中厚板轧后多阶段冷却控制策略研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制冷却是TMCP技术的重要组成部分,它通过改变轧后冷却条件来控制相变条件和碳氮化物析出行为从而改善钢板组织和性能。中厚板轧后多阶段冷却控制策略的研究目的在于对轧后钢板在冷却过程中的温度变化和组织演变过程进行精细控制,提高冷却均匀性,使之满足复相钢、高强钢等新产品生产的需求。本文以国家“十一五”科技支撑计划中“节约型钢材减量化轧制技术”课题为背景,结合新一代轧后快速冷却系统开发项目,针对中厚板轧后多阶段冷却控制策略进行研究。重点对冷却过程中的换热机理,温度场解析模型等理论模型以及钢板内部温度变化规律等工艺过程进行系统研究。在此基础上,开发中厚板多阶段冷却控制系统,研究高精度、均匀化冷却技术,解决工程应用实际问题,并以高强度C-Mn钢为例实现轧后多阶段冷却控制策略的应用。最后,根据最优控制理论进行了多阶段温度路径最优跟踪控制。本文主要研究内容和成果如下:
     (1)研究控制冷却系统的理论模型。首先,对超快速冷却和层流冷却状态下换热模型、冷却效率模型进行研究,分析得到换热系数、冷却效率随各种影响因素的变化规律。在此基础上,根据能量守恒定律回归水冷换热系数模型,获得可在线应用的数学模型。
     (2)采用有限元解析方法求解钢板内部温度场。根据中厚板冷却过程中的导热微分方程及其初始条件和边界条件,利用有限元法实现对钢板内部温度场的解析计算。其中,重点研究相变转变产物及其转变量的计算方法,获得相变潜热的计算模型;合理划分有限单元网格,确定迭代计算时间步长,在保障模型计算精度的同时,满足在线应用要求。以内能为基础,建立钢板平均温度的处理方法,计算结果更能真实地反映钢板平均温度变化情况。
     (3)分析各种冷却条件下中厚板内部温度变化规律。对钢板在各种冷却方式下钢板温度变化规律进行研究,包括空冷过程,超快速冷却及其返红过程和加速冷却及其返红过程。阐明各种因素对钢板内部温度变化影响,并揭示了钢板冷却有效厚度、平衡温差以及返红分界线的变化规律。
     (4)研究多阶段冷却条件下钢板工艺特点。首先,分析钢板在复合冷却方式,不同冷却模式及集管排布形式条件下的温度变化规律。其次,研究获得各种冷却策略条件下,钢板冷却速度变化规律。最后,分析指出轧后立即进行超快速冷却有利于提高钢板力学性能,而采用控制灵活的加速冷却方式,可以实现对过冷奥氏体相变的灵活控制。
     (5)建立多阶段冷却控制系统。结合国内某中厚板厂轧后冷却设备的具体布置形式,建立多阶段冷却控制系统,分别对其基础自动化和过程自动化功能及时序触发机制进行系统阐述。解决影响系统控制精度及冷却均匀性的关键问题,满足多阶段冷却控制的工业生产需要。深入研究多阶段冷却过程控制机理,确定各阶段冷却方式,实现超快速冷却、加速冷却过程控制,并以高强度C-Mn钢为例阐述多阶段冷却过程控制原理。
     (6)基于线性二次型优化算法,实现中厚板轧后多级温度路径的优化控制。以集管冷却效率、终冷温度和温度路径为目标建立中厚板轧后多级温度路径优化控制算法。对20mm厚高强船板DH36轧后多级温度路径进行工艺优化控制,实现了各个冷却阶段终冷温度和冷却速度的高精度控制,将优化结果应用于工业实验,有效避免了钢板厚向温度及组织差异过大,获得了具有理想组织性能的产品。
Controlled cooling was an important part of TMCP technology by which the effect factors of phase transformation and the precipitation behavior of carbide were controlled to improve the microstructure and mechanical property of steel. Multistage cooling control was to control the phase transformation process accurately and to improve cooling uniformity so as to satisfy the need of the production of new products such as complex steel and high-strength steel etc. Based on the significant technology "Saving Type Steel Products and Its Reduced Steel Rolling Technology" of "11th Five-Year Plan" Key Technology R&D Program, the new generation cooling system was developed and the multistage cooling control stragety of hot plate was researched in this article. The mechanisms of heat transfer during accelerated cooling and ultra-fast cooling process and the analytical model for the variation of temperature inside plate were analyzed. The key technology basis for controlled cooling was researched, where the emphasis was the variation of temperature filed under different cooling strategy. Based on theoretical and technological researched, multistage cooling control system was developed. To satisfy the need of industrial application, the high-precision and uniform cooling technology was researched. Optimum control of multistage temperature profile was accomplished based on optimal control theory. The main work and results are as follows:
     (1) The theoretical models of the controlled cooling system were researched. First, the heat transfer between plate and coolant during the process of accelerated cooling, ultra-fast cooling and air cooling etc. were analyzed profoundly. Based on energy conservation principle, the on-line regression equation for the coefficient of heat transfer was established.
