藏北羌塘盆地胜利河油页岩沉积环境及其石油地质意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羌塘盆地是在前寒武纪结晶基底和古生界褶皱基底之上发育起来的以中生界海相沉积为主的一个残留盆地,其总体上具有两拗一隆的构造格局(北羌塘拗陷、南羌塘拗陷和中央隆起带)。胜利河地区位于北羌塘拗陷内的一个三级构造带(龙尾湖凹陷)内,该区构造强度较弱、新生代岩浆活动微弱、大型断裂带不发育。近年来在胜利河地区内发现了目前国内最大规模的海相油页岩,本文力争通过对胜利河油页岩的沉积环境及其石油地质意义的研究,丰富我国油页岩的理论研究、促进北羌塘拗陷油气勘探工作的进行。
     在地球物理资料和对北羌塘拗陷的区域构造和沉积特征的认识的基础上,以1:25万地质图的实测地层厚度为控制点,运用改进谢别德法对数据进行插值,反演出晚侏罗世北羌塘拗陷的沉积中心分布图。在此基础上,结合区域演化背景、胜利河地区的实测剖面和探槽的岩性化石组合和沉积构造等特征,对胜利河油页岩沉积时期的岩相古地理特征做了初步分析。
     在对油页岩沉积时期岩相古地理演化特征、油页岩中有机质聚集机理认识的基础上,结合胜利河油页岩特性、沉积水体特征等,推测胜利河油页岩有机质聚集机理符合分层水体成矿模式,沉积环境对胜利河油页岩形成的控制作用主要表现为海湾—泻湖、半封闭泻湖和蒸发泻湖三个演化阶段。
     通过油页岩的GC-MS实验和岩石热解实验等分析发现,胜利河油页岩热演化程度达到低成熟;油页岩的生物降解程度为3-4级;样品中甾类和萜类化合物能较为有效的反映油页岩的相关地质信息;油页岩中有机质的母质来源主要为浮游植物,部分为细菌来源,另外浮游动物、底栖动物和陆缘有机质碎屑可能对油页岩的有机质有少量的贡献;油页岩沉积水体存在一定程度的盐度分层,且具有较高盐度和较强的还原性。孢粉和C、O同位素研究表明,胜利河油页岩形成时期气候温暖潮湿,而油页岩上覆的膏岩沉积时期区域气候炎热干燥。
     结合胜利河地区的区域构造背景、龙尾湖凹陷区域地层特征、羌资1井中流体包裹体资料和镜质体反射率资料等,运用Ro—Tmax模型回归得出油页岩历史最高古地温时期龙尾湖凹陷的地温梯度为2.559℃/100m,胜利河油页岩的历史最大埋深为3194.4 m,当时门限深度在胜利河油页岩上覆940.8±m。
     在运用Ro—Tmax模型对地层剥蚀量进行半定量计算的基础上,综合实测剖面地层厚度和盆地演化特征,运用美国Platte River Associates开发的Basinmod软件对龙尾湖凹陷的埋藏史和热史进行了一维变地温梯度模拟。结合埋藏史曲线、胜利河油页岩排烃模拟实验、油页岩中残留烃含量以及膏岩层溶孔中见有沥青的现象,推测胜利河油页岩可能已进入排烃门限。油页岩及其同期形成的烃源岩可能为龙尾湖凹陷内J3S—N21 s(·)含油气系统提供丰富的油气来源,油页岩及其上覆的膏岩层可能为龙尾湖凹陷内J2b—J2x(·)含油气系统提供良好的区域盖层。
Qiangtang basin is a residual basin, which developed on the Precambrian crystalline basement and Palaeozoic fold basement. It's mainly filled by marine strata. In the basin, there are three secondary structure units which are named the Northern Qiangtang depression, the central uplift and the Southern Qiangtang depression. The Shengli River zone is located in the Longweihu sag, which is a tertiary structure unit in Northern Qiangtang depression. The intensive tectonic movements, huge Neozoic-magmatic activities and big fault belt are absent in the sag. In recent year, the largest marine oil shale resource in China has been discovered in the Shengli River zone. The aims of this study are to enrich the theory study of oil shale in China and promote the development of oil and gas exploration in Northern Qiangtang depression, by studying the depositonal conditions and the significance in petroleum geology of Shengli River oil shale.
