几种地衣和地衣内生菌发酵液的活性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地衣(Iichens)是植物界一个特殊的类群,是真菌(fungi)和藻类(algae)合的共生复合体。目前,全球地衣植物约有525属,共计26000多种。其组成真菌绝大多数属于子囊菌,约占地衣型真菌总数的98%。地衣分布极为广泛,从南北两极到赤道,从高山到平原,从森林到荒漠,都有地衣的存在。
     地衣次生代谢产物主要包括缩酚酸及酯类、缩酚酸环醚类、多取代单苯环化合物、蒽醌及卤代蒽醌化合物、二苯并呋喃类化合物、萜类、甾体类化合物等及地衣多糖类成分,到目前为止,已经确定出来结构的地衣化学物质700余种,大多数具有广泛的生物学活性。
     国内外对地衣内生菌的分离及次生代谢产物的研究现在相对较少,自2007年Priyani A. Paranagama等人首次报道地衣内生菌化学成分至今,主要是车永胜等人对地衣内生菌化学成分报道较多,且报道的化学结构都较新颖,并有一定的抗肿瘤、抗真菌等活性。
     本文对四种采自中国青海省祁连县的地衣植物柔扁枝衣(Evernia divaricata (L.) Ach.),金丝带(Lethariella zahlbruckneri)的化学成分进行了系统研究,共分离获得化合物11个,利用波谱学以及X-单晶衍射的方法鉴定其结构,主要包括缩酚酸类(Depsides),二苯并呋喃类(Dibenzofuranes)和缩酚酸、缩酚酸环醚裂解产物。对分离得到的化合物进行了生物活性研究,化合物Usnic acid和Divaric acid显示较强抗菌活性。
     采用刮皮层方法对采自云南丽江老君山的21个属的地衣内生菌进行分离培养,获得263株内生菌,通过ITS序列分析,确定出51株地衣内生菌的分类地位,还对其中9株内生菌进行了HPLC结合活性的粗筛,确定出4株较好的内生菌(20102559, 20102550B, 20081189, 20102595A)。
     利用广泛的柱层析结合半制备HPLC,从菌株20081189的乙酸乙酯部分分离鉴定19个化合物,包括6个新化合物: 1,8a-dihydro-7,8-dihydro-7,8-dihydroxy- 3,7-dimethyl-2-benzopyran-6-one (7)、5-chloro-7,8-dihydro-7,8-dihydroxy-3,7-dimet hyl-2-benzopyran-6-one (8)、2,3-dihydro-2-n-butyloxyanhydrofulvic acid (13)、2,3- dihydro-2-methoxyanhydrofulvic acid (14)、13-decarboxylanhydrofulvic acid (15)、12-dehydroxylcitromycetin (19)。对分离自菌株20081189的化合物8-19活性实验表明:化合物19和13对人白血病细胞K562表现出中等的生长抑制活性,IC50分别为20.0和32.2μM。化合物9, 10, 11对白色念珠菌(sc5314)具有中等抑制活性,其MIC均为128μg/ml。
     对地衣内生菌株20102595A利用柱层析结合半制备HPLC多种分离手段,从乙酸乙酯提取物中分离鉴定3个化合物:采用微量稀释法测定其MIC值,结果显示3个化合物均具有中等抗白色念珠菌活性。
Lichen is a special symbiotic of cyanobacteria and filamentous fungi. at present, there are 26000 species of belongs to 525 families. Most of the fungi are ascomycete, account for 98% of the amount of fungi. The lichens are widespread from the north and south poles to equator, from the mountains to the plain, from the forest to desert.
     The metabolisms of lichens include polyols and carbohydrates、xanthones and bis- xanthones、aromatic、dibenzofuranes、chromanes and chromones、depsides、depsidones、cleavage products of depsides and depsidones. To the present, more than 700 lichen compounds have been identified, most of them show good bio-activity.
     There are a few reports about the isolation and the metabolism of endolichenic fungi. Most of the research about the chemical constitutes of endolichenic fungi is from Yongsheng Che, from the first report about endolichenic in 2007 by Priyani A. Paranagama. The structure of constitutes is very novel and they show modest antitumor and antifungal activities.
