂度更低的图像编码技术是现代信息处理的关键任务之一。随着因特网在全球范围的日益普及,各种新兴多媒体业务的相继出现,传统的编码方法面临巨大的挑战。除了应具有好的压缩效果外,图像编码还需要适应多变的应用环境,如用户的不同需求,异构网络支路的不同传输条件和终端的不同处理能力等等。
     本论文以探索满足上述要求的高性能图像编码方法为目标,围绕图像压缩的变换、量化和编码等几个主要环节而展开研究,重点开发了基于小波变换和基于稀疏分解的两类高性能的可伸缩图像编码器。论文的创新性研究的主要内容为:
     1.系统深入地研究嵌入式小波图像编码技术,对当前先进的小波系数组织和编码方法进行分类总结和探讨。
     2.深入研究小波系数集合划分的原理和方法,提出一种自适应的分层树集合分裂方法,扩展了传统的空间方向树结构,将多个方向树组合起来共同表示一个非重要系数集合,节约了集合表示的比特数。
     3.探索研究矢量量化技术在嵌入式图像编码中的应用,提出一个格型矢量量化与分层树集合分裂算法相结合的编码方案。该方案选用规则的格点作为码书,不需要训练和存储,克服了传统矢量量化计算和存储复杂度高的缺点。改进多级增益一形状矢量量化方法并使之与集合分裂算法有机结合,实现了对细节较丰富图像更好的编码效果。
     4.在分析和借鉴多种先进编码方法的基础上,提出一个高性能的嵌入式小波编码算法。该算法联合采用了基于聚类的重要系数表示法和基于零块结构的非重要系数表示法,以及基于上下文的算术编码,共同挖掘小波子带内聚集和子带间相似的特性。在嵌入准则的指导下,提出基于聚类表征的分类和排序方案,借助链表结构有效地实现了精细的分数位平面编码,在较低复杂度下实现了比当前先进算法更好的有失真和无失真编码性能。在此基础之上提出了一种高伸缩性的图像编码方案。该方案利用位平面编码和小波分解固有的多分辨率特性实现了质量和分辨率的可伸缩。它解除了编解码之间的约束,编码方无需了解解码方的具体状况,生成的具有层次结构的码流可以很方便高效地被解析和解码,以满足用户对质量和分辨率的不同需求。
     5.研究信号稀疏逼近问题,设计适合图像表示的冗余几何原子库,探索快速图像稀疏分解方法。对流行的匹配追踪算法进行深入地分析和研究。总结了匹配追踪分解的特点,并提出用库原子的空间相对距离来估计其互相关信息的方法。在此基础上提出一系列快速图像稀疏分解算法,在保持主客观质量的前提下,大大提高了图像分解的速度。比如对512×512测试图像,相对于最新的全局匹配追踪算法,本文算法的速度增益达到115.39倍,而PSNR平均下降0.25 dB。
     6.探索研究稀疏分解在图像编码中的应用。对图像进行快速稀疏分解并分析和总结分解原子的分布规律,提出与之相适应的块划分编码方法,对原子位置参数和系数进行联合编码。形成的编码器在计算复杂度、编码效率和伸缩性能等方面都优于最新的匹配追踪编码器,特别是在前两方面,其优势十分明显。比如对512×512测试图像,编码率为0.5 bpp时本文编码器的平均PSNR增益高达1.75 dB。特别地,该编码器提供了较传统方法更灵活的伸缩性,允许通过编码域的参数变换来获得任意分辨率大小的重建图像,可在网络或移动终端的图像业务中得到很好的应用。
Nowadays,digital image has found wide applications in many areas.The vastamount of data imposes unprecedented pressure on storage capacity,transmissionbandwidth and computer processing speed.To find efficient ways to organize,store,transmit and restore image data or develop coding methods which enjoy the propertiesof high compression ratio,good quality and low complexity,is one of the key tasks ofmodern signal processing.With the popularity of Internet and the emergence of diversemultimedia applications,great challenges have been presented to traditional methods.Besides the need of high compression efficiency,image coding is also required to adaptto heterogeneous environments,including different demands from users,varioustransmission conditions as well as different receiver capacities.
     Aiming at developing high performance image coding methods which meet theabove requirements,this dissertation investigates major issues of image coding,including transform,quantization and coding.The main results are as follows:
     1.The embedded wavelet image coding techniques are studied in detail.Theadvanced organization and coding methods of wavelet coefficients are classified anddiscussed.
