深部大跨度巷道失稳机理与围岩控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着煤炭工业的快速发展和采矿技术的不断进步,开采水平逐渐向深部和地质条件更复杂的区域发展,巷道的断面越来越大,采用现有的支护理论与技术,难以满足深部大断面、大跨度巷道支护要求。大跨度巷道失稳垮冒现象时有发生,已成为煤矿亟待解决的重大技术难题。本文围绕深部大跨度巷道稳定性控制问题,综合运用数值模拟、相似模拟、理论分析、现场监测等方法与手段对深部大跨度巷道失稳机理与围岩控制技术进行系统研究,取得了如下主要创新成果:
     (1)基于复变函数理论,运用施瓦茨-克里斯托菲尔求解映射函数的方法,推导出大跨度矩形巷道围岩应力与位移的计算公式,通过具体实例,计算得到了矩形巷道内部各点应力与位移的数值解,分析了矩形巷道围岩应力与变形规律。
     (2)应用FLAC3D数值计算软件,系统研究了不同侧压不同跨度矩形巷道围岩塑性区分布规律,得出矩形巷道围岩塑性区分布形状随侧压的变化规律。根据不同侧压不同跨度巷道围岩破坏、应力分布及变形规律,给出了大跨度巷道的定义,划分了大跨度巷道类型。
     (3)自主研制了微型预应力锚杆试验装置,为相似模拟试验锚杆受力监测及锚杆施加预应力提供方便,解决了模拟试验中无法对锚杆施加预应力的难题。
     (4)提出了双微拱断面巷道的概念,建立了双微拱巷道的力学分析模型,计算得到双微拱巷道应力、位移的具体表达形式,分析了双微拱断面巷道围岩应力与变化规律。建立了双微拱断面巷道拱脚交点处支撑反力计算模型,推导出两拱脚交点处支撑反力计算公式。
     (5)针对影响大跨度巷道稳定的主要因素,分析了大跨度巷道控制原理;提出了深部大跨度巷道卸压减跨控顶与等强协调支护理论和“双微拱断面+单体支柱+高强预应力锚杆(索)+钢带等组合构件”的支护方法。
     (6)依据深部大跨度巷道支护理论与方法,对山西潞安环能股份公司五阳煤矿7801切眼(埋深800m,跨度8m)进行工业性试验。现场应用表明,采用“双微拱断面+单体支柱+高强预应力锚杆(索)+钢带等组合构件”的减跨支护方法,有效地控制了切眼的变形破坏,实现了深部大跨度切眼围岩稳定性控制。
In recent years,with the rapid development of coal industry and miningtechnology, coal mining depth is increasing, geological condition is more complexand the roadway section is bigger. However, the present theories and technologies areunable to satisfy the requirements on the support of large-section and long-spanroadways which are in deep, and the collapse of long-span roadways has occurredfrequently. Therefore, it is urgent to solve the problems referred above. A syntheticallymethod combined with numerical simulation, similar simulation, theoretical analysisand field observation is applied to study the collapse mechanism of long-spanroadways in deep and surrounding rock control technology systematically, and theinnovative achievements are shown as follows:
     (1) Based on the theory of complex variable function, the expressions ofsurrounding rock stress and displacement in long-span rectangular roadway arededuced using Schwartz-Christophil method which solves mapping function. Byintroducing specific example, the numerical solutions on stress and displacement ofeach point in rectangular roadway are obtained, and the laws of stress anddeformation of surrounding rock in rectangular roadway are analyzed.
     (2) With the application of FLAC3D software, the plastic region distributionlaws of rectangle roadway in different pressures and spans are studied systematically,and the plastic region distribution shape changing laws with side pressures areobtained. The definition of large-span roadway is given and the type of large-spanroadway is divided according to the damage, stress distribution and deformation ofsurrounding rock in roadway with different side pressures and spans. Meanwhile, thedefinition and structural form of double micro arch section roadway are given.
     (3) A miniature experimental apparatus of prestressed anchor is developedwhich provides convenience for prestress infliction and stress monitoring of anchor insimilar simulation experiment, it solves the problem of prestress infliction of anchorin similar simulation experiment.
     (4) The concept of double micro arches is proposed and a calculation model isestablished based on the complex function theory and elastic theory for double microarch roadway. The expression of stress and displacement of double micro archroadway is worked out. The stress and changing laws of surrounding rock in doublemicro arch section roadway is analyzed. The computation model of counter-force at interaction of arch feet in double flat arched section roadway is established and itscomputation formulas are deduced.
     (5) For the main influencing factors in long-span roadway, the controllingprinciples of long-span roadway are analyzed. The supporting principle of “reasonablesection shape+three high and one low+method of effective reducing span” is putforward.
