松软煤层煤巷掘进突出危险性预测的连续流量法技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在突出煤层中,存在着很多由松软煤体构成的煤层。由于松软煤体的硬度低、瓦斯放散速度快,煤体透气性差,当在这种煤层的煤巷中进行掘进时,突出危险性较大,给现场的工人的人身安全带来极大的威胁,同时大大的增加了防突的工作量,煤巷掘进速度大大放慢,导致矿井采掘失衡。目前,常规的煤巷突出预测通常为点预测,存在诸多缺陷。本文根据国内外煤巷现有突出预测技术特点和存在的问题,采用了连续流量法对松软煤层煤巷的突出危险性进行预测,这是一种“线预测”技术。
     根据前苏联科学家的И.B.包布洛夫的观点,在掘进工作面前方卸压带内进行掘进,一般不会发生突出。如果卸压带的长度较短,而掘进的速度过快,则容易使集中应力带内煤体突然暴露,其煤体内所含的高压瓦斯快速解吸,形成高瓦斯压力梯度,极容易造成突出。本文根据蒋承林教授的煤与瓦斯突出球壳失稳机理及初始释放瓦斯膨胀能的观点,提出了一种连续流量法的突出线预测技术。通过连续实时记录打钻过程中解吸出来的瓦斯流量,来判断工作面前方卸压带的分布,以此确定工作面前方突出煤体的分布区域,从而为准确预测煤巷的突出危险性提供依据。
     本文分析了煤巷掘进过程中出现的几种突出现象及其原因;详细介绍了松软煤体力学特点、破坏类型、吸附性大小。分析了松软煤层工作面前方卸压带突出危险性低,而集中、原始应力带突出危险性高的原因。
     建立起了煤巷掘进工作面前方煤体球坐标下的力学模型,推导出平衡方程,并求解出切向和径向应力解和弹塑性区域半径。通过数值计算得到:弹塑性区域半径随着采掘深度的增大而增大,但随着内聚力和内摩擦角的增大而减小。利用FLAC3D模拟了应力场,分析了煤体最大主应力、弹塑性半径与煤层倾角的变化关系,弹塑性半径与弹性模量的关系。
     总结了钻孔瓦斯涌出规律特点;分别建立了钻孔周围煤体的瓦斯径向渗流模型、掘进头周围煤体瓦斯球向渗流模型和钻屑煤体中瓦斯渗流模型,并推导出其渗流方程,求出其解析解;通过数值计算分析了稳态渗流和非稳态渗流情况下,钻孔瓦斯涌出规律;应用经验公式来模拟了煤屑瓦斯涌出规律。
     分析了现有连续流量法预测装置各部件的使用方法、工作原理及其操作流程。提出了一种动态敞口式煤屑封堵瓦斯的方法,利用外加煤屑增大煤屑出口处的瓦斯渗流阻力,迫使麻花钻杆钻进过程中从钻孔涌出的瓦斯从阻力较小的气体流速传感器中流出。这样就可以在测定时直接采用麻花钻杆向煤层打钻而不必考虑要把钻杆密封在一个密闭空间了。
     制定了流速传感器、位移传感器的标定方案。通过一系列的实验,拟合出大小流速传感器的电流和气体流量的线性曲线、位移传感器的电流与位移的线性曲线。
     分析了动态敞口式煤屑封堵瓦斯气体的原理,气体泄漏原因。进行一系列的泄漏率实验,得到:随着风量的增大,漏风率逐渐减小。在现场实际应用中效果良好,说明这种动态敞口式煤屑封堵瓦斯气体的方法是可靠的。
     利用连续流量法预测设备,在梁北煤矿二松软煤层11071风巷进行现场应用。通过分析瓦斯流量曲线研究了连续流量法的煤巷突出预测指标;提出了一种流量面积矩概念,利用流量面积和其面心距工作面的长度来判断预测范围内煤体的突出危险性大小。瓦斯流量的面积越大,其面心距工作面的距离越短,这个煤巷工作面的突出危险性就越大。此外,为将连续流量法的预测结果与传统的煤巷突出预测指标进行对比,在现场预测同时测定了相对应钻屑量、钻屑解吸指标,并在采掘过程中观察了每个循环中是否存在着瓦斯突出灾害。目前,通过对采集到的六组实验数据进行分析,给出了这个工作面不发生突出的连续流量法的安全值,随着现场数据的积累,将可以得到煤巷发生突出的临界值。
     该论文有图94幅,表19个,参考文献116篇。
There are lots of soft-coal seams in the outburst coal. For the soft-coal has low hardness, high speed of gas scattering, poor permeability, the outburst risk of coal seams becomes higher and it threats the workers'safety seriously, meanwhile, outburst prevention workload greatly increasing, excavating speed greatly slower, leading to the mining imbalance during driving in the coal tunnel. The conventional outburst forecast on coal roadway is point prediction and it has many defects. Based on the existing problems of outburst prediction and characteristics on the coal roadway at home and abroad, the continuous flow method is used to liner forecast the outburst risk of soft-coal. This is a kind of'liner' prediction technology.