     2.The principle and methods of set partitioning are investigated.An adaptive setpartitioning algorithm is proposed.The structure of spatial orientation tree is extendedand several trees are joined together to represent one insignificant set,resulting in bitsavings in set representation.
     3.The application of vector quantization to embedded image coding is investigated.A coding scheme which combines the algorithm of set partitioning in hierarchical tree(SPIHT) and lattice vector quantization is proposed.In this scheme,regular lattices arechosen as the codebook,no training or storage of the codebook or significant encodingcomputations is required and thus the high complexity problem of traditional vectorquantization is overcome.The multistage gain-shape vector quantization is modifiedand incorporated into SPIHT system,which provides better coding performances forimages with more details.
     4.By combining several advanced techniques,an efficient embedded waveletcoding algorithm is proposed.It employs morphological representation,quadtreepartitioning as well as efficient context-based adaptive coding to jointly exploit bothwithin-subband clustering and cross-subband similarity of wavelet coefficients.Guidedby the embedding principle,a cluster-based classification and sorting strategy isproposed.Based on the list structure,a fine fractional bit-plane coding is achieved withrelatively low complexity.Experimental results show that the proposed algorithmoutperforms the state-of-the-art coders for both lossy and lossless compression.Inaddition,a highly flexible image codec is proposed based on above algorithm.Itexploits inherent multi-resolution and multi-precision nature of subband bitplane codingto achieve both resolution and rate scalability.Importantly,the encoding can beindependently conducted without knowledge of the final decoding situation.Ahierarchical codestream structure is established and it can be easily parsed and reorderedto meet the different requirements of the users.
     5.The problem of sparse approximation is studied and fast methods of sparseexpansion over the redundant geometric dictionary are investigated.The popularmatching pursuit (MP) algorithm and its properties are analyzed thoroughly.A novelidea of estimating the cross-correlation between dictionary atoms is introduced and aseries of fast MP algorithms are proposed.Experimental results show that the proposedalgorithms offer important complexity reductions while maintaining the highapproximation performances.For instance,compared with the latest full searchalgorithm,a speed-up gain up to 115.39 times is achieved for 512×512 test images withan average PSNR loss of 0.25 dB.
     6.A geometric image coding scheme based on fast MP algorithms is designed.Thedistributions of selected atoms and coefficients resulting from image decomposition arestudied.A block partitioning coding method is proposed to jointly code the atompositions and coefficient magnitudes.The proposed method has striking advantagesover the latest MP coder in computational complexity,coding efficiency as well asscalability.For instance,for 512×512 test images an average PSNR gain of 1.75 dB isachieved.Notably,thanks to the geometrical structure of the dictionary,the new coderprovides interesting adaptability features which allow the codestream to be easily andefficiently decoded at any spatial resolution.This makes it very attractive for various imaging applications over heterogeneous networks.
引文
[1]W.B.Pennebaker,J.L.Mitchell.JPEG still image compression standard.New York:Van Nostrand Reinhold,1993
    [2]ISO/IEC 15444-1.Information technology-JPEG 2000 image coding system-part 1:core coding system,2000
    [3]ISO/IEC 11172-2.Information technology-coding of moving pictures and associated audio for digital storage media at up to about 1.5Mbit/s,1992