     Base on the characteristics of geophysics, regional tectonic setting and sedimentary setting, the depocenter pattern of Northern Qiangtang depression in Late Jurassic can be simulated by using the formation thickness from 1:250000 geologic map as control points and interpolating data by the updated Xie Be D method. On the base of depocenter pattern of Northern Qiangtang depression, we had studied the characteristics of lithofacies paleographic map during the Shengli River oil shale depostional period, by synthesizing the data of regional geologic setting, the section and the trenches of oil shale in Shengli River zone.
     Base on the study of the lithofacies paleographic map and the enrichment mechanism of organic in sedimentary matter, we conjecture the enrichment mechanism of organic in Shengli River oil shale coincidence with the layering-water-accumulation model, by integrating the characteristics of lithology, sedimentary water body an so on. The control action of depositional conditions are expressed by three steps, which are bay-lagoon, semi-closed lagoon and closed lagoon.
     The experimental analysis of GC-MS and Rock-Eval indicate that the thermal evolution of Shengli River oil shale had got the low maturity phase. The biodegradation degree of Shengli River oil shale is range rank 3 to rank 4. The steranes and terpanes in the Shengli River oil shale can reflect the geologic information effectively. The organic matters contented in Shengli River oil shale are mainly from phytoplankton, partly from bacterium, a little from bottom fauna and terrestrial plant. The sedimentary water body is salinity stratification. The oil shale sedimentary environments are anoxic and relatively hypersaline. The characteristics of C&O isotope in oil shale section indicate the climate in the Qiangtang basin region during the deposition of oil shales was warm and humid or sub-humid. However, it's hot and arid during the plaster formation sedimentary period.
     According to the regional tectonic setting, the distribution characteristics of stratum in Longweihu sag, the characteristics of fluid inclusion under NO.1 prospect hole in Qiangtang basin, the characteristics of Ro in organic matters in stratum an so on, we had got the geothermal gradient value is 2.559℃/100m when the oil shale burial to the largest depth in history, by the regression analysis method base on the Ro—Tmax model. The largest burial depth of Shengli River oil in history was 3194.4 m. The threshold depth in that time is 940.8±m upon the oil shale formation.
     Base on the semi-quantity study of denudation thickness by Ro—Tmax model, the formation thickness and the basin evaluation characteristics, we had got the characteristics of 1-D burial and thermal history of Longweihu sag, by using the Basinmod software which was developmented by Platte River Associates, USA. According to the burial history, the hydrocarbons expulsion simulating experiment of Shengli River oil shale, we are supposed that the Shengli River oil shale had got the expulsion threshold. Finally, we recognized that the Shengli River oil shale and the formation sediment in the same time may be the source rock in J3s—N21s(·) petroleum system and as cap formation in J2b—J2x(·) petroleum system in Longweihu sag.
引文
[1*]成都地质矿产研究所.羌塘盆地西长梁—胜利河油页岩调查与评价报告.北京:中国地质调查局,2008.
    [2*]成都地质矿产研究所.羌塘盆地龙尾湖区块1:5万石油构造详查报告.北京:中国地质调查局,2005.
    [3*]成都地质矿产研究所.羌塘盆地石油地质资料浅钻施工及测试分析综合研究报告.北京:中国地质调查局,2008.
    [4*]成都环境地质与资源开发研究所.青藏地区羌塘盆地区域石油地质调查报告.北京:中国石油天然气总公司新区勘探事业部青藏油气勘探项目经理部,1997.
    [5*]成都地质矿产研究所.1:50万青藏高原羌塘盆地石油地质图.北京:中国地质调查局,1997.
    [6*]成都地质矿产研究所.中华人民共和国地质图(1:25万黑虎岭幅).北京:中国地质调查局,2005.
    [7*]成都地质矿产研究所.中华人民共和国地质图(1:25万多格错仁幅).北京:中国地质调查局,2005.
    [8*]成都地质矿产研究所.中华人民共和国地质图(1:25万玛依岗日幅).北京:中国地质调查局,2005.
    [9*]成都地质矿产研究所.中华人民共和国地质图(1:25万玛依岗日幅).北京:中国地质调查局,2005.