     This thesis studied the metabolisms of two species of lichens Evernia divaricata (L.) Ach. and Lethariella zahlbruckneri (Dr.) Krog., from which we afford 11 compounds , and we identified their structure by spectrum and Single crystal X-ray, most of which belongs to depsides、dibenzofuranes and cleavage products of depsides and depsidones. Two of the isolates (usnic acid and divaric acid) showed potent antibacterial activity against four bacterial.
     The method of scraping cortex was adapted to isolate endolichenic fungi from Laojun Mountain, Yunnan Province, and 263 strains of fungi was afford from 21 families. 51 strains of fungi’s classic position were determined by ITS analysis, nine of which were selected for antibiotic activity and HPLC analysis, 4 strains were selected for further chemical study.
     We isolated and identified 19 compounds from the EtOAc extract of strain of 20081189 by semi-prepared HPLC and silica gel column chromatograph, including 6 new compounds:1,8a-dihydro-7,8-dihydro-7,8-dihydroxy-3,7-dimethyl-2-benzopyra n-6-one (7)、5-chloro-7,8-dihydro-7,8-dihydroxy-3,7-dimethyl-2-benzopyran-6-one (8)、2,3-dihydro-2-n-butyloxyanhydrofulvic acid (13)、2,3-dihydro-2-methoxyanhydroful vic acid (14)、13-decarboxylanhydrofulvic acid (15)、12-dehydroxylcitromycetin (19). The bio-activity assay of compounds 8-19 show: compounds 19 and 13 exhibit modest cytotoxicity against human leukemia cell line K562, with IC50 is 20.0 and 32.2μM respectively. Compounds 9、10、11 show modest inhibitory on Candida albicans (sc5314), with the MIC value is 128μg/ml respectively.
     We isolated and identified 3 compounds from the strain of 20102595A with the methods of semi-prepared HPLC and silica gel column chromatograph. All of the isolates showed modest antifungal activity against C. albicans.
引文
[1] Wei, J., An enumeration of lichens in China. 1991: International Academic Publishers Beijing.
    [2]魏江春,中国药用地衣. 1982:科学出版社,北京.
    [3]张海娟,五种植物的化学成分及其生物活性研究. 2007.
    [4] Mason, E., The biology of lichens. 1983: Edward Arnold.
    [5] Huneck, S. and I. Yoshimura, Identification of lichen substances. 1996: Springer-Verlag.
    [6] Gavin J, T.R., Isolement et identification de com- posés phénoliques et monoterpéniques de la mousse de chêne (Evernia prunastri (L.) Ach.). Helv Chim Acta, 1975. 58(190–194).
    [7] Piattelli, M. and M. Giudici de Nicola, Anthraquinone pigments from Xanthoria parientina (L.). Phytochemistry, 1968. 7(7): p. 1183-1187.
    [8] Steiner, M. and G. Hauschild, Die Anthrachinone von Caloplacaceae und Teloschistaceae (Lichenes). Berichte der Deutschen Botanischen Gesellschaft, 1970. 4: p. 23-34.
    [9] Culberson, C.F., W.L. Culberson, and A. Johnson, Chemical and botanical guide to lichen products. 1969: University of North Carolina Press.
    [10] Fox, C.H. and S. Huneck, The formation of roccellic acid, eugenitol, eugenetin, and rupicolon by the mycobiont Lecanora rupicola. Phytochemistry, 1969. 8(7): p. 1301-1304.
    [11] Elix, J. and C. Crook, The chemistry of foliicolous lichens. I: Constituents of Sporopodium vezdeanum and S. xantholeucum. Mycotaxon, 1992. 44(2): p. 409-415.
    [12] Yang, D.M., et al., The structures of eumitrins A1, A2 and B:: The yellow pigments of the lichen, Usnea bayleyi (Stirt.) Zahlbr. Tetrahedron, 1973. 29(3): p. 519-528.