    [4]ISO/IEC 13818-2.Information technology-generic coding of moving pictures and associated audio information:video,1995
    [5]ISO/IEC 14496-2.Information technology-coding of audio-visual objects-part2:visual,1999
    [6]ITU-T Recommendation H.261.Video codec for audio visual services at p × 64 kbit/s,1994
    [7]ITU-T Recommendation H.263.Video coding for low bit rate communication,1996
    [8]ITU-T Recommendation H.264.Advanced video coding for generic audiovisual services,2003
    [9]C.E.Shannon.A mathematical theory of communication.Bell System Tech.Journal,1948,27:379-423,623-656
    [10]陈运,周亮,陈新.信息论与编码.北京:电子工业出版社,2002
    [11]张春田,苏育挺,张静.数字图像压缩编码.北京:清华大学出版社,2006
    [12]李在铭.数字图像处理压缩与识别技术(第一版).成都:电子科技大学出版社,2000
    [13]沈兰荪.图像编码与异步传输.北京:人民邮电出版社,1998
    [14]吴乐南.数据压缩(第一版).北京:电子工业出版社,2000
    [15]T.S.Huang.Run length coding and its extensions.Picture Bandwidth Compression,New York:Gordon and Beach,1972,231-264
    [16]D.A.Huffman.A method for the construction of minimum redundancy codes.Proc IRE 40,1952,9:1098-1101
    [17]R.M.Witten,R.Neal,J.G.Cleary.Arithmetic coding for data compression.Communications of the ACM,1987,30:520-540
    [18]孙圣和,陆哲明.矢量量化技术及应用.北京:科学出版社,2002
    [19]M.Kunt,A.Ikonomopoluos,M.Kocher.Second generation image coding.Techniques.Proc. IEEE,1985,73(4):549-574
    [20]A.E.Jacquin.Image coding based on a fractal theory of iterated contractive image transformations.IEEE Trans.Image Process.,1992,1 (1):18-30
    [21]I.Daubechies.Ten lectures on wavelets.Phildaelphia:SIAM,1992
    [22]S.Mallat.A wavelet tour of signal processing.San Diego:Academic Press,1997
    [23]D.Taubman,M.Marcellin.JPEG2000:image compression fundamentals,standards and practice.Boston:Kluwer,2001
    [24]Z.X.Xiong,K.Ramchandran,M.T.Orchard.A comparative study of DCT and wavelet-based image coding.IEEE Transactions on Circuits and Systems for Video Technology,1999,9(5):692-695
    [25]沈兰荪,卓力.小波编码与网络视频传输.北京:科学出版社,2005
    [26]N.N.Ponomarenko,K.O.Egiazarian,V.V.Lukin,et al.High-quality DCT-based image compression using partition schemes.IEEE Signal Process Lett.,2007,14(2):105-108
    [27]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12):1975-198l
    [28]E.J.Cand(?)s.Ridgelets:theory and applications.[PhD Thesis].California:Stanford Univ.,1998
    [29]D.L.Donoho,M.R.Duncan.Digital curvelet transform:strategy,implementation and experiments.Proc.SPIE,2000,4056:12-29
    [30]E.L.Pennec.,S.Mallat.Sparse geometric image representation with bandelets.IEEE Trans.Image Process.,2005,14(4):423-438
    [31]M.N.Do,M.Vetterli.The contourlet transform:an efficient directional multiresolution image representation.IEEE Trans.Image Process.,2005,14(12):2091-2106
    [32]M.N.Do,M.Vettedi.Orthonormal finite ridgelet transform for image compression.IEEE International Conference on Image Processing,2000,2:367-370
    [33]N.Belbachir,P.Gobel.The contourlet transform for image compression.Conference on Physics in signal and image processing,2005,251-256
    [34]倪伟,郭宝龙,杨镠.图像多尺度几何分析新进展.计算机科学,2006,33(2):234-262
    [35]V.Temlyakov.Nonlinear methods of approximation.Foundations of Comp.Math.,2002,3(1):33-107
    [36]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社,2006
    [37]S.Mallat,Z.Zhang.Matching pursuits with time-frequency dictionaries.IEEE Trans.Signal Process.,1993,41(12):3397-3415
    [38]R.Gribonval,E.Bacry.Harmonic decompositions of audio signals with matching pursuit.IEEE Trans.Signal Process.,2003,51(1):101-111
    [39]廖斌,许刚,王裕国.基于非抽样小波字典的低速率视频编码.软件学报,2004,15(2):221-228
    [40]R.Neff,A.Zakhor.Very low bit-rate video coding based on matching pursuits.IEEE Trans.Circuits Syst.Video Technol.,1997,17(1):158-171
    [41]R.M.Figueras i Ventura,P.Vandergheynst,P.Frossard.Low-rate and flexible image coding with redundant representations.IEEE Trans.Image Process.,2006,15(3):726-739