     According to the view of the Soviet Union scientistsИ.В.Павлов, there is no coal and gas outburst risk when excavations in the pressure relief zone. If the pressure relief zone is short, but excavating velocity is too fast, it's easy to expose the coal in the concentrated stress zone, and the high-pressure gas desorbs fast, forming high gas pressure gradient, which likely cause outburst. Based on Professor Jiang Chenglin's theory:the principle of the "spherical shell stability losing" mechanism and the initial releasing gas expansion energy, The technology of continuous flow used to outburst forecast was proposed. Through continuous real-time recording gas flow desorbs from drilling, the scope of pressure relief zone, the regional distribution of outburst coal are determined.
     The several outburst phenomenon and its causes are analyzed during driving in coal roadway. The physical characteristics, damage type, adsorption of soft coal are detailed studied. The reasons is analyzed that the outburst danger of the pressure relief zone is low in soft coal, while the concentration and original stress zone is high.
     The mechanical model of spherical coordinates that coal body before the excavation workface is established and its balance equation is derived, and the tangential and radial stress solution and the plastic zone radius are solved. Conclusions are obtained by numerical:the elastic-plastic region radius increases along with the excavation depth increases, but increases along with the cohesive force and the angle of internal friction reduces. Stress field is simulated using FLAC3D, The coal body biggest principal stress, the elastic-plasticity radius and the coal bed inclination angle change relations, elastic-plasticity radius and elasticity coefficient relations are analyzed.
     The gas emission law from drilling is summarized; That the gas's radial flow model around the coal drilling, spherical flow model of coal around the driving workface and gas flow model from the drilling cuttings were established, and flow equations were deduced, its analytical solution were solved; That the gas emission law in the borehole in case of the steady-state and unsteady flow were analyzed through numerical calculation; That the litter gas emission laws were simulated with the empirical equations.
     The use, the principle and operation process of every components of continuous flow method prediction device were analysised. A method was put forward that sealing gas with coal duff as dynamic and open type, using the manner that plusing coal duff to increase the resistance of gas flow at the clinder'exit, and forcing the gas gush from drill flow out of gas flow sensor where the resistance is less during the drilling with twist drilles. It can guarantee directly use the twist drilles to drill in coal seam, and regardless sealing the twist drilles in a colsed space.
     The calibration scheme of Flow Velocity Sensor and Displacement Sensor were made. By a series of experiments, the electric current and gas flux linear curve of Flow Velocity Sensor, as well as the electric current and displacement linear curve of Displacement Sensor were fit.
     The principle of plugging gas with dynamic open coal duff and the gas leakage reason were analyzed. Through a series of leakage experiments show that the air leakage rate decreases with increasing air volume. It shows that the method is reliable.
     Continuous flow forecast equipment was used in theNo.II-1 soft-coal seam 11071 wind roadway of LiangBei coal mine.Through analyzing the gas flow curve, coal roadway outburst prediction indicator with continuous flow method was studied. A kind of the concept of flow-area was put forward, and then the outburst dangerous of coal roadway was judged through the flow-area and the distance from the center to its working face. The larger of the area of gas flow, and the shorter of the center distance from working face, then the greater of the outburst dangerous of coal roadway working place.In addition, compare to forecasting results of continuous flow method and traditional indexes of coal roadway outburst prediction, in the corresponding forecasting period determining drillings volume,desorption index of drill-cuttings, and observing whether there is any gas dynamic phenomenon in each circulating footage in the mining process,and then using the acquisition of the line predictor to judge whether there is outburst dangerous. At present,secure value of flow method has been given while the working face do not occur coal and gas outburst,With the accumulation of field data, the critical value will be gotten when coal and gas outburst occurs in the coal roadway.