     (6) According to the supporting theory and methods of deep and long-spanroadway, the7801cut eye of Wuyang mine in Shanxi Luan Huanneng StockCompany, of which the depth is800m and the span is8m, is done some industrialnessexperiments. The site applications show that adopt “reasonable section shape+threehigh and one low+method of effective reducing span” can effectively control thedeformation and destroy of cut eye and make the stale control of surrounding rock indeep and long-span cut eye come true.
引文
[1]黄庆享.煤炭资源绿色开采[J].陕西煤炭,2008,(1):18-21.
    [2]闰莫明,徐祯祥,苏自约.岩土锚固技术手册[M].人民交通出版社,2004.
    [3]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):37-3737.
    [4]煤炭工业部科技教育司,煤炭工业部软岩巷道支护专家组,煤矿软岩工程技术研究推广中心.中国煤矿软岩巷道支护理论与实践[M].中国矿业大学出版社,1999.
    [5]何满潮,等.软岩工程力学的基本问题[J].东北煤炭技术,1995(10):25-33.
    [6]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2):113-118.
    [7]刘黎明,杨磊.松散破碎软岩巷道底鼓控制的试验研究[J].湖南科技大学学报(自然科学版),2007,22(2):13-16.
    [8]刘听成.苏联煤矿深井巷道矿压显现的研究[J].井巷地压与支护,1989(2).
    [9] W.Kamme;杜公民译.深度到1600m的开拓和准备巷道设计基础[J].井巷地压与支护,1989(2).
    [10]付国彬,等.巷道围岩松动圈随采深变化的规律[J].建井技术,1994(4,5).
    [11]杜计平.煤矿深井开采的矿压显现及其控制[D].博士论文.中国矿业大学,2000.
    [12]勾攀峰,等.基于突变理论的深井巷道临界深度[J].岩石力学与工程学报,2004,2.
    [13]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004,(10):155-157.
    [14][英]A哈依斯,等.岩层控制技术的发展现状[C].国外锚杆支护技术译文集,煤炭科学研究总院北京开采所,1997,6.
    [15]董方庭,等.井巷设计与施工[M].徐州:中国矿业大学出版社,1997.
    [16]沈季良,等.建井工程手册(Vol.Ⅱ)[M].北京:煤炭工业出版社,1986,10.
    [17]东兆星,吴士良.井巷工程[M].徐州:中国矿业大学出版社,2004.
    [18]重庆建筑工程学院,同济大学编.岩体力学[M].北京:中国建筑工业出版社,1981,153-164.
    [19]高磊.矿山岩体力学[M].北京:机械工业出版社,1988.
    [20] HKastner.Osterreich Bauzeitischrift,Vol.10(11),1947.
    [21]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [22] L.米勒.新奥法支护理论[M].地下工程,1980(6).
    [23]郑颖人,等.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988.
    [24]何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993.
    [25]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [26]何满潮,等.软岩工程力学[M].北京:科学出版社,2002.
    [27]方祖烈.拉压域特征及主次承载区的维护理论[M].世纪之交软岩工程技术现状与展望.北京:煤炭工业出版社,1999.
    [28]侯朝炯,郭励生,勾攀峰,等著.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [29]侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,(1):2-5.
    [30]侯朝炯,何亚男.加固巷道帮、角控制底臌的研究[J].煤炭学报,1995,20(3):1-5.
    [31]徐金海,诸化坤,石炳华,等.三软煤层巷道支护方式及围岩控制效果分析[J].中国矿业大学学报,2004,33(1):55-58
    [32]侯朝炯,柏建彪,张农等.困难复杂条件下的煤巷锚杆支护[J].岩土工程学报,2001,23(1):84-88.
    [33] HOU CHaojiong,Review of Roadway Control in Soft Surrounding Rock under DynamicPressure[J],Journal of Coal Science&Engineering,June2003,Vol.9,No.1P1-7.
    [34] WANG Weijun,HOU CHaojiong,Study of Mechanical principle of Floor Heave of roadwaydriving along next goaf in fully mechanized sub level caving face[J],Journal of Coal Science&Engineering,June2001,Vol.7,No.1P13-17.
    [35] ZOU Xizheng,HOU CHaojiong,LI Huaxiang,The Classification of the Surrounding of CoalMining Roadways[J],Journal of Coal Science&Engineering,Dec.1996,Vol.2,No.2P55-57.
    [36] GUO Yuguang,BAI Jianbiao,HOU CHaojiong,Study on the Main Parameters of Side Packingin the Roadways Maintained along god-edge[J],Journal of China University ofMining&Technology, Jun.1994,Vol.4No.1P1-14.