    [42]A.Rahrnoune,P.Vandergheynst,P.Frossard.Flexible motion-adaptive video coding with redundant expansions.IEEE Trans.Circuits Syst.for Video Technol,2006,16(2):178-190
    [43]O.O.V.Villegas,R.P.El(?)as,P.R.Villela,et al.Edging out the competition:lossy image coding with wavelets and contourlets.IEEE Potentials,2008,3:39-44
    [44]D.G.Pich(?).Complex bases,number systems and their application to fractal-wavelet image coding:[PhD Thesis].Waterloo:Univ.of Waterloo,2002
    [45]冯永超.基于匹配跟踪的图像分形编码研究:[博士学位论文].武汉:武汉大学,2002
    [46]M.Elad,R.Goldenberg,R.Kimmel.Low bit-rate compression of facial images.IEEE Trans.Image Process.,2007,16(9):2379-2383
    [47]B.A.Olshausen,D.J.Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images.Nature,1996,381 (6583):607-609
    [48]D.L.Donoho,A.G.Flesia.Can recent innovations in harmonic analysis ‘explain’ key findings in natural image statistics.Computation in Neural Systems,2001,12(3):371-393
    [49]P.Vandergheynst,P.Frossard.Efficient image representation by anisotropic refinement in matching pursuit.IEEE International Conference on Acoustics,Speech and Signal Process.,2001,3:1757-1760
    [50]J.M.Shapiro.Embedded image coding using zerotrees of wavelet coefficients.IEEE Trans.Signal Process.,1993,41:3445-3462
    [51]A.Said,W.A.Pearlman.A new,fast,and efficient image codec based on set partitioning in hierarchal trees.IEEE Trans.Circuits and Syst.for Video Technol.,1996,6:243-250
    [52]A.Islam,W.A.Pearlman.An embedded and efficient low-complexity hierarchical image coder.SPIE Visual Communications and Image Processing,1999,3653:294-305
    [53]W.Pearlman,A.Islam,N.Nagaraj,et al.Efficient,low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits and Syst. for Video Technol., 2004, 14(11):1219-1235
    [54] S. D. Servetto, K. Ramchandran, M. T. Orchard. Image coding based on a morphological representation of wavelet data. IEEE Trans. Image Process., 1999, 8(9):1161-1174
    [55] D. Taubman. High performance scalable image compression with EBCOT. IEEE Trans. Image Process., 2000, 9(7): 1158-1170
    [56] S. Mallat. Multifrequency channel decomposition of images and wavelet models. IEEE trans. ASSP, 1989, 37(12):2091-2110
    [57] S. Mallat. A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell, 1989, 11(7):674-693
    [58] W. Sweldens. The lifting scheme: a custom design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal., 1996, 3(2): 186-200
    [59] W. Sweldens. The lifting scheme: a construction of second generation wavelets. SLAM J. Math. Anal., 1997, 9(2):511-546
    [60] B. B. Chai, J.Vass, X. Zhuang. Significance-linked connected component analysis for wavelet image coding. IEEE Trans. Image Process., 1999, 8(6):774-784
    [61] J. M. Zhong, C. H. Leung, Y. Y. Tang. Image compression based on energy clustering and zero-quadtree representation. IEE Proc.-Vis. Image Signal Process., 2000, 147(6): 564-570
    [62] M. J. Tsai, J. Villasensor, F. Chen. Stack-run image coding. IEEE Trans. Circuits and Syst. for Video Technol., 1996,6:519-521
    [63] A. S. Lewis, G. Knowles. Image compression using the 2-D wavelet transform. IEEE Trans. Image Process., 1992, 1:244-250
    [64] G. Sullivan, R. Baker. Efficient quadtree coding of images and video. LEEE Trans. Image Process., 1994,3:327-331
    [65] G. Schuster, A. Katsaggelos. An optimal quadtree-based motion estimation and motion-compensated interpolation scheme for video compression. LEEE Trans. Image Process., 1998,7:1505-1523
    [66] A. Munteanu, J. Cornells, G. Van der Auwera, et al. Wavelet-based lossless compression scheme with progressive transmission capability. International Journal of Imaging Systems and Technology, 1999, 10(1):76-85
    [67] P. Schelkens, A. Munteanu, J. Barbarien, et al. Wavelet coding of volumetric medical datasets. LEEE Trans. Medical Imaging 2003, 22 (3):441-458