     There are 94 pictures and 19 tables and 116 references.
引文
[1]聂百胜.煤矿煤岩瓦斯动力灾害预防理论与技术进展[J].2009.11中国科技论文在线.
    [2]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [3]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及其防治技术[M].徐州:中国矿业大学出版社,1998。
    [4]孙和应,常松岭.煤与瓦斯突出预测和防治[M].徐州:中国矿业大学出版社,2008:42-50.
    [5]聂百胜,何学秋,王恩源等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):200-204.
    [6]中华人民共和国国家安全生产监督管理总局(国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [7]于不凡.国内外煤和瓦斯突出日常预测研究综述[C].见:煤炭科学研究总院重庆分院编.煤与瓦斯突出预测资料汇编,1987.
    [8]丰城矿务局、焦作矿业学院.煤与瓦斯突出点预测方法[C].见:科研鉴定资料,1984.
    [9]范启炜.工作面钻孔瓦斯涌出初速度特征分析[D]:抚顺,煤炭科学研究总院抚顺分院,1985.
    [10]王克全.突出煤层钻孔瓦斯涌出特点研究[D].重庆:煤炭科学研究总院重庆分院,1986.
    [11]唐俊.预测煤巷突出危险性的连续流量法研究[D].徐州:中国矿业大学,2009.6.
    [12]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则.北京:煤炭工业出版社,1995.
    [13]陈健民.地应力与岩体红外辐射现象理论探讨[J].煤炭学报,1995(3):152-153.
    [14]刘晓丹,卢国斌.地球物理方法预测煤与瓦斯突出[J].辽宁工程技术大学学报(自然科学版)27,增刊:174-177.
    [15]樊栓保.国内外煤与瓦斯突出预测的新方法[J].矿业安全与环保,2000,27(5):192-194.
    [16]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986(3):87-93.
    [17]焦作矿务局科研所、焦作矿务局九里山矿.焦作矿区矿井瓦斯综合治理研究报告[R],1990.
    [18]宋元明.钻孔排出物预测预报煤和瓦斯突出的试验研究.[D]:徐州,中国矿业大学,1988.
    [19]林柏泉,张仁贵.钻孔周围煤体中瓦斯流动的理论分析[J].煤炭工程师,1996(3):14-18.
    [20]柏发松.煤层钻孔瓦斯流量的数值模拟[J].安徽理工大学学报(自然科学版),2004(6):9-13.
    [21]李中成,朱凤山.国外煤矿安全科技动态及我国“九五”期间煤矿安全科技发展方向[J].煤矿安全,1997,(5):25~28.
    [22]石显鑫,蔡检荣,李华.地音监测技术及其在煤与瓦斯突出预测预报中的应用研究[J].陕西煤炭科技,1998(1):209-215.
    [23]石显鑫,蔡栓荣,冯宏等利用声发射技术预测预报煤与瓦斯突出[J].煤炭地质勘探,1998,26(3):204-209.
    [24]王恩元,何学秋,刘贞堂,李忠辉.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004, 29(3):200-203.
    [25]王恩元,何学秋,刘贞堂,周世宁.受载煤体电磁辐射的频谱特征[J].中国矿业大学学报,2003,32(5):170-173.
    [26]王恩元,何学秋,刘贞堂等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002:21(10):1473~1477。
    [27]王显政.煤矿安全新技术[M].北京:煤炭工业出版社,2002.
    [28]何学秋,刘明举.含瓦斯煤岩破坏电磁阀[J].煤矿安全,1985(2)
    [29]何学秋,王恩元,聂百胜等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [30]赵恩来,王恩元,刘贞堂,刘晓斐等.煤岩单轴压缩过程电磁辐射的数值模拟研究[J].中国矿业大学学报,2010,39(5):205-209.
    [31]撒占友,何学秋,王恩元.煤与瓦斯突出危险性电磁辐射异常判识方法[J].煤炭学报,2008,32(12):200-203.