    [37] LI Xue hua,Deformation mechanism of surrounding rock and key control technology forroadway driven along goaf in fully mechanized top coal caving face[J],Journal of CoalScience&Engineering,June2003,Vol.9,No.1P28-32.
    [38]彭苏萍,孟召平著.矿井工程地质理论与实践[M].北京:地质出版社,2002.
    [39]郑雨天,朱浮声.预应力锚杆体系—锚杆支护技术发展的新阶段[J].矿山压力与顶板管理,1995,1:2-7,56.
    [40]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002(1):12-15.
    [41]徐金海,周保精,吴锐.煤矿锚杆支护无损检测技术与应用[J].采矿与安全工程学报,2010,27(2):166-170
    [42]郭颂.水平应力—对采准巷道围岩稳定性的新认识[J].煤矿开采,1998(4):14-17.
    [43] Song Guo,J.Stankus1997Control mechanism of a tensioned bolt system in the laminatedroof with a large horizontal stress[C].16th Int.Conf.on Ground Control in MiningMorgantown West Virginia.
    [44]漆泰岳著.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.
    [45]陆士良,汤雷,杨新安著.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [46] R.施查克[挪威]等著,张卫国,吴红译.锚杆支护实用手册[M].北京:煤炭工业出版社,1990.
    [47]马其华,樊克恭,郭忠平等.锚杆支护技术发展前景与制约因素[J].中国煤炭,24(5):21-24,59.
    [48]康红普,王金华等著.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [49]张农,袁亮.离层破碎型煤巷顶板的控制原理[J].采矿与安全工程学报,2006,23(1):34-38.
    [50]庞建勇.深井煤巷锚索加固技术的应用[J].矿山压力与顶板管理,2004,2
    [51]徐金海,缪协兴,浦海,等.综放工作面收作眼合理位置确定与稳定性分析[J].岩石力学与工程学报,2004,23(12):1981-1985
    [52]彭书林,周营昌,冯学工.无粘结预应力锚索工艺施工方法[J].河北地质矿产信息,2004,2
    [53]袁和生.煤矿巷道锚杆支护技术[M].北京:煤炭工业出版社,1997.
    [54]何炳银.锚杆与锚索联合支护的协调性讨论[J].江苏煤炭,2003,4
    [55]何满潮,袁和生,靖洪文,等.中国煤矿锚杆支护理论与实践[M].科学出版社,2004.
    [56]徐金海,缪协兴,卢爱红,等.收作眼围岩稳定性分析与支护技术研究[J].中国矿业大学学报,2003,32(5):482-486
    [57]陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[J].岩石力学与工程学报,1998,(2):180-183.
    [58]王悦汉,王彩根,周华强著.巷道支架壁后充填技术[M].北京:煤炭工业出版社,l995.
    [59]管学茂,侯朝炯.桁架锚杆在大断面煤巷中应用的研究[J].矿山压力与顶板管理,1996,(03):32-35.
    [60]卢军明.桁架锚杆在大跨度巷道顶板加固中的应用[J].中州煤炭,2006,(05):57,94.
    [61]邢龙龙.大跨度切眼巷道锚杆(索)支护技术研究[D].中国优秀硕士学位论文全文数据库,2008,(01).
    [62]张柯.大跨度高地压破碎煤巷支护及机理研究[D].西安科技大学硕士论文,2003.
    [63]杜波,何富连,张守宝.桁架锚索联合控制技术在大跨度切眼中的应用[J].煤炭工程,2008,(08):37-39.
    [64]阚甲广,张农,李桂臣,王成,张冬华.深井大跨度切眼施工方式研究[J].采矿与安全工程学报,2009,26(02):163-167.
    [65]侯琴.大宁煤矿大跨度煤巷锚索支护研究与应用[D]太原理工大学,2005.
    [66]韩立军,蒋斌松,贺永年.构造复杂区域巷道控顶卸压原理与支护技术实践[M].岩石力学与工程学报,2005,24(2):5499-5504.
    [67]杨双锁,曹建平.锚杆受力演变机理及其与合理锚固长度的相关性[J].采矿与安全工程学报,2010,27(1):1-6.
    [68]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649-664.
    [69]潘春德,等.深井巷道支护与维护技术[J].矿业译从,1991(4).
    [70]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [71]刘长武,楮秀生著.软岩巷道锚注加固原理与应用[M].中国矿业大学出版社,2000,11.
    [72]蒋金泉,等.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999,1.
    [73]何满潮,等主编.世纪之交软岩工程技术现状与展望(中国CSRM软岩工程专业委员会第二届学术大会论文集)[M].北京:煤炭工业出版社,1999,4.
    [74] Agne P. Rustan. Micro-sequential contour blasting how does it influence the surrounding rockmass?.Engineering Geology1998(49):303-313.