    [10*]成都地质矿产研究所.中华人民共和国地质图(1:25万江爱达日那幅).北京:中国地质调查局,2005.
    [11*]成都地质矿产研究所.中华人民共和国地质图(1:25万土错幅).北京:中国地质调查局,2005.
    [12*]成都地质矿产研究所.中华人民共和国地质图(1:25万日干配错幅).北京:中国地质调查局,1956.
    [13*]成都地质矿产研究所.中华人民共和国地质图(1:25万帕度错幅).北京:中国地质调查局,2005.
    [14*]成都地质矿产研究所.中华人民共和国地质图(1:25万昂达尔错幅).北京:中国地质调查局,2005.
    [15*]成都地质矿产研究所.全国油气资源战略选区调查与评价(第二批)青藏高原重点盆地油气资源战略调查与选区2009年度工作总结与2010年度工作安排.北京:中国地质调查局,2010.
    [1]刘招君,杨虎林,懂清水,等.中国油页岩[M].北京:石油工业出版社,2009:1-310.
    [2]李景明,王红岩,赵群.中国新能源资源潜力及前景展望[J].天然气工业,2008,28(1):149-155.
    [3]刘招君,孟庆涛,柳蓉.中国陆相油页岩特征及成因类型[J].古地理学报,2009,11(1):105-114.
    [4]付修根,王剑,汪正江,等.藏北羌糖盆地晚侏罗世海相油页岩生物标志物特征、沉积环境分析及意义[J].地球化学,2007,36(5):486-496.
    [5]王剑,付修根,李忠雄,等.北羌塘盆地油页岩形成环境及其地质意义[J].沉积学报,2010,待刊.
    [6]李丹梅,汤达祯,杨玉凤.油页岩资源的研究、开发与利用进展[J].石油勘探与开发,2006,33(6):657-661.
    [7]Bradely W. H., Eugster H. P. Geochemistry and paleolimnology of the trona deposits and associated auhigenic minerals of the Green River Formation of Wyoming [J]. U. S. Geol. Survey Prof. Paper 496-B,1969,71.
    [8]Eugster H. P., Surdam R. C., Wolfbauer. Depositional environment of the Green River Formation of Wyoming:A preliminary report[J]. Geological Society of American Bulletin,1973, (84): 1115-1120.
    [9]Surdam R. C., Wolfbauer C. A. Green River oil shale Playa Pattern[J]. Geological Society of American Bulletin,1975, (86):335-345.
    [10]Desborough G. A. A Biogenic-chemical statratifield lake model for the origin of oil shale of Green river Formation:An atternative to the playa-lake model[J]. Geological Society of American Bulletin, 1978, (89):961-971.
    [11]Boyer B. W. Green River laminites:Does the playa-lake model really invalidate the statratified lake model?[J]. Geology,1982, (10):321-324.
    [12]Muller P. J., Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I-Organic carbon preservation[J]. Deep-Sea Res,1979,26A:1347-1362. Ackleson S., Balch W. M., Holligan P. M. White waters of the gulf of maine[J]. Oceanography,1988,11: 18-22.
    [13]Ackleson S., Balch W. M., Holligan P. M. White waters of the gulf of maine[J]. Oceanography, 1988, (11):18-22.
    [14]Hay B. J. Interannual variability in partical flux in the southwestern Black Sea[J]. Deep-Sea Research,1990,37(6):911-928.
    [15]Pedersen T. F., Calvert S. E. Anoxia versus productivity:what controls the formation of organic-carbon-rich sediments and sedimentary rock? [J]. AAPG Bulletin,1990,74:454-466.
    [16]Rullkotter J. Z. Organic matter:the driving force for early diagenesis. In:Schulz H D, Zabel M, eds. Marine Geochemistry[M]. Springer Verlag, Heidelberg,1999,129-172.
    [17]Schulte S., Mangelsdorf K., Rullkotter J. Z. Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry[J]. Organic Geochemistry,2000, (31): 1005-1022.
    [18]邓宏文,王红亮,祝永军.高分辨率层序地层学——原理及应用[M].北京:地质出版社,2002.
    [19]Sedwick P., Stuben D. Chemistry of shallow submarine warm spring in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy[J]. Marine Chemistry,1996,53:146-161.