    [32]曾庆阳.矿井通风监测技术预报煤与瓦斯突出初探[J].煤炭工程师,1994,4:175-179.
    [33]刘明举,孟磊,,魏建平等.我国煤与瓦斯突出特征及其对策[J].河南理工大学学报,2009,28(6):209-213.
    [34]刘明举,孟磊,魏建平.近年煤与瓦斯突出的统计特性及其防范措施[J].煤矿安全,2009,7:200-203.
    [35]苏文叔.利用瓦斯涌出动态指标预测煤与瓦斯突出[D].上海,中国科学院上海冶金研究所,2000.
    [36]苏文叔.利用瓦斯涌出动态指标预测煤与瓦斯突出[J].矿业安全与环保,1996,5,175-181.
    [37]李俊亮.声发射预测煤与瓦斯突出危险性技术研究[D].西安,西安科技大学,2009.
    [38]张进.矿井瓦斯涌出及瓦斯流动预测的统计研究[D].西安,西安科技大学,2005.
    [39]刘明举.计算机模式识别技术在煤与瓦斯突出预测预报中的应用[J].瓦斯地质,1989(1,2).
    [40]华福明,胡千庭.突出预测指标Smax、K1临界值确定方法的探讨[J].煤炭工程师,1992,(1):12-15.
    [41]H·埃克尔,H·I·卡藤贝格.利用通风监测技术预报煤与瓦斯突出[J].煤炭工程师,1990,(04):51-56.
    [42]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [43]R. Revalor, O. Dechelette and M. Verstrataete. Detection of Coal Bump Risk Situations UsingSeismoacoustic Monitoring at the Province Collieries[J]. Mining Science & Technology, 1986,(4):11-23.
    [44]G. H. Carson, J. Gravina and L.N.Arnold. A Dual Microseismic Monitor for Used in Gassy Coal Mines[R]. Report No.51. Commonwealth Scientific and Industrial research Organization, Institute of Energy and Earth Resources, Division of Geomechanics,1983
    [45]N.Rigby. Development and Application of An Underground Microseismic Monitoring System for Outbursts Prone Coal Mines[J]. The Mining Engineering,1989,(11).
    [46]L.J.Jackson. Outbursts in Coal Mines[M]. IEA Coal Research,1984
    [47]J.Litwiniszyn.A Model for Initiation of Coal Gas Outburst.Int.J.Rock Mech.Min.Sci.&Geomech.Abstr,1985(22).
    [48]朱铭,周瑞光,尹代勋等.煤层应力变化与He、Ar发射关系[J].中国科学(D),2002,6:187-196.
    [49]孔令昌,王志敏.用于地质研究和地震监测的稀有气体质谱分析法[J]质谱学报1998,(01):181-187.
    [50]朱铭,赵东植,谭骏.煤层应力集中带He异常的发现及其意义[J].科学通报,1993.7.
    [51]梁汉东.煤岩自然释放氢气与瓦斯突出关系初探[J].煤炭学报,2001,26(6):171-177.
    [52]姚宝魁,孙广忠,罗信华。煤与瓦斯突出的防治[J].北京,中国科学技术出版社,1993,125-130.
    [53]孟絮屹,李昊,张颂业.煤体结构在煤与瓦斯突出预测中的应用研究[J].2010.492(4):200-203.
    [54]郑茂俊,严炽培,储俊.超声波在油田开发中的应用及作用机理[J].1996.9:175-177.
    [55]汤友谊,陈江峰,李云霞,许伟功.瓦斯突出煤体探测的物性前提及应用[J].焦作工学院学报,2000,19(6):209-212.
    [56]吕绍林.地球物理方法预测瓦斯突出研究综述[J].焦作工学院学报,1997,16(2):203-208.
    [57]刘传孝,杨永杰,蒋金泉.煤矿地质异常及采动效应雷达探测研究[J].山东科技大学学报,2000,19(2):174-177.
    [58]彭苏萍,王希良,肖建华,王磊等.软岩巷道围岩损伤破坏范围的地震探测研究[J].中国矿业大学学报,2001,30(1):210-213.
    [59]于竞敏.超声波探测技术在煤矿生产中的应用[J].黑龙江矿业学院学报,1994,4(1):166-170.