    [68] S. T. Hsiang. Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling. IEEE International Symposium on Circuits and systems, 2000, 3:662-665
    [69] S. T. Hsiang. Highly scalable subband/wavelet image and video coding: [PhD Thesis]. New York: Rensselaer Polytechnic Institute, 2002
    [70] M. J. Weinberger, J. Rissanen, R. B. Arps. Applications of universal context modeling to lossless compression of gray-scale images. IEEE Trans. Image proeess., 1996,4:575-586
    [71] C. Chrysafis, A. Ortega. Efficient context-based entropy coding for lossy wavelet image compression. Data Compression Conference, 1997, 3:241-250
    [72] X. Wu. High-order context modeling and embedded conditional entropy coding of wavelet coefficients for image compression. Conference on Signals, Systems, and Computers, 1997, 2:1378-1382
    [73] X. Wu. Context quantization with fisher discriminant for adaptive embedded wavelet image coding. Data Compression Conference, 1999, 2:102-111
    [74] D. Taubman, A. Zakhor. Multirate 3-D subband coding of video. IEEE Trans. Image Process., 1994,3:572-588
    [75] W. K. Carey, L. A. V. Pischke, S. S. Hemami. Rate-distortion based scalable progressive image coding. SPIE Conference on the Mathematics of Data and Image Coding, Compression, and Encription, 1998, 197-208
    [76] J. Li, S. Lei. An embedded still image coder with rate-distortion optimization. IEEE Trans. Image Process., 1999, 8:913-924
    [77] W. Pennebaker, J. Mitchell. Probability adaptation for arithmetic coders. U.S. Patent 5099440, 1992
    [78] E. Ordentlich, M. Weinberger, G. Seroussi. A low-complexity modeling approach for embedded coding of wavelet coefficients. IEEE Data Compression Conference, 1998, 30:408-417
    [79] N. Sprljana, S. Grgicb, M. Grgicb. Modified SPIHT algorithm for wavelet packet image coding. Real-Time Imaging, 2005, 11:378-388
    [80] S. Chang, L. Carin. A modified SPIHT algorithm for image coding with a joint MSE and classification distortion measure. IEEE Trans. Image Process., 2006, 15(3):713-725
    [81] S. Cho, W. Pearlman. A full-featured, error-resilient, scalable wavelet video codec based on the set partitioning in hierarchical trees (3-D SPIHT) algorithm. IEEE Trans. Circuits and Syst. for Video Technol, 2002, 12:157-171
    [82]J.Kim,R.Mersereau,Y.Altunbasak.A multiple-substream unequal error-protection and error-concealment algorithm for SPIHT-coded video bitstreams.IEEE Trans.Image Process.,2004,13:1547-1553
    [83]A.A.Kassim,W.S.Lee.Embedded color image coding using spiht with partially linked spatial orientation trees.IEEE Trans.Circuits and Syst.for Video Technol.,2003,13(2):203-206
    [84]J.Fang,W.Shyu,W.CS.Clustering SPIHT output bits for wireless communications.Electronics Letters,2003,39:235-236
    [85]H.Danyali,A.Mertins.Flexible,highly scalable,object-based wavelet image compression algorithm for network applications.IEE Proc.-Vis.Image Signal Process.,151 (6):498-510
    [86]A.Said,W.A.Pearlman.Low-complexity waveform coding via alphabet and sample-set partitioning.Visual Communications and Image Processing,1997,3:25-37
    [87]T.Gan,W.L.Zhu.Novel set partitioning algorithm in image coding.International Conference on Communication,Circuits and Systems,2005,1:538-541
    [88]J.Chen,W.Zhang,Z.Zhang.Image coding based on adaptive set partitioning.Electronics Letters,2004,40(11):661-663
    [89]甘涛,朱维乐.基于四叉树结构的小波格型矢量量化.电子科技大学学报,2005,34(4):460-463
    [90]胡征,杨有为.矢量量化原理与运用.西安:西安电子科技大学出版社,1998
    [91]M.N.Nasser,A.K.Robert.Image coding using vector quantization:a review.IEEE Trans.Commun.,1998,36(8):957-971
    [92]Y.Linde,A.Buzo,R.M.Gray.An algorithm for vector quantizer design.IEEE Trans.Commun.,1980,28(1):84-95
    [93]陆哲明.矢量量化编码算法及应用研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [94]A.Gersho.Asymptotically optimal block quantization.IEEE Trans.Inf.Theory,1979,25:373-380