    [20]Pichler T., Veizer J., Hall G E M. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle island, Papua New Guinea and their effect on ambient sea water [J]. Marine Chemistry,1999, (64):229-252.
    [21]张宝民,张水昌,边立曾,等.浅析中国新元古——下古生界海相烃源岩发育模式[J].科学通报,2007,增刊Ⅰ(52):58-69.
    [22]Smith W. D., Peter C. J. St., Naylor R. D., et al. Composition and depositional environment of major eastern Canadian oil shales[J]. International Journal of Coal Geology,1991, (19):385-438.
    [23]Ahmed Wolela. Fossil fuel energy resources of Ethiopia:Oil shale deposits[J]. Journal of African Earth Sciences,2006, (46):263-280.
    [24]王剑,付修根,李忠雄,等.藏北羌塘盆地胜利河—长蛇山油页岩带的发现及其意义[J].地质通报,2009,28(6):691-695.
    [25]付修根.北羌塘中生代沉积盆地演化及油气地质意义[D].北京:中国地质科学院,2008.
    [26]赵政章,李永铁,叶和飞,等.青藏高原海相烃源层的油气生成[M].北京:科学出版社,2001.
    [27]赵政章,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社,2001.
    [28]赵政章,李永铁,叶和飞,等.青藏高原地层[M].北京:科学出版社,2001.
    [29]赵政章,李永铁,叶和飞,等.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2001.
    [30]赵政章,李永铁,叶和飞,等.青藏高原中生界沉积相及油气生储盖特征[[M].北京:科学出版社,2001.
    [31]王成善,伊海生,李勇,等.羌塘盆地地质演化与油气远景评价[M].北京:地质出版社,2001.
    [32]王剑,谭富文,李亚林,等.青藏高原重点沉积盆地油气资源潜力分析[M].北京:地质出版社,2004,1-317.
    [33]汪正江,王剑,陈文西,等.北羌塘盆地胜利河上侏罗统海相油页岩的发现[J].地质通报,2007,26(6):764-768.
    [34]付修根,王剑,汪正江,等.藏北羌塘盆地海相油页岩沉积环境[J].新疆石油地质,2007,28(5):529-533.
    [35]王剑,付修根,杜安道,等.羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年[J].海相油气地质,2007,12(3):21-26.
    [36]Fu Xiu-gen, Wang Jian, Qu Wen-jun, et al. Re-Os(ICP-MS)Dating of marine oil shale in the Qiang Tang Bain, Northern Tibet, China[J]. Oil Shale,2008,25(1):47-55.
    [37]Fu Xiu-gen, Wang Jian, Tan Fu-wen, et al. Sedimentological investigation of the Shengli River-Changshe Mountain oil shale (China):relationships with oil shale formation[J]. Oil Shale, 2009,26(3):373-381.
    [38]李忠雄,何江林,熊兴国,等.藏北羌塘盆地上侏罗—下白垩胜利河油页岩特征及其形成过程[J].吉林大学学报(自然科学版),2010,待刊.
    [39]Gavin J. M. Oil Shale[M]. Wahington:Washington Government Printing Office,1924.
    [40]Tissot B. P., Welte D. H. Petroleum formation and occurrence[M]. Berlin:Springer-Verlag,1978.
    [41]侯祥麟.中国油页岩工业[M].北京:石油工业出版社,1984.
    [42]赵隆业,陈娘基,王天顺.中国油页岩物质成分与工业成因类型[R].北京:中国地质大学,1990.
    [43]赵隆业,陈娘基,王天顺.我国油页岩的成分和品级划分[J].现代地质,1990,5(4):423-429.
    [44]Dyni J. R. Geology and resources of some world oil-shale deposits[J]. Oil Shale,2003,20(3): 193-252.
    [45]全国矿产储量委员会办公室.矿产工业要求参考手册[S].北京:地质出版社,1987.
    [46]钱家麟,尹亮.油页岩——石油的补充能源[M].北京:中国石化出版社,2008:1-406.
    [47]Ozerov I. M., Polozov V. F. Principles of Oil Shale Commercial Classification[M]. Tallin:UN Syrup development and utilization of Oil Shale Resources,1968.