    [60]叶世强,肖扬.地下工程地震灾害与防治[J].中国地质灾害与防治学报,1993,4(4):159-164.
    [61]卫金善,张晋武.综合勘探方法在成庄矿井地质构造探测中的应用[J].中国煤田地质,2002,14(4):147-149
    [62]张绍红,王尚旭,宁书年.三维地震纵横波勘探在煤田中的应用研究[J],煤炭工程,2003,5:171-173.
    [63]张爱印,石亚丁,殷全增等.三维地震和电法综合勘探在查明陷落柱构造中的应用[J],煤炭技术,2004,23(2):171-172.
    [64]李丹,韩德品,石亚丁,石学峰.采煤工作面顺煤层透视的电法探测方法[J].煤炭学报,2010,35(8):153-157.
    [65]高峰.无线电波透视在煤矿中的应用[J].物探与化探,2007,31,Supp:200-202.
    [66]邱增强,刘志新.无线电波透视法在探测隐伏导含水构造中的应用[J].工程地球物理学报,2005,2(3):178-183.
    [67]汤友谊,陈江峰,彭立世.无线电波坑道透视构造煤的研究[J].煤炭学报,2002,27(2):171-175.
    [68]朱希安,尹尚先,苑守成.无线电波透视法及其应用[J].辽宁工程技术大学学报,2002,21(5):14-151.
    [69]李文峰.邢台矿区无线电波坑透技术的应用及地质效果[J].河北煤炭,1994,4:189-191.
    [70]杨永明.高密度电阻率法在探测煤层露头中的应用[J].中国煤田地质,2004,16,增刊:147-148.
    [71]孙中任,魏文博.高密度电阻率法在金矿勘查工作中的应用效果[J].石油地球物理勘探,2004,39,增刊:151-156。
    [72]Karoly Nemeth and Shane J.Cronin.Drivers of explosivity and elevated hazard in basaltic fissure eruptions:The 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific)[J]. Journal of Volcanology and Geothermal Research.Volume 201, Issues 1-4,15 April 2011, Pages 194-209.
    [73]Llewellya Hillis-Colinvaux.Ecology and Taxonomy of Halimeda:Primary Producer of Coral Reefs[J].Advances in Marine Biology, Volume 17,1980, Pages 1-327.
    [74]王晓路,刘健,卢建军.煤与瓦斯突出预测器输人主因素识别方法[J].系统工程理论与实践,2010,30(8):173-179.
    [75]王晓路,刘健,卢建军.基于抽样盲数的煤与瓦斯突出不确定性预测[J].中国矿业大学学报,2010,39(2):189-194.
    [76]朱莉,谷琼,蔡之华,余钢.基于Isomap的SMO算法及在煤与瓦斯突出预测中的应用[J].应用基础与工程科学学报,2009,17(6):204-211.
    [77]左东红.贡凯青安全系统工程[M].北京:化学工业出版社,2004:16-16
    [78]汪应洛.系统工程理论、方法与应用[M].北京:高等教育出版社,2006:15-15
    [79]陈鸿章.矿山系统工程的基本方法与信息论的应用[M].北京:煤炭工业出版社,2000:14-15.
    [80]何学秋.含瓦斯煤岩流变动力学.徐州:中国矿业大学出版社,1995.
    [81]秦祥基.关于钻孔瓦斯涌出初速度法预测煤巷掘进工作面突出危险性的探讨[J].焦作矿业学院学报.1993(3):98-102.
    [82]张子敏,高建良,张瑞林,何俊.关于中国煤层瓦斯区域分布的几点认识[J].地质科技情报,1999,18(4):204-207.
    [83]Wu Jiwen,Zhao Zhigen,Chen Ziping.Study on the Relationship between the Diversity Coal Mass Structure and Lithotype of Coal in Multi-coal Seam Mine[J]. Journal of Coal Science and Engineering,1999,vol5,No.l,pp 90-96.
    [84]张玉贵.构造煤演化与力化学作用[D].太原,太原理工大学,2006,10.
    [85]李建铭.煤与瓦斯突出防治技术手册[M].中国矿业大学出版社,2006:91-160.