    [95]A.D.Subramaniam,W.R.Gardner,B.D.Rao.Low-complexity source coding using Gaussian mixture models,lattice vector quantization,and recursive coding with application to speech spectrum quantization.IEEE Trans.Audio,Speech,and Language Process.,2006,14(2):524-532
    [96]S.Kasaei,M.Deriche,B.Boashash.A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization.IEEE Trans.Image Process.,2002, 11(12):1365-1378
    [97]H.Bai,C.Zhu,Y.Zhao.Optimized multiple description lattice vector quantization for wavelet image coding.IEEE Trans.Circuits and Syst.for Video Technol.,2007,17(7):912-917
    [98]J.H.Conway,N.J.A.Sloane.Sphere packings,lattices and groups.New York:Springer,1992
    [99]J.H.Conway,N.J.A.Sloane.Fast quantizing and decoding algorithms for lattice quantizer and codes.IEEE Trans.Inform.Theory,1982,3(28):227-232
    [100]E.A.B.Da Silva,D.G.Sampson,M.Ghanbari.A successive approximation vector quantizer for wavelet transform image coding.IEEE Trans.Image Process.,1996,5:299-310
    [101]J.Knipe,X.Li,B.Han.An improved lattice vector quantization scheme for wavelet compression.IEEE Trans.Signal Process.,1998,46:239-243
    [102]D.Mukherjee,S.K.Mitra.Successive refinement lattice vector quantization.IEEE Trans.Image Process.,2002,11(12):1337-1348
    [103]D.Mukherjee,S.K.Mitra.Vector SPIHT for embedded wavelet video and image coding.IEEE Trans.Circuits and Syst.for Video Technol.,2003,13(3):231-246
    [104]L.H.Fonteles,M.Antonini.High dimension lattice vector quantizer design for generalized gaussian distributions.IEEE International Conference on Image Processing,2007,4:185-188
    [105]D.Mukherjee,S.K.Mitra.Generalized variable dimensional set partitioning for embedded wavelet image compression.IEEE International Conference on Acoustics,Speech and Signal Process.,1999,4:3145-3148
    [106]K.Peng,J.C.Kieffer.Embedded image compression based on wavelet pixel classification and sorting.IEEE Trans.Image Process.,2004,13(8):1011-1017
    [107]Z.Xiong,K.Ramchandran,M.T.Orchard.Space-frequency quantization for wavelet image coding.IEEE Trans.Image Process.,1997,6(5):677-693
    [108]刘文耀.小波图像编码与专用VLSI设计.北京:电子工业出版社,2006
    [109]T.Gan,Y.M.He,W.L.Zhu.Efficient embedded wavelet codec based on list structure.Image and Vision Computing,2008,26(7):898-904
    [110]章毓晋.图像工程中册一图像分析(第二版).北京:清华大学出版社,2005
    [111]P.Maragos,R.Schafer.Morphological systems for multidimensional signal processing.Proc.IEEE,1990,78(4):690-710
    [112]X.Wu,N.Memon.Context-based,adaptive lossless image coding.IEEE Trans.Commun., 1997,45:437-444
    [113]M.J.Weinberger,G.Seroussi,G.Sapiro.Loco-Ⅰ lossless image compression algorithm:principles and standardization into jpeg-ls.IEEE Trans.Image Process.,2000,9(8):1309-1324
    [114]R.Calderbank,I.Daubechies,W.Sweldens,et al.Wavelet transforms that map integers to integers.Applied and Computational Harmonic Analysis,1998,5(3):332-369
    [115]A.Said,W.A.Pearlman.An image multiresolution representation for lossless and lossy compression.IEEE Trans.Image Process.,1996,5:1303-1310
    [116]J.N.Bradley,C.M.Brislawn,T.Hopper.The FBI wavelet/scalar quantization standard for grayscale fingerprint image compression.SPIE Conference on Visual Communications and Image Processing,1993,1961:293-304
    [117]SPIHT Software [Online]Available:http://ipl.rpi.edu/SPIHT
    [118]JasPer Software [Online]Available:http://ece.ubc.ca/~mdadams/jasper
    [119]Z.Xiong,B.J.Kim,W.A.Pearlman.Multiresolutional encoding and decoding in embedded image and video coders.IEEE International Conference on Acoustics,Speech and Signal Process.,1998,6:3709-3712
    [120]T.Gan,N.Zhou,W.L.Zhu.Efficient,highly scalable wavelet image coding for network applications.International Conference on Communications,Circuits and System,2006,1:493-496
    [121]T.Gan,Y.M.He,W.L.Zhu.High performance scalable image coding.Journal of systems engineering and electronics,2007,18(4):795-800