    [75] K.R.Dhawan,D.N.Singh,I.D.Gupta.2D and3D finite element analysis of undergroundopenings in an in homogeneous rock mass. International Journal of Rock Mechanics&Mining Sciences2002(39):217-227.
    [76] C.D.Martina,P.K.Kaiser, R.Christiansson. Stress, instability and design of undergroundexcavations. International Journal of Rock Mechanics&Mining Sciences2003(40):1027–1047.
    [77] Q.H.Qian,X.P.Zhou,H.Q.Yang,Y.X.Zhang,X.H.Li. Zonal disintegration of surrounding rockmass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China.Theoretical and Applied Fracture Mechanics2009(51):129–138.
    [78] Robert J. David. The Archaeology of Myth: Rock Art,Ritual Objects, and MythicalLandscapes of the Klamath Basin. Journal of the World Archaeological Congress2009.
    [79] E. Button,G. Riedmu¨ller,W. Schubert,K. Klima,E. Medley. Tunnelling in tectonicmelanges—accommodating the impacts ofgeomechanical complexities andanisotropic rockmass fabrics. Bull Eng Geol Env2004(63):109–117.
    [80] Chih-Min Lin, Senior Member, IEEE, and Chun-Fei Hsu. Supervisory Recurrent FuzzyNeural Network Control of Wing Rock for Slender Delta Wings. IEEE TRANSACTIONSON FUZZY SYSTEMS,12(5):733-742.
    [81] DOU Lin-ming, LU Cai-ping, MU Zong-long, GAO Ming-shi. Prevention and forecasting ofrock burst hazards in coal mines. Mining Science and Technology2009(19):0585–0591.
    [82] D. Bachmann, S. Bouissou, A. Chemenda. Analysis of massif fracturing during Deep-SeatedGravitational Slope Deformation by physical and numerical modeling. Geomorphology2009(103):130–135.
    [83] Y.C.Liang,D.P.Feng,G.R.Liu,X.W.Yang,X.Han. Neural identification of rock parameters usingfuzzy adaptive learning parameters. Computers and Structures2003(81):2373–2382.
    [84] M.T.Parra,J.M.Villafruela, F.Castro,C.Mendez. Numerical and experimental analysis ofdifferent ventilation systems in deep mines. Building and Environment2006(41):87–93.
    [85] I.S.Lowndes,Z.Y.Yang,S.Jobling,C.Yates. A parametric analysis of a tunnel climaticprediction and planning model. Tunnelling and Underground Space Technology2006(21):520–532.
    [86] Shouju Lia,, HeYua, YingxiLiua, FengjiWu. Results from in-situ monitoring of displacement,bolt load, and disturbed zone of a powerhouse cavern during excavation process.International Journal of Rock Mechanics&Mining Sciences2008(45):1519–1525.
    [87] H.Y.Liu,J.C.Small,J.P.Carter,D.J.Williams. Effects of tunnelling on existing support systemsof perpendicularly crossing tunnels. Computers and Geotechnics2009(36):880–894.
    [88] J. Adam, J.L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. LohrmannS. Hotha,W. van der Zee, J. Schmatz. Shear localisation and strain distribution during tectonicfaulting—new insights from granular-flow experiments and high-resolution optical imagecorrelation techniques. Journal of Structural Geology2005(27):283–301.
    [89] MARC-ANDRKE,GUTSCHER and NINA KUKOWSKI. Material transfer in accretionarywedges from analysis of a systematic series of analog experiments. Journal of StructuraGleology,1998(8):80–84.
    [90] C. Zangerl, K.F.Evans, E.Eberhardt, S.Loew. Consolidation settlements above deep tunnels infractured crystalline rock: Part1—Investigations above the Gotthard highway tunnel.International Journal of Rock Mechanics&Mining Sciences2008(45):1195–1210.
    [91] Jo Lohrmann, Nina Kukowski, Jurgen Adam, Onno Oncken. The impact of analogue materialproperties on the geometry,kinematics, and dynamics of convergent sand wedges. Journal ofStructural Geology25(2003):1691–1711.
    [92] J. Moon, G. Fernandez. Effect of Excavation-Induced Groundwater Level Drawdown onTunnel Inflow in a Jointed Rock Mass. Engineering Geology2010(110):33–42.
    [93] A. Pellegrino, A. Prestininzi. Impact of weathering on the geomechanical properties of rocksalong thermal–metamorphic contact belts and morpho-evolutionary processes: Thedeep-seated gravitational slope deformations of Mt. Granieri–Salincriti (Calabria–Italy).Geomorphology2007(87):176–195.