    [48]Down A. L., Himus G. W. The classification of oil shales and cannel coals[J]. Inst. Petrol.,1994, (26):329-332.
    [49]Jaffe F. C. Oil shale-Part 1, nomenclature, uses, reserves and production[J]. Col. Sch. Mines. Miner. Ind. Bull.,1962,5:1-11.
    [50]Mott R. A. The nomenclature of canneloid materials[J]. In:Institute of Petroleum, Oil Shale and Cannel Coal. Institute of Petroleum, London,1951, (2):134-149.
    [51]Bitterli P. Classification of bituminous rocks of Western Europe[J]. Proc.6th World Petrol. Cong. Section 1,1963,30 (Preprint).
    [52]Alpern B. Schistes bitumineux reserves, pdtrographie, valorization[J]. Ind. Min., August-September,1979,1-9.
    [53]Hutton A. C. Petrographic Classification of Oil Shales[J]. Intern. J. of Coal Geology,1987, (8): 203-231.
    [54]白云山,李莉,牛志军,等.羌塘中部各拉丹东一带鄂尔陇巴组火山岩特征及其构造环境[J].地球学报,2005,26(2):113-120.
    [55]车自成,刘良,罗金海.中国及其邻区区域大地构造学[M].北京:科学出版社,2002.
    [56]雷振宇,李永铁,刘忠,等.藏北羌塘盆地构造变形及其动力学背景[J].地质论评,2001,47(4):415-419.
    [57]王成善,李亚林,李永铁.青藏高原油气资源远景评价问题[J].石油学报,2006,27(4):1-7.
    [58]黄继钧.羌塘盆地基底构造特征[J].地质学报,2001,75(3):333-352.
    [59]王国芝,王成善.西藏羌塘基底变质岩系的解体和时代厘定[J].中国科学,2001(增刊):77-82.
    [60]李才.羌塘基底质疑[J].地质论评,2003,49(1):5-9.
    [61]李才,翟庆国,程立人,等.青藏高原羌塘地区几个关键地质问题的思考[J].地质通报,24(4):295-301.
    [62]谭富文,陈明,王剑,等.西藏羌塘盆地中部发现中高级变质岩[J].地质通报,2008,27(3):351-355.
    [63]谭富文,王剑,付修根,等.藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义[J].岩石学报,2009,25(1):139-146.
    [64]藤吉文,张中杰,万志超.羌塘盆地及周边地带地球物理场与油气深部构造背景初探[J].地球物理学进展,1996,11(1):12-27.
    [65]Zhang Kai-Jun, Cai Jian-Xin, Zhang Yu-Xiu, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters,2006,245:722-729.
    [66]付修根,王剑,汪正江,等.藏北羌塘盆地上三叠系那地岗日组与下伏地层沉积尖端的确立及意义[J].地质论评,2007,53(3):329-336.
    [67]王剑,付修根,陈文西,等.藏北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J].沉积学报,2007,25(4):487-494.
    [68]付修根,王剑,汪正江,等.藏北羌塘盆地菊花山地区火山岩SHRIMP锆石U-Pb年龄及地球化学特征[J].地质论评,2008,54(2):232-242.
    [69]胡见义,黄第藩,徐树宝,等.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991.
    [70]张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,1999.
    [71]黄飞,辛茂安.陆相烃源岩地球化学评价方法[s].北京:石油工业出版社,1996.
    [72]卢双舫,张敏.油气地球化学[M].北京:石油工业出版社,2008.
    [73]Peters K. E., Moldowan J. M.生物标记化合物指南[M].姜乃煌,张水昌,林永汉,等,译.北京:石油工业出版社,1995.
    [74]邬立言.生油岩热解快速定量评价[M].北京:科学出版社,1986.
    [75]曹寅,钱志浩,秦建中,等.石油地质样品分析测试技术及应用[M].北京:石油工业出版社,2006.
    [76]Hao Fang, Sun Yongchuan, Li Sitian, et al. Overpressure retardation of organic-matter maturation and Petroleum Generation:a case study from the Yinggechai and Quongdongna Basin, South China Sea[J]. AAPG Bulletin,1995,79(4):551-562.