    [122]R.R.Hocking,R.N.Leslie.Selection of the best subset in regression,analysis.Technometrics,1967,9:531-540
    [123]张春梅,尹忠科,肖明霞.基于冗余原子库的信号超完备表示与稀疏分解.科学通报,2006,5l(6):628-633
    [124]L.Daudet.Sparse and structured decompositions of signals with the molecular matching pursuit.IEEE Trans.Audio,Speech,and Language Process.,2006,14(5):1808-1816
    [125]G.Monaci,O.Divorra,P.Escoda,et al.Analysis of multimodal signals using redundant representations.IEEE International Conference on Image Processing,2005,3:46-49
    [126]M.Elad,M.Aharon.Image denoising via learned dictionaries and sparse representation.International Conference on Computer Vision and Pattern Recognition,2006,2:17-22
    [127]S.Jaggi,W.C.Carl,S.Mallat,et al.Silhouette recognition using high resolution pursuit. Pattern Recognition, 1999, 32(5):753-771
    [128] P. J. Phillips. Matching pursuit filters applied to face identification. IEEE Trans. Image Process., 1996,7(2):301-305
    [129] A. Shmilovici, O. Maimon. Application of adaptive matching pursuit to adaptive control of nonlinear dynamic systems. IEE Proceedings Control Theory and Application, 1998, 145(6): 575-582
    [130] S. Qian, D. Chen. Signal representation using adaptive normalized Gaussian functions. Signal Process., 1994, 36(1):1-11
    [131] J. A. Tropp. Topics in sparse approximation: [PhD Thesis]. Austin: Univ.of Texas at Austin, 2004
    [132] G. Davis, S. Mallat, M. Avellaneda. Adaptive greedy approximations. Constructive Approximation, 1997, 13:57-98
    [133] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SLAM J. Sci. Comp., 1999, 20(1):33-61
    [134] D. L. Donoho, M. Elad. Maximal sparsity representation via 11 minimization. Proc. Nat. Aca. Sci, 2003, 100:2197-2202
    [135] D. L. Donoho, X. Huo. Uncertainty principles and ideal atomic decompositions. IEEE Trans. Inf. Theory, 2001, 47(6):2845-2862
    [136] M. Elad, A. M. Bruckstein. A generalized uncertainty principle and sparse representations in pairs of bases. IEEE Trans. Inf. Theory, 2002,48(5):2558-2567
    [137] R. Gribonval, M. Nielsen. Sparse representations in unions of bases. IEEE Trans. Inf. Theory, 2003,49(6):3320-3325
    [138] L. H. Friedman, W. Stuetzle. Projection pursuit regression. Journal of the American Statistical Association, 1981,76:817-823
    [139] S. Chen, S. A. Billings, W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 1989, 50(5):1873-1896
    [140] V. N. Temlyakov. Weak greedy algorithms. Advances in Computational Mathematics, 2001, 2(2-3):213-227
    [141] V. N. Temlyakov. A criterion for convergence of weak greedy algorithms. Advances in Computational Mathematics, 2002, 17(2):269-280
    [142] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. 27th Annual Asilomar Conference on Signals,Systems and Computers,1993,1:40-44
    [143]M.B.Wakin,J.K.Romberg,H.Choi,et al.Wavelet domain approximation and compression of piecewise smooth images.IEEE Trans.Image Process.,2006,15(5):1071-1087
    [144]B.A.Olshausen,D.J.Field.Sparse coding with an overcomplete basis set:a strategy employed by V1.Vision Research,1997,37:3311-3325
    [145]F.Bergeaud,S.Mallat.Matching pursuit of images.IEEE International Conference Image Processing,1995,1(10):53-56
    [146]R.M.Figueras i Ventura,O.Divorra Escoda,P.Vandergheynst.A matching pursuit full search algorithm for image approximations.Tech.Rep.TR-ITS-31,ITS-EPFL,2004
    [147]邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000,28(9):78-84
    [148]S.Safavian,H.Rabiee,M.Fardanesh.Projection pursuit image compression with variable block size segmentation.IEEE Signal Process.Lett.,1997,4(5):117-120
    [149]H.Rabiee,S.R.Safavian,T.R.Gardos,et al.Low-bit-rate subband image coding with matchingpursuits.Proc.SPIE,1998,3309:875-880
    [150]H.Li,I.Wolff.Image coding approach based on multiscale matching pursuits operation.SPIE Visual Communications and Image Processing,1999,1118-1129