    [86]余不凡.煤与瓦斯突出机理[M].煤炭工业出版社,1985.
    [87][苏]B.B.霍多特,煤与瓦斯突出[M],宋士钊,王佑安译,北京,中国工业出版社,1966.
    [88]周世宁,林柏泉.煤层瓦斯赋存与渗流理论[M].煤炭工业出版社,1999.2.
    [89]程五一.煤与瓦斯突出冲击波的形成及模型建立[J],煤矿安全,2000,31(9):23~25.
    [90]程五一,刘晓宇,王魁军等.煤与瓦斯突出冲击波波阵面传播规律的研究[J].煤炭学报,2004,29(1):57-60.
    [91]海燕,曹涛,周心权等.煤矿瓦斯爆炸冲击波衰减规律研究与应用[J].煤炭学报,2009,34(6):778-783.
    [92]吴爱军,蒋承林,唐俊.瓦斯突出作用下煤岩体中冲击波传播规律的研究[J].煤炭学报,2010(10):1644-1649.
    [93]刘保县,鲜学福,刘新荣.爆破激发煤瓦斯突出的研究[J].中国矿业,2000:9(2).
    [94]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J].岩土力学,2005,26(9):1477-1480.
    [95]郭臣业,鲜学福,姚伟静,姜永东.煤岩层断裂破坏区与煤和瓦斯突出孔洞关系研究[J].中国矿业大学学报,2010,39(6):802-807.
    [96]吴爱祥,王贻明,胡国斌.采空区顶板大面积冒落的空气冲击波[J].中国矿业大学学报,2007,36(4):473-477.
    [97]费鸿禄.张立国.付天光.爆破理论及其应用[M].北京:煤炭工业出版社,2008,15-92.
    [98]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992:258-317.
    [99]张连玉,汪令羽,苗瑞生.爆炸气体动力学基础[M].北京:北京工业学院出版社,1987:370-375.
    [100]吕洪生,曾新吾.连续介质力学(下册),动载固体力学与应力波[M].长沙:国防科技大学出版社,1999,103-189.
    [101]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992,24-180.
    [102]鞠杨,夏昌敬,谢和平,周宏伟.爆炸荷载作用下煤岩巷道底板破坏的数值分析[J].岩石力学与工程学报.2004,23(21):3664~3668.
    [103]彭文斌.FLAC3D实用教程[M].机械工业出版社,2008.1.
    [104]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2010.10.
    [105]肖红飞,何学秋,冯涛,王恩元等.基于FLAC3D模拟的矿山巷道掘进煤岩变形破裂力电耦合规律的研究[J].岩石力学与工程学报,2005,24(5):148,152.
    [106]谢和平,周宏伟,王金安,李隆忠,M.A.Kwasniewski. FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397~401.
    [107]杨新乐,张永利,杨英.含瓦斯煤层注热温度场的数值模拟[J].西安科技大学学报,2009,29(3):205-209.
    [108]Zhang Zhifeng, Chen Xingrun, Xu Jun, and ShiLikai.Numerical simulation on electromagnetic field, flow field and temperature field in semisolid slurry preparation by A-EMS[J].RARE METALS.Vol.29, No.6, Dec 2010, p.635.
    [109]韩颖.钻进过程中孔壁及煤屑瓦斯涌出规律研究[D].徐州,中国矿业大学,2007.6.
    [110]苏彦勋,盛健,梁国伟.流量计量与测试[M].北京,中国计量出版社,1992.8.
    [111]陈蜀,张荣阁.现场校准气体转子流量计[J].计算机与数字工程,2010,38(9):204-206.
    [112]陈裕佳.石门揭煤突出危险性预测方法研究[D].徐州,中国矿业大学,2010.6.
    [113]王勇,申航旗.转子流量计的原理及计算[J].计量与测试技术,2008,35(3):35-36.
    [114]陈松立,蒋承林.初始解吸瓦斯流量系统的研究[J].中国矿业大学学报,2002,31(4):407-411.
    [115]郭兴明,徐精彩,惠世恩.巷道煤体漏风规律研究[J].西安矿业学院学报,2001,35(3):239-242.
    [116]徐精彩.空气在煤堆中的渗流规律探讨[J].西安矿业学院学报,1995,15(4):289-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700