    [77]任拥军,纪友亮,李瑞雪.南祁连盆地石炭系可能烃源岩的甾萜烷地球化学特征及意义[J].石油实验地质,2000,22(4):341-345.
    [78]李友川,黄正吉.渤海海域低成熟油的地球化学特征[J].中国海上油气(地质),2002,16(5):322-327.
    [79]Czochanska Z., Gilbert T. D., Philp R. P., et al. Geochemical application of sterane and triterpane biomarkers to a description of oils from Taranaki Basin in New Zealand[J]. Organic Geochemistry,1988, (12):123-135.
    [80]Volkman J. K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry,1986, (9):83-99.
    [81]Buchardt B., Christiansen F. G., Nohr-Hansen H. Composition of organic matter in source rocks[J]. Peroleum Geology of North Greenland GrΦnlands Geologiske UndersΦgelse Bulletin,1989, (158): 32-39.
    [82]胡春余,史文东,田世澄,等.青南洼陷烃源岩地球化学特征及资源潜力[J].油气地质与采收率,2007,14(1):40-43.
    [83]Robinson N., Eglinton G., Brassell S. C., et al. Dinoflagellate origin for sedimentary 4-methylsteroids and 5a(H)stanols[J]. Nature,1984, (308):439-441.
    [84]Philp R. P., Fan P., Lewis C. A., et al. Geochemical characteristics of oils from Chaidamu, Shanganning and Jianghan basins, China[J]. Journal of Southeast Asian EarthScience,1991,5: 351-358.
    [85]段毅,吴保祥,张辉.鄂尔多斯盆地西峰油田原油地球化学特征及其成因[J].地质学报,2006,80(2):301-310.
    [86]Hanson A. D., Zhang S. C., Moldowan J. M., et al. Molecular organic geochemistry of the Tarim basin, Northwest China[J]. AAPG Bulletin,2000, (84):1109-1128.
    [87]Burwood R., Leplat P., Mycke B., et al. Rifted margin source rock deposition:a carbon isotope and biomarker study of a west African Lower Cretaceous "lacustrine" section[J]. Organic Geochemistry,1992, (19):41-52.
    [88]Mycke B., Narjes F., Michaelis W. Bacteriode hopanetetrol from chemical degradation of an oil shale kerogen [J]. Nature,1987, (326):179-181.
    [89]Aleksandra S ajnovic, Ksenija Stojanovic, Branimir Jovanc ic evic, et al. Biomarker distributions as indicators for the depositional environment of lacustrine sediments in the Valjevo-Mionica basin (Serbia)[J]. Chemieder Erde,2008, (68):395-411.
    [90]张立平,黄第藩,廖志勤.伽马蜡烷——水体分层的地球化学标志[J].沉积学报,1999,17(1):136-140.
    [91]王铁冠,钟宁宁,候读杰,等.中国低熟油的几种成因机制[J].沉积学报,1997,15(2):75-83.
    [92]Peters K. E., Moldowan J. M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry,1991,17(1): 47-61.
    [93]刘晓艳,李娇娜,王顺玉.石油有机地球化学[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [94]韩吟文,马振东.地球化学[M].北京:地质出版社,2002.
    [95]Anderson R. V., Dean W. E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology & Palaeoecology,1988,62(1-4):215-235.
    [96]Stiller M., Nieeenbauma A. A stable carbon isotope study of dissolved inorganic carbon in Hardwater Lake Kinneret (Sea of Galille)[J]. South African Journal of Science,1999,95 (4):(download from EBSCO HOST, without pages).
    [97]Clayton R. N., Degens E. T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments[J]. AAPG Bulletin,1959, (4):889-897.
    [98]Cruz Jr F. W., Karmann I., Viana Jr O., et al. Stable isotope study of cave percolation waters in subtropical Brazil:Implications for paleoclimate inferences from speleothems[J]. Chemical Geology, 2005,220(3-4):245-262.
    [99]Hudson J. D. Stable isotopes and limestone lithiflcation[J]. Journal of the Geological Society,1977, 133(6):637-660.
    [100]Chen Lan, Yi Haisheng, Hu Ruizhong, et al. Organic geochemistry of the Early Jurassic oil shale from the Shuanghu area in Northern Tibet and the Early Toarcian oceanic anoxic event [J]. Acta Geologica Sinica,2005,79 (3):392-397.