    [151]H.Li,I.Wolff.Multiscale matching pursuit for image coding.International Symposium on Signal Processing and its Applications,1999,805-808
    [152]D.L.Donoho,Y.Tsaig,I.Drori,et al.Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit.Tech.Rep.2006-02,Standford,2006
    [153]A.Rahmoune,P.Vandergheynst,P.Frossard.The M-term pursuit for image representation and progressive compression.IEEE International Conference on Image Processing,2005,1:11-14
    [154]A.Rahmoune.Image and video representation and scalable coding using redundant dictionaries:[PhD Thesis].Lausanne:Swiss Federal Institute of Technology,2005
    [155]廖斌,许刚,王裕国.二维匹配跟踪自适应图像编码.计算机辅助设计与图形学学报,2003,15(9):1084-1090
    [156]P.Frossard,P.Vandergheynst,R.M.Figneras i Ventura.High flexibility scalable image coding.Proc.VCIP,2003,2:281-296
    [157]R.M.Figueras i Ventura,P.Frossard,P.Vandergheynst.Evolutionary multiresolution matching pursuit and its relations with the human visual system.European Signal Processing Conference,2002,2:395-398
    [158]Y.M.He,T.Gan,H.J.Wang.Multiscale Pursuit Scheme for Image Approximation.International Conference on Communication,Circuits and Systems,2008,2:797-800
    [159]P.Burt,E.Adelson.The laplacian pyramid as a compact image coder.IEEE Trans.Comm.,1983,31:482-540
    [160]A.M.Bruckstein,M.Elad,R.Kimmel.Down-scaling for better transform compression.IEEE Trans.Image Process.,2003,12(9):1132-1144
    [161]M.M.Yeung,B.Liu.Efficient matching and clustering of video shots.Int.Conf.Image Process.,1995,1:338-341
    [162]M.M.Yeung,B.L.Yeo,W.Wolf,et al.Video browsing using clustering and state transitions on compressed sequences.Multimedia Computing and Networking,1995,2417:399-413
    [163]B.L.Yeo,B.Liu.Rapid scene analysis on compressed video.IEEE Trans.Circuits and Syst.for Video Technol.,1995,5(6):533-544
    [164]T.Gan,Y.M.He,W.L.Zhu.Sparse approximation using fast matching pursuit.International Symposium on Intelligent Signal Processing and Communication Systems,2007,28:449-452
    [165]T.Gan,Y.M.He,W.L.Zhu.Fast M-term pursuit for sparse image representation.IEEE Signal Process.Lett.,2008,15:116-119
    [166]R.M.Figueras i Ventura.Sparse image approximation with application to flexible image coding:[PhD Thesis].Lausanne:Swiss Federal Institute of Technology,2005
    [167]G.H.Watson,K.Gilholm.Signal and image feature extraction from local maxima of generalized correlation.Pattern Recognition,1998,31(11):1733-1745
    [168]L.Peotta,L.Granai,P.Vandergheynst.Image compression using an edge adapted redundant dictionary and wavelets.Eurasip Signal Processing Journal,special issue on Sparse Approximations in Signal and Image Processing,2006,86(3):444-456
    [169]R.Neff,A.Zakhor.Modulus quantization for matching-pursuit video coding.IEEE Trans.Circuits Syst.Video Technol.,2000,10(6):895-912
    [170]V.K.Goyal,M.Vetterli,N.T.Thao.Quantized overcomplete expansions in R~N:analysis,synthesis and algorithms.IEEE Trans.Inf.Theory,1998,44(1):16-31
    [171]P.Frossard,P.Vandergheynst,R.M.Figueras i Ventura,et al.A posteriori quantization of progressive matching pursuit streams.IEEE Trans.Signal Process.,2004,52(4):525-535
    [172]甘涛,何艳敏,朱维乐.基于互相关估计的快速图像逼近算法.电子学报,2008,36(5):1019-1023
    [173]P.Frossard.Robust and multiresolution video delivery:from H.26x to matching pursuit based technologies: [PhD Thesis]. Lausanne: Swiss Federal Institute of Technology, 2000
    [174] R. Neff, A. Zakhor. Matching pursuit video coding-part I: dictionary approximation. IEEE Trans. Circuits Syst. Video Technol, 2002, 12 (1):13-21
    [175] P. Jost, P. Vandergheynst, P. Frossard. Tree-based pursuit: algorithm and properties. IEEE Trans. Signal Process., 2006, 54 (12): 4685-4697
    [176] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans. Image Process., 2006, 54(11):4311-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700