    [94] J. K. MORGAN and D. E. KARIG. Kinematics and a balanced and restored cross-sectionacross the toe of the eastern Nankai accretionary prism. Journal of Structural Geology2004(52):76–95.
    [95] Henning Wolf, Diethard Konig, Theodoros Triantafyllidis. Experimental investigation ofshear band patterns in granular material. Journal of Structural Geology2003(25):1229–1240.
    [96] GAO Fu-qiang, KANG Hong-pu. Effect of pre-tensioned rock bolts on stress redistributionaround a roadway—insight from numerical modeling. J China Univ Mining&Technol2008(18):0509–0515.
    [97] WANG Lian-guo, SONG Yang, HE Xing-hua, ZHANG Jian. Side abutment pressuredistribution by field measurement. J China Univ Mining&Technol2008(18):0527–0530.
    [98] GAO Fu-qiang, XIE Yao-she. Resist-decreasing effects of rock bolts on strength of rock massaround roadway—insight from numerical modeling. Mining Science and Technology2009(19):0425–0429.
    [99] Lars Malmgren,Erling Nordlund. Interaction of shotcrete with rock and rock bolts—Anumerical study. International Journal of Rock Mechanics&Mining Sciences2008(45):538–553.
    [100] Arild Palmstmm. Characterizing Rock Masses by the RMi for Use in Practical RockEngineering, Part2:Some practical applications of the Rock Mass index (RMi). TunneUingand Underground Space Technology,1996(45):287–303.
    [101] H.C.Zhu,H.B.Wu. Interpretation of the monitored rock bolt stress and rock massdisplacement at the Three Gorges Project in China. International Journal of Rock Mechanics&Mining Sciences2004(41):521-524.
    [102] H.C. Zhu,H.B. Wu. INTERPRETATION OF THE MONITORED ROCK BOLT STRESSAND ROCK MASS DISPLACEMENT AT THE THREE GORGES PROJECT IN CHINA.Int. J. Rock Mech. Min. Sci2004(41):1-3.
    [103] X.P.Lai,M.F.Cai,M.W.Xie. In situ monitoring and analysis of rock mass behavior prior tocollapse of the main transport roadway in Linglong Gold Mine, China. International Journalof Rock Mechanics&Mining Sciences2006(43):640–646.
    [104] Shouju Li, HeYu, YingxiLiu, FengjiWu. Results from in-situ monitoring of displacement,bolt load, and disturbed zone of a powerhouse cavern during excavation process.International Journal of Rock Mechanics&Mining Sciences2008(45):1519–1525.
    [105] Yue Cai,Tetsuro Esaki,Yujing Jiang. An analytical model to predict axial load in groutedrock bolt for soft rock tunneling. Tunnelling and Underground Space Technology2004(19):607–618.
    [106] E.Villaescusa,R.Varden,R.Hassell. Quantifying the performance of resin anchored rock boltsin the Australian underground hard rock mining industry. International Journal of RockMechanics&Mining Sciences2008(45):94–102.
    [107] Yue Cai,Tetsuro Esaki,Yujing Jiang. Arock bolt and rock mass interaction model.International Journal of Rock Mechanics&Mining Sciences2004(41):1055–1067.
    [108] A. K l c, E. Yasar, A.G. Celik. Effect of grout properties on the pull-out load capacity offully grouted rock bolt. Tunnelling and Underground Space Technology2002(17):355–362.
    [109] YujingJiang, BoLi, YujiYamashita. Simulation of cracking near a large underground cavernin a discontinuous rock mass using the expanded distinct element method. InternationalJournal of Rock Mechanics&Mining Sciences2009(46):97–106.
    [110] LI Guofeng, HE Manchao, ZHANG Guofeng, TAO Zhigang. Deformation mechanism andexcavation process of large span intersection within deep soft rock roadway. Mining Scienceand Technology2010(20):0028–0034.
    [111] E. J. Sellers and P. Klerck. Modelling of the Effect of Discontinuities on the Extent of theFracture Zone Surrounding Deep Tunnels. Timwllinga nd UndergmunSdp acel khn&v2000(41):453-439.
    [112] GUO Zhibiao, SHI Jianjun, WANG Jiong, CAI Feng, WANG Fuqiang. Double-directionalcontrol bolt support technology and engineering application at large span Y-typeintersections in deep coal mines. Mining Science and Technology2010(20):0254–0259.
    [113] GUO Zhi-biao, GUO Ping-ye, HUANG Mao-hong, LIU Yin-gen. Stability control of gategroups in deep wells. Mining Science and Technology2009(19):0155–0160.
    [114] A.H.Laatar,M.Benahmed,A.Belghith,P.LeQuer.2Dlarge eddy simulation of pollutantdispersion around a covered roadway. Journal of Wind Engineering and IndustrialAerodynamics2002(90):617–637.