    [101]Demaison G. J., Moore G. T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry,1980, (2):9-31.
    [102]Bordovskiy O. K. Accumulation and transformation of organic substances in marine sedimentsfJ]. Marine Geology,1965, (3):3-114.
    [103]Degens E. T., and Mopper, K. Factors controlling the distribution and early diagenesis of organic material in marine sediments[J]. Chemical Oceanography,1976, (6):59-113.
    [104]Didyk B. M., Simoneit B. R. T., Brassell S. C., et al. Organic geochemical indicators of paleoenvironmental conditions of sedimentation [J]. Nature,1978, (272):216-222.
    [105]Dow W. G. Kerogen Studies and Geological Interpretations[J]. Journal Geochemistry Exploration, 1977, (7):7-99.
    [106]Roden G. I. Oceanographic aspects of Gulf of California, in Marine Geology of the Gulf of California, Am. Assoc. [J]. Petroleum Geologists Mem.1964, (3):30-58.
    [107]Tyson R. V. The genesis and palynofacies characteristics of marine petroleum source rocks[J]. Geological Society Special Publication,1987, (26):47-67.
    [108]Muller P. J., Suess E. Productivity, sedimentation rate and sedimentary organic matter in the oceans--I-Organic carbon preservation[J]. Deep-Sea Research,1979,26(12):1347-1362.
    [109]Pedersen T. F., Calvert S. E. Anoxia versus productivity:what controls controls the formation of organic-carbon-rich sediments and sedimentary rock[J]. AAPG Bulletin,1990, (74):454-466.
    [110]Calvert S. E., Bustin R. M., Pederson T. F. Lack of enhanced preservation of sedimentary organic matter in the oxygen minimum of the Gulf of California[J]. Geology,1992, (20):757-760.
    [111]Bordovskiy O. K. Accumulation and transformation of organic substances in marine sediments[J]. Marine Geology,1965, (3):3-114.
    [112]Claypook G. E., Kaplan, I. R. The origin and distribution of methane in marine sediments, in natural gases in marine sediments[M]. New York:Plenum Press,1974.
    [113]Foree E. G., Mc Carty P. L. Anaerobic decomposition of algae[J]. Enciron. Science Technology, 1970, (4):842-849.
    [114]Lijmbach G. W. M. On the origin of petroleum,9th World Petroleum Congregation[C]. Tokyo Proc proceedings,1975, (2):357-368.
    [115]Spencer D. W., Honjo S., Brewer D. G. Particles and particle fluxes in the ocean[J]. Oceanus, 1978, (21):20-25.
    [116]Wyrtki K. The oxygen minimum in relation to ocean circulations[J]. Deep-Sea Research,1962, (9): 11-23.
    [117]张明学,胡玉双.层序地层学与油气[M].北京:石油工业出版社,1998.
    [118]王剑秋,李术元,韩放,等.油页岩——石油的补充能源[M].北京:中国石化出版社,2008:1-406.
    [119]刘宝珺,曾允孚.岩相古地理基础和工作方法[M].北京:地质出版社,1985.
    [120]张厚福,孙红军,梅红.多旋回构造变动区的含油气系统[J].石油学报,1999,8-12.
    [121]Magoon L. B., Dow W. G. The petroleum system-from source to trap[J]. AAPG Memoir,1994, (60):3-24.
    [122]谭富文,王剑,王小龙,等.西藏羌塘盆地——中国油气资源战略选区的首选目标[J].沉积与特提斯地质,2002,22(1):16-20.
    [123]罗建宁,谢渊,王小龙,等.羌塘盆地石油地质条件与初步评价[J].沉积与特提斯地质,2003,23(1):1-14.
    [124]秦建中.羌塘盆地有机质热演化与成烃史研究[J].石油实验地质,2006,28(4):350-357.
    [125]王朋岩,徐全.三江盆地绥滨坳陷白垩纪地层剥蚀厚度恢复[J].大庆石油地质与开发,2008,27(3):5-8.
    [126]Dow W. G Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploration, 1977,7(1):79-99.
    [127]郝石生,贺志勇,高耀斌,等.恢复地层剥蚀厚度的最优化方法[J].沉积学报,1988,6(4):94-102.