    [13] Culberson, C.F., W.L. Culberson, and A. Johnson, Genetic and environmental effects of growth and production of secondary compounds in Cladonia cristatella. Biochemical Systematics and Ecology, 1983. 11(2): p. 77-84.
    [14]高小宁,孙晓飞, and许琼明,核桃楸青果皮化学成分研究.中成药, 2008. 30(12): p. 1850-1851.
    [15] Nishitoba, Y., et al., Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry, 1987. 26(12): p. 3181-3185.
    [16] Elix, J.A. and K.D. Ernst-Russell, A catalogue of standardized thin layer chromatographic data and biosynthetic relationships for lichen substances. 1993: Australian National Univ., Dep. of Chemistry.
    [17] Elix, J. and D. Venables, 4-O-Methyllividic acid, a new lichen depsidone. Mycotaxon (USA), 1993.
    [18] Corbett, R. and S.D. Cumming, Lichens and fungi. Part VII. Extractives from the lichen Sticta mougeotiana var. dissecta del. J. Chem. Soc. C, 1971: p. 955-960.
    [19] Elix, J., A. Whitton, and A. Jones, Triterpenes from the lichen genus< I> Physcia. Australian Journal of Chemistry, 1982. 35(3): p. 641-647.
    [20] Gavin, J., G. Nicollier, and R. Tabacchi, Composants volatils de la <>(Evernia Prunastri (L.) ACH.) 3e communication. Helvetica Chimica Acta, 1978. 61(1): p. 352-357.
    [21] Lenton, J.R., L.J. Goad, and T.W. Goodwin, Sterols of the mycobiont and phycobiont isolated from the litchen Xanthoria parietina. Phytochemistry, 1973. 12(9): p. 2249-2253.
    [22] Elix, J., J. Evans, and T. Nash, New Depsides From< I> Dimelaena Lichens. Australian Journal of Chemistry, 1988. 41(11): p. 1789-1796.
    [23]赵小钒,松萝酸的抑菌实验研究.食品科学, 2000. 21(3): p. 42-44.
    [24] Honda, N., et al., Antimycobacterial activity of lichen substances. Phytomedicine, 2010. 17(5): p. 328-332.
    [25] Halama, P. and C.V. Haluwin, Antifungal activity of lichen extracts and lichenic acids. BioControl 2004. 49: p. 95–107.
    [26] K nig, G.M. and A.D. Wright, 1H and 13C?\NMR and biological activity investigations of four lichen?\derived compounds. Phytochemical Analysis, 1999. 10(5): p. 279-284.
    [27] Hoffman, A.M., et al., Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 2008. 69(4): p. 1049-1056.
    [28]靳菊情and欧阳雪宇,松罗酸的提取和抗癌活性研究.西北药学杂志, 1996. 11(005): p. 211-212.
    [29] Bézivin, C., et al., Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine, 2003. 10(6-7): p. 499–503.
    [30] Perry, N.B., et al., Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. The Lichenologist, 1999. 31(06): p. 627-636.
    [31] Ogmundsdottir, H., et al., Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. The Journal of pharmacy and pharmacology, 1998. 50(1): p. 107.
    [32] Takai, M., Y. Uehara, and J.A. Beisler, Usnic acid derivatives as potential antineoplastic agents. Journal of Medicinal Chemistry, 1979. 22(11): p. 1380-1384.
    [33] Omarsdottir, S., J. Freysdottir, and E.S. Olafsdottir, Immunomodulating polysaccharides from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine, 2007. 14(2-3): p. 179-184.
    [34] Hirabayashi, H., et al., Extracapsular spread of squamous cell carcinoma in neck lymph nodes: prognostic factor of laryngeal cancer. The Laryngoscope, 1991. 101(5): p. 502-506.
    [35] Scirpa, P., et al., A zinc sulfate and usnic acid preparation used as post-surgical adjuvant therapy in genital lesions by Human Papillomavirus]. Minerva ginecologica, 1999. 51(6): p. 255.
    [36] Mitchell, J. and S. Shibata, Immunologic Activity of Some Substances Derived from Lichenized Fungi1. Journal of Investigative Dermatology, 1969. 52(6): p. 517-520.