    [115] WANG Qi-sheng, LI Xi-bing, ZhAO Guo-yan, SHAO Peng, YAO Jin-rui. Experiment onmechanical properties of steel fiber reinforced concrete and application in deep undergroundengineering. J China Univ Mining&Technol2008(18):0064–0066.
    [116] YANG Shen, KANG Yong-shang, ZHAO Qun, WANG Hong-yan, LI Jing-ming. Method forpredicting economic peak yield fra single well of coalbed methane. J China Univ Mining&Technol2008(18):0521–0526.
    [117]刘增辉.大断面煤巷锚固参数的数值与物理模拟研究[D].中国优秀博硕士学位论文全文数据库(硕士),2005.
    [118]王志清,万世文.顶板裂隙水对锚索支护巷道稳定性的影响研究[J]..湖南科技大学学报(自然科学版),2005(4):26-29.
    [119]孙福江.联合支护技术在大断面硐室施工中的应用[J].水力采煤与管道运输,2010,(01):27-29,
    [120]管学茂,侯朝炯.大断面煤巷桁架锚杆支护的相似模拟试验[J]阜新矿业学院学报(自然科学版),1997,16(04):421-424.
    [121]温新.大断面软弱顶板回采巷道锚杆支护技术实践[J].中国高新技术企业,2010,(07):183-184.
    [122]张延金,刘克东,王立伟.大断面巷道锚网喷支护[J].矿山压力与顶板管理,2001,(04):30,32.
    [123]吴添泉.大跨度切眼锚网锚索支护研究[J].岩土力学,2004,25(S1):141-143.
    [124]王晓利,张柯.鼓形断面及差异锚杆在大跨度破碎煤巷支护中的应用研究[J].建井技术,2004,25(04):64-66.
    [125]蒲继雄.在大断面破碎带中应用锚护技术预防冒顶[J].甘肃科技,2010,26(01):103-105.
    [126]晏成明.大跨度地下结构动力计算模型研究[D].河海大学,2003.
    [127]万世文.锚索托梁加强支护的应用及技术关键[J].煤炭科学技术,2007(9):26-28.
    [128]李付海,宋传文.破碎围岩大断面硐室群支护技术[J].矿山压力与顶板管理,2001,(04):31-32.
    [129]曹继伟.大跨度山岭隧道围岩与支护结构稳定性的数值模拟分析[D].大连理工大学,2003.
    [130]刘业献,邵昌尧,杨瑞斌.唐口煤矿千米埋深岩层中大跨度硐室群施工技术[J].煤炭科学技术,2006,34(12):35-37.
    [131]杜立峰,闫志刚.复杂地质条件下超大断面公路隧道设计与施工[J].路基工程,2008,(02):171-172.
    [132]巨能攀.大跨度高边墙地下洞室群围岩稳定性评价及支护方案的系统工程地质研究
    [D].成都理工大学,2005.
    [133]米德才.浅埋大跨度洞室群围岩稳定性工程地质研究[D].成都理工大学,2006.
    [134]司利军.寺河矿大断面回采巷道锚网支护技术应用研究[D].中国优秀硕士学位论文全文数据库,2008.
    [135]杨海楼,孙敦勇.软岩大断面硐室破坏原因分析及治理[J].建井技术,1995,(05):21-23,48.
    [136]焦守林.浅埋大跨度隧道施工超前支护效应研究[D].中国优秀硕士学位论文全文数据库,2009.
    [137]赵明强.深井大断面沿空留巷围岩控制机理研究[D].安徽理工大学,2008.
    [138]李金华,李昂,王贵荣.大断面切眼煤巷锚杆支护技术研究[J].煤炭工程,2010,(03):34-37.
    [139] LI Zong-xiang, HUANG Zhi-an, ZHANG Ai-ran, SONG Jian-guo. Numerical analysis ofgas emission rule from a goaf of tailing roadway. J China Univ Mining&Technol2008(18):0164–0167.
    [140] YUAN Liang. Study on Critical, Modern Technology for Mining in Gassy Deep Mines. JChina Univ Mining&Technol2007,17(2):0226–0231.
    [141] LU Ai-hong, MAO Xian-biao, LIU Hai-shun. Physical simulation of rock burst induced bystress waves. J China Univ Mining&Technol18(2008)0401–0405.
    [142] YU Jing-cun, LIU Zhi-xin, TANG Jin-yun. Research on Full Space TransientElectromagnetism Technique for Detecting Aqueous Structures in Coal Mines. J China UnivMining&Technol2007,17(1):0058–0062.