    [128]何生,王青玲.关于用镜质体反射率恢复地层剥蚀厚度的问题讨论[J].地质论评,1989,35(2):119-126.
    [129]胡圣标,汪集,张容燕,等.利用镜质体反射率数据估算地层剥蚀厚度[J].石油勘探与开发,1999,26(4):42-45.
    [130]陈增智,柳广弟,郝石生.修正的镜质体反射率剥蚀厚度恢复方法[J].沉积学报,1999,17(1):141-144.
    [131]Waples D. W. Time and temperature in petroleum formation application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin,1980,64(8):916-926.
    [132]Karweil J. Diemetamorphose der Kohlenvom Standpunkt der physikalischen Chemie[J]. Z. Deutsch. Geol. Ges.,1955, (107):132-139.
    [133]Cannan J. Time-tempreture relation in oil genesis[J]. AAPG Bulletin,1974,58(12):2516-2521.
    [134]Hood D., Gutjahr C. C. M., Heacock R. L. Organic metamorphism and the generation of petroleum[J]. AAPG Bulletin,1975,59(6):986-996.
    [135]Sweeney J. J., Burnham A. k. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics[J]. AAPG Bulletin,1990,74(10):1559-1570.
    [136]Barker C. E., Crysdale B. L., Pawlewic M. J. The relationship between vitrinite reflectance, metamorphic grade, and temperature in the Cerro Prieto, Salton Sea and East Mesa geothermal systems, Salton Trough, United States and Mexico[J]. Studies in diagenesis:USGS Bulletin,1986, (1578):83-95.
    [137]邓万明,孙宏娟.青藏北部板内火山岩的同位素地球化学与源区特征[J].地学前缘(中国地质大学,北京),1998,5(4):307-317.
    [138]李亚林,黄继钧,王成善,等.羌塘盆地构造改造强度划分与油气远景区分析[J].沉积与特 提斯地质,2005,25(4):11-16.
    [139]柴岫.泥炭地学[M].北京:地质出版社,1990.
    [140]申家年,王庆红,何江林,等.松辽盆地白垩纪湖泊水体温度与古气候温度估算[J].吉林大学学报(地球科学版),2008,38(6):946-952.
    [141]张水昌,张宝民,边立曾,等.8亿多年前由红藻堆积而成的下马岭组油页岩[J].中国科学D辑,2007,37(5):636-643.
    [142]秦建中.青藏高原羌塘盆地有机相展布与成烃模式[J].石油实验地质,2006,28(3):264-270.
    [143]Barker C. E., Goldstein R. H. Fluid-inclusion technique for determining maximum temperature in calcite and its coparison to vitrinite reflectance geothermometer[J]. Geology,1990, (18): 1003-1006.
    [144]Brewster Baldwin, Crispin O. B. Compaction Curves[J]. AAPG Bulletin,1985,69(4):622-626.
    [145]Lerche I. Basin analysis[M]. San Diego, CA(USA):Academic Press Inc.,1989.
    [146]Sweeney J. J., Burenham A. K., Braun R. L. A Model of Hydrocarbon Generation from Type I Kerogen:Application to Uinta Basin, Utah[J]. AAPG Bulletin,1987,71(8):967-985.
    [147]庞雄奇,李丕龙,金之钧.油气成藏门限研究及其在济阳坳陷中的应用[J].石油与天然气地质,2003,24(3):204-209.
    [148]周海燕,庞雄奇,姜振学.油气成藏门限及其研究方法[J].石油学报,2003,24(6):40-44.
    [149]曾庆辉,钱玲,刘德汉,等.富有机质的黑色页岩和油页岩的有机岩石学特征与生排烃意义[J].沉积学报,2006,24(1):113-122.
    [150]国建英,王东良,于学敏,等.黄骅坳陷孔南地区油页岩的排烃模拟试验[J].石油天然气学报,2009,31(2):1-5.
    [151]庞雄奇,邱楠生,姜振学,等.油气成藏定量模拟[M].北京:石油工业出版社,2003:1-350.
    [152]秦建中,刘宝泉.海相不同类型烃源岩生排烃模式研究[M].石油实验地质,2005,27(1):74-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700