    [37] Rademaker, M., Allergy to lichen acids in a fragrance. Australasian journal of dermatology, 2000. 41(1): p. 50-51.
    [38] G. Amo de Paza, J.R., M.P. Gómez-Serranillosb, ? , O.M. Palominob, and M.E.C. E. González-Burgosb, A. Crespoa, HPLC isolation of antioxidant constituents from Xanthoparmelia spp. Journal of Pharmaceutical and Biomedical Analysis 2010. 53: p. 165–171.
    [39] Luo, H., et al., Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar biology, 2009. 32(7): p. 1033-1040.
    [40] Inoue, H., M. Noguchi, and K. Kubo, Site of inhibition of usnic acid at oxidizing side of photosystem 2 of spinach chloroplasts. Photosynthetica (Czechoslovakia), 1987.
    [41] Follmann, J.F., Medical care and health insurance: a study in social progress. 1963: RD Irwin.
    [42] Ramaut, J., J. Petit, and A. Maquinay, Cochlearia pyrenaica-plante calaminaire. Nat. Belg, 1972. 53(9): p. 475-478.
    [43] Whiton, J.C. and J.D. Lawrey, Inhibition of Cladonia cristatella and Sordaria fimicola ascospore germination by lichen acids. The Bryologist, 1982. 85(2): p. 222-226.
    [44] Whiton, J.C. and J.D. Lawrey, Inhibition of crustose lichen spore germination by lichen acids. The Bryologist, 1984. 87(1): p. 42-43.
    [45] Bucar, F., et al., Anti-proliferative lichen compounds with inhibitory activity on 12 (S)-HETE production in human platelets. Phytomedicine, 2004. 11(7-8): p. 602-606.
    [46] Umezawa, H., et al., Isolation of lecanoric acid, an inhibitor of histidine decarboxylase from a fungus. The Journal of antibiotics, 1974. 27(8): p. 587.
    [47] Vicente, C. and B. Cifuentes, Reversal by L-cysteine of the inactivation of urease by L-usnic acid. Plant Science Letters, 1979. 15(2): p. 165-168.
    [48] Shibuya, M., et al., Inhibition of Prostaglandin Biosynthesis by 4-O-Methylcryptochlorophaeic Acid;: Synthesis of Monomeric Arylcarboxylic Acids for Inhibitory Activity Testing and X-Ray Analysis of 4-O-Methylcryptochlorophaeic Acid. Chemical & pharmaceutical bulletin, 1983. 31(2): p. 407-413.
    [49] Higuchi, M., et al., Inhibition of Tyrosine Activity by Cultured Lichen Tissues and Bionts. Planta medica, 1993. 59: p. 253-253.
    [50] Lawrey, J.D., Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. The Bryologist, 1989. 92(3): p. 326-328.
    [51] Strobel, G., et al., Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with pacific yew (Taxus brevifolia). MYCOTAXON-ITHACA NY-, 1993. 47: p. 71-71.
    [52] Petrini, O. and P. Fisher, Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycological research, 1990. 94(8): p. 1077-1080.
    [53] Suryanarayanan, T., et al., Occurrence of non-obligate microfungi inside lichen thalli. Sydowia, 2005. 57: p. 120-130.
    [54] B.C. Behera , N.V., Anjali Sonone, Urmila Makhija, Antioxidant and antibacterial properties of some cultured lichens. Bioresource Technology 2007.
    [55] Kannangara, B., R. Rajapaksha, and P. Paranagama, Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Letters in Applied Microbiology, 2009. 48(2): p. 203-209.
    [56] Paranagama, P.A., et al., Heptaketides from Corynespora sp. Inhabiting the Cavern Beard Lichen, Usnea cavernosa: First Report of Metabolites of an Endolichenic Fungus (1). Journal of Natural Products, 2007. 70(11): p. 1700-1705.
    [57] Gang Ding, Y.L., Shaobin Fu, Shuchun Liu, Jiangchun Wei, and Yongsheng Che, Ambuic Acid and Torreyanic Acid Derivatives from the Endolichenic Fungus Pestalotiopsis sp. J. Nat. Prod., 2009. 72: p. 182–186.