    [143] LIU Ya-jing, MAO Shan-jun, LI Mei, YAO Ji-ming. Study of a Comprehensive AssessmentMethod for Coal Mine Safety Based on a Hierarchical Grey Analysis. J China Univ Mining&Technol2007,17(1):0006–0010.
    [144] WU Hao, FANG Qin, GUO Zhi-kun. Zonal disintegration phenomenon in rock masssurrounding deep tunnels. J China Univ Mining&Technol2008(18):0187–0193.
    [145] WU Hao, FANG Qin, ZHANG Ya-dong, GONG Zi-ming. Zonal disintegration phenomenonin enclosing rockmass surrounding deep tunnels—mechanism and discussion ofcharacteristic parameters. Mining Science and Technology2009(19):0306–0311.
    [146] Xiaoping Zhou,Qihu Qian, Bohu Zhang. ZONAL DISINTEGRATION MECHANISM OFDEEP CRACK-WEAKENED ROCKMASSES UNDER DYNAMIC UNLOADING. ActaMechanica Solida Sinica,2009(9):0166–0174.
    [147] WU Hao, FANG Qin, ZHANG Ya-dong, GONG Zi-ming. Zonal disintegration phenomenonin enclosing rock mass surrounding deep tunnels—Elasto-plastic analysis of stress field ofenclosing rock mass. Mining Science and Technology2009(19):0084–0090.
    [148] SUN Xiao-ming, CAI Feng, YANG Jun, CAO Wu-fu. Numerical simulation of the effect ofcoupling support of bolt-mesh-anchor in deep tunnel. Mining Science and Technology2009(19):0352–0357.
    [149] P. Egger. Design and Construction Aspects of Deep Tunnels(with particular emphasis onstrain softening rocks). TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY2000(15):0403–0408.
    [150] Cheng-Xiang Yang,Yong Hong Wu,Tung Hon. A no-tension elastic–plastic model andoptimized back-analysis technique for modeling nonlinear mechanical behavior of rockmass in tunneling. Tunnelling and Underground Space Technology2010(25):279–289.
    [151] Q.M. Gong, J.Zhao. Development of a rock mass characteristics model for TBMpenetration rate prediction. International Journal of Rock Mechanics&Mining Sciences2009(46):8–18.
    [152] Desheng Deng,Duc Nguyen-Minh. Identification of rock mass properties in elasto-plasticity.Computers and Geotechnics2003(30):27–40.
    [153] C.D.Martina,P.K.Kaiser,R.Christiansson. Stress, instability and design of undergroundexcavations. International Journal of Rock Mechanics&Mining Sciences2003(40):1027–1047.
    [154] J. Toran,R.Rodrguez、D eza、J.M.Rivas Cidb,M.M.Casal Barciella。FEM modeling ofroadways driven in a fractured rock mass under a longwall influence. Computers andGeotechnics2002(29):411–431.
    [155]曹建军,焦金宝,何清,田坤.深井沿空巷道围岩失稳机理与稳定性控制[J].煤矿安全,2010,(02):97-100.
    [156]徐金海,诸化坤,石炳华,冯梅梅.三软煤层巷道支护方式及围岩控制效果分析[J]中国矿业大学学报,2004,33(01):55-58.
    [157]裴士和.锚固支护在大断面巷道支护中的应用[J].中国矿山工程,2007,36(05):29-30,41.
    [158]闻全,翟德元.多次采动影响下特大断面综合支护技术的研究[J].煤矿设计,2001,(05):13-17.
    [159]吕兆海.破碎围岩条件下大断面巷道动力失稳分析[D].西安科技大学,2008.
    [160]樊栓保,吕志强,孙树华,杨凤友.锚索复合支护技术加固大断面硐室的实践[J].煤炭科学技术,2001,29(10):26-27,51.
    [161]张顶立,王梦恕,高军,刘招伟.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(02):290-296.
    [162]温新.大断面软弱顶板回采巷道锚杆支护技术实践[J].中国高新技术企业,2010,(07):183-184.
    [163]王丛书,杨本水,王宝贤.大断面特软顶板煤巷锚杆支护技术[J].建井技术,2005,26(01):14-16,36.
    [164]赵枝业.断裂构造区域深井回采巷道围岩变形特征及锚杆支护技术研究[D].中国优秀硕士学位论文全文数据库,2009.
    [165]李大旺.断裂构造区域深井回采巷道锚杆支护技术研究[D].中国优秀硕士学位论文全文数据库,2008.
    [166]宋选民,顾铁凤.构造裂隙对巷道稳定性影响的评价方法[J].太原理工大学学报,2001,36(06):567-571.
    [167]柳崇伟,宋选民.构造控制性裂隙分布对巷道稳定性影响的初步分析[J].太原理工大学学报,2001,32(01):33-36,39.