    [58] Zhang, F., et al., Allenyl and Alkynyl Phenyl Ethers from the Endolichenic Fungus Neurospora terricola. Journal of Natural Products, 2009. 72(10): p. 1782-1785.
    [59] Wang, Y., et al., Oxepinochromenones, Furochromenone, and their Putative Precursors from the Endolichenic Fungus Coniochaeta sp. Journal of Natural Products, 2010. 73(5): p. 920-924.
    [60] Wijeratne, E.M.K., et al., Maximizing Chemical Diversity of Fungal Metabolites: Biogenetically Related Heptaketides of the Endolichenic Fungus Corynespora sp.(1). Journal of Natural Products, 2010. 73(6): p. 1156-1159.
    [61] Li, E., et al., Pestalotheols A-D, Bioactive Metabolites from the Plant Endophytic Fungus Pestalotiopsis theae. Journal of Natural Products, 2007. xxx(xx).
    [62] Ding, G., et al., Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. Journal of Natural Products, 2008. 71(4): p. 615-618.
    [63] Brodo, I.M., S.D. Sharnoff, and S. Sharnoff, Lichens of North America. 2001: Yale Univ Pr.
    [64] Duman, D.C., Determination of Usnic Acid Levels in Various Lichen Species by High Performance Liquid Chromatography and their Antimicrobial Activities. Turkish Bulletin of Hygiene and Experimental Biology 2007. 64(3): p. 17-21.
    [65] Aslan, A., et al., Antioxidant and Antimicrobial Properties of the Lichens Cladonia foliacea,Dermatocarpon miniatum, Everinia divaricata, Evernia prunastri, and Neofuscella pulla. Pharmaceutical Biology, 2006. 44(4): p. 247–252.
    [66] Halama, P. and C. Van Haluwin, Antifungal activity of lichen extracts and lichenic acids. BioControl, 2004. 49(1): p. 95-107.
    [67]姚伟琴, et al.,骆驼蓬醇提取物杀虫活性初步研究.西北植物学报, 2004. 24(6): p. 1096-1099.
    [68] Culberson, C.F. and H. Kristinsson, Studies on the Cladonia chlorophaea Group: A New Species, a New meta-Depside, and the Identity of" Novochlorophaeic Acid". The Bryologist, 1969. 72(4): p. 431-443.
    [69]赵小钒,黑龙江省两种地衣植物化学成分研究.植物研究, 1999. 19(4): p. 457-460.
    [70]孙汉董, et al.,七种云南地衣植物的化学成分.云南植物研究, 1986. 8(4): p. 483-488.
    [71] Huneck, S., et al., The absolute configurations of (+)-usnic and (+)-isousnic acid. X-ray analyses of the (-)-[alpha]-phenylethylamine derivative of (+)-usnic acid and of (-)-pseudoplacodiolic acid, a new dibenzofuran, from the lichen. Tetrahedron Letters, 1981. 22(4): p. 351-352.
    [72]殷彩霞, et al.,云南丽江长茎松萝酚性成分研究.云南师范大学学报, 1996. 16(3): p. 56-60.
    [73] Durrani, A.A. and J.H.P. Tyman, Long-chain phenols. Part 16. A novel synthesis of homologous orsellinic acids and their methyl ethers. J. Chem. Soc., Perkin Trans. 1, 1980: p. 1658-1666.
    [74] Dyke, H., et al., Oxidation of Alkyl 1, 6-Dihydroorsellinates. A New Method for the Synthesis of Methyl Orsellinate and Homologs. Australian journal of chemistry, 1987. 40(2): p. 431-434.
    [75] Culberson, C.F., W.L. Culberson, and A. Johnson, The Ramalina americana complex (Ascomycotina, Ramalinaceae): chemical and geographic correlations. The Bryologist, 1990. 93(2): p. 167-186.
    [76] Chamy, M.C., et al., Studies on Chilean Lichens, VII. The Phenolic Constituents of Protusnea malacea. Journal of Natural Products, 1985. 48(2): p. 307-309.
    [77]张秀娟, et al.,绒毛白蜡果实提取物的抑菌作用研究.西北植物学报, 2009(4): p. 824-828.
    [78]李药兰, et al.,长瓣金莲花中原金莲酸的分离和生物活性.暨南大学学报(自然科学版), 2002. 23(1): p. 124-126.
    [79] Niu, D., et al., A chemotaxonomic study of Lethariella zahlbruckneri and L. smithii (lichenized Ascomycota: Parmeliaceae) from Hengduanshan Mountains. The Lichenologist, 2007. 39(06): p. 549-553.
    [80]孙汉董, et al.,四种药用地衣的化学成分.植物学报, 1990. 32(10): p. 783-788.
    [81] Whalley, W., Application of the modified gattermann reaction to methyl and ethyl orsellinate. J. Chem. Soc, 1949: p. 3278-3280.
    [82] Caccamese, S., et al., Methyl -Orcinolcarboxylate and Atranol from the Lichen Stereocaulon vesuvianum. Journal of Natural Products, 1986. 49(6): p. 1159-1160.
    [83] Lawrey, J.D. and P. Diederich, Book of Abstracts. 2005: XVII International Botanical Congress, Vienna, Austria.
    [84] Arnold, A., et al., Are tropical fungal endophytes hyperdiverse? Ecology Letters, 2000. 3(4): p. 267-274.
    [85] Petrini, O., Fungal endophytes of tree leaves. Microbial ecology of leaves, 1991: p. 179¨C197.
    [86] Arnold, A.E., et al., 2007.
    [87] Carmichael, J., et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Research, 1987. 47(4): p. 936.
    [88]张军民, et al.,雪松松针化学成分研究(Ⅱ).中药材, 2010(007): p. 1084-1086.
    [89]杜国顺, et al.,灯台叶中的非碱性成分.中国天然药物, 2007. 5(004): p. 259-262.
    [90]陈苹, et al.,海南粗榧内生真菌S26化学成分研究.中国药物化学杂志, 2008. 18(4).
    [91]马志敏and陈兴荣,地衣类植物雪茶的化学成分研究.时珍国医国药, 2001. 12(10): p. 872-873.
    [92] Vleggaar, R., P.S. Steyn, and D.W. Nagel, Constitution and absolute configuration of austdiol, the main toxic metabolite from< i> Aspergillus ustus. J. Chem. Soc., Perkin Trans. 1, 1974: p. 45-49.
    [93]王宁,王金辉, and李铣,北柴胡地上部分化学成分的分离与鉴定.沈阳药科大学学报, 2005. 22(5): p. 342-344.
    [94] Xu, J., et al., Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Journal of Natural Products, 2009. 72(4): p. 662-665.
    [95] Capon, R.J., et al., Citromycetins and Bilains A¨CC: New Aromatic Polyketides and Diketopiperazines from Australian Marine-Derived and Terrestrial Penicillium spp. Journal of Natural Products, 2007. 70(11): p. 1746-1752.
    [96] Yamauchi, M., et al., Studies on the syntheses of heterocyclic compounds containing benzopyrone. Part 5. Total synthesis of fulvic acid. J. Chem. Soc., Perkin Trans. 1, 1987: p. 389-394.
    [97] Fujita, K.I. and Y. Nagamine, Mode of action of anhydrofulvic acid against Candida utilis ATCC 42402 under acidic condition. Journal of antibiotics, 1999. 52(7): p. 628-634.
    [98] Yamauchi, M., S. Katayama, and T. Watanabe, Studies on the syntheses of heterocyclic compounds containing benzopyrone. Part 6. Biomimetic total synthesis of citromycetin. J. Chem. Soc., Perkin Trans. 1, 1987: p. 395-398.
    [99] Hayakawa, Y., et al., Structure of a new microbial metabolite, neuchromenin. Tetrahedron Letters, 1996. 37(35): p. 6363-6364.
    [100] Qu, J., et al., Antifungal dibenzofuran bis (bibenzyl) s from the liverwort Asterella angusta. Phytochemistry, 2007. 68(13): p. 1767-1774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700