    [168]罗俊忠.断层对地下洞室围岩稳定性及其支护结构强度影响的数值试验研究[D].西安理工大学,2006.
    [169]谭海滨,蒋守来.断层破碎带巷道支护技术[J].煤矿支护,2006,(02):22-23.
    [170]刘美平.断层附近地应力分布规律及巷道稳定性分析[D].中国优秀硕士学位论文全文数据库,2009.
    [171]李忠,杨杰.河北省滦平县张家湾隧道断裂破碎带特征与围岩失稳研究[J]中国地质灾害与防治学报,2006,17(02):15-18.
    [172]南存全,张文军,张建华.矿区构造应力对井巷稳定性的影响[J]辽宁工程技术大学学报(自然科学版),1998,17(01):7-9.
    [173]贾强.挤压构造应力对采煤沉陷的影响分析[D].西安科技大学,2007.
    [174]檀远远.复杂构造带回采巷道松动圈确定与支护对策研究[D].中国优秀硕士学位论文全文数据库,2009.
    [175]鲁岩.构造应力场影响下的巷道围岩稳定性原理及其控制研究[D].中国矿业大学,2008.
    [176]宋选民,顾铁凤,柳崇伟.受贯通裂隙控制岩体巷道稳定性试验研究[J].石力学与工程学报,2002,21(12):1781-1785.
    [177]狄奇.锚网喷支护在断层破碎带中的应用[J].煤炭技术,2004,23(08):32-34.
    [178]李敬佩.深部破碎软弱巷道围岩破坏机理及强化控制技术研究[D].中国矿业大学,2008.
    [179]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].中国矿业大学,2008.
    [180]李志强.复杂应力条件下深部软岩巷道矿压控制研究[D].中国优秀博硕士学位论文全文数据库,2007,(05).
    [181]耿忠有.过断层及破碎带使用钢筋网锚喷支护的应用效果分析[J].黑龙江科技信息,2010,(05):38-42.
    [182]王文斌.节理岩体巷道预应力锚杆加固数值模拟分析[D].中国优秀硕士学位论文全文数据库,2007,(06).
    [183]谭海滨,蒋守来.断层破碎带巷道支护技术[J].煤矿支护,2006,(02):22-23.
    [184]唐华贵.巷道穿煤层过断层带的联合支护[J].煤矿支护,2006,(04):41-42.
    [185]南存全,张文军,张建华.矿区构造应力对井巷稳定性的影响[J].辽宁工程技术大学学报(自然科学版),1998,17(01):7-9.
    [186]惠功领,胡殿明.深部高应力围岩碎裂巷道支护技术[J].煤矿支护,2006,(02):24-27.
    [187]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].中国矿业,2001,(06):54-56.
    [188]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(03):225-230.
    [189]李东印,邢奇生,张瑞林.深部复合顶板巷道变形破坏机理研究[J].河南理工大学学报(自然科学版),2006,25(06):457-460.
    [190]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].中国矿业大学,2008.
    [191]王浩.回采巷道松软破碎围岩注浆加固与支护技术研究[D].中国矿业大学,2008
    [192]张农,侯朝炯,陈庆敏.巷道围岩注浆加固体性能实验[J].辽宁工程技术大学学报(自然科学版),1998,17(01):15-18.
    [193]张永吉,赵宏,杨正全.复合支护在围岩破碎条件下的使用[J].辽宁工程技术大学学报(自然科学版),2001,20(06):736-738.
    [194]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(02):145-148.
    [195]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报,2001,26(01):1-7.
    [196]樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[D].山东科技大学,2003.
    [197]徐营.岩石局部化变形与巷道围岩分岔失稳机理研究[D].山东科技大学,2006.
    [198]高峰.地应力分布规律及其对巷道围岩稳定性影响研究[D].中国矿业大学,2009.
    [199]黄先伍.巷道围岩应力场及变形时效性研究[D].中国矿业大学,2008.
    [200]夏孝够.深井回采巷道围岩变形机理及支护技术研究[D].中国优秀硕士学位论文全文数据库(硕士),2006,(11).
    [201]代进.综放回采巷道围岩裂纹扩展与类板结构及其非均称控制[D].山东科技大学,2007.
    [202]张宝安.深部软岩回采巷道高应力复杂条件下锚网索复合支护研究[D].中国优秀博硕士学位论文全文数据库(硕士),2005,(03).
    [203]王广德.复杂条件下围岩分类研究[D].成都理工大学,2006.
    [204]姜有,丁箭川.巷道围岩破坏分析及控制对策[J].煤炭科技,2010,(01):23-24,29.
    [205]黄军,叶义成,王文杰.巷道锚杆支护系统的安全稳定性分析[J].现代矿业,2010,(01):120-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700