     (2) The finite element method to analyze temperature field was established. The differential equation and its boundary condition, initial condition to analyze thermal conduction inside hot plate were introduced. The differential equation was analyzed by the finite element method. The models for calculating latent heat during various phase transformation inside hot plate deduced from an important model of which was the transmutation product and its quota of phase transformation. The finite element mesh and time step for iterative computation were decided appropriately so that the finite element method could be used on-line with high-precision. Based on internal energy, the average temperature inside hot plate was calculated. The calculated results could reflect the variation of real average temperature.
     (3) The variation regular of temperature was researched for building of the multistage cooling control system. The variation regular of temperature inside hot plate under different cooling condition was researched such as accelerated cooling, ultra-fast cooling, and air cooling. The variation regulars of effective cooling thickness, balance temperature difference and red-back critical line were disclosured.
     (4) The technology feature of hot plate under the condition of multistage cooling was researched. Firstly, the variation regular of temperature under the combined type cooling system developed by RAL was researched. Secondly, the cooling rate was researched under different cooling strategy. Base on cooling rate, the effects of cooling method on phase transformation were analyzed. The ultra-fast cooling and the accelerated cooling were recommended to control the incubation period of phase transformation and the process of phase transformation respectively.
     (5) The multistage cooling control system was established to satisfy the need of industrial production of plate. Base on cooling equipment layouts of some plate plant, a multistage cooling control system was developed. The function of electric automatic control system and technology automatic control system, and trigger mechanism according to time sequence were described. The key technology to improve control accuracy and cooling uniformity of the control system was introduced. The working principle of the technology automatic control system was researched. How to select the cooling pattern and to realize the control process of ultra-fast cooling and accelerated cooling were discussed in details. The working principle of multistage cooling control system was introduced as an example to high strength C-Mn steel.
     (6) The optimal control based on linear quadratic was introduced to control the multistage temperature profile of hot plate. To control cooling profile with high degree of accuracy using optimal cooling efficiency, the controlled targets of performance fuction were cooling efficiency of cooling unit, finish cooling temperature and cooling profile. The finish cooling temperature and the cooling rate of 20mm DH36 of each stage were controlled with high-precision. The ideal microstructure and mechanical property of DH36 were obtained during the industrial experiment at some factory.
引文
[1]李世俊.中国钢铁工业转变增长方式的途径及建议[J],冶金管理,2005,(1):19-24.
    [2]张晓刚.充满生机与活力的中国钢铁工业[J],冶金经济与管理,2008,(1):21-24.
    [3]张寿荣.钢铁工业与技术创新[J],中国冶金,2005,15(5):1-6.
    [4]小指军夫.控制轧制控制冷却-改善材质的轧制技术的发展[M],北京:冶金工业出版社,2002,6-45.
    [5]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M],北京:冶金工业出版社,1995,1-4.
    [6]陶常印.控制轧制和控制冷却工艺的研究[J],鞍钢技术,1997,(9):17-20.
    [7]汪祥能,丁修堃.现代带钢连轧机控制[M],沈阳:东北大学出版社,1996,304-310.
    [8]张辉,吕鹤年.热轧带钢层流冷却装置的设计与研究[J],一重技术,1996,67(1):27-29.
    [9]Inoue, Kigawa, Shibata, et al. New coiling temperature control technology for hot strip mill[J], KOBELCO Technology Review,1992, (15):36-40.
    [10]Andrzej G G, Robert G, Emmanuel R B. Automatic Control of Laminar Flow Cooling in Continuous and Reversing Hot Strip Mills[J], Iron and Steel Engineer,1990,67(9): 16-20.
    [11]Fred C K, Wean U. Waterwall Water-cooling Systems[J], Iron and Steel Engineer,1985, 62(6):30-36.
    [12]丁修堃.轧制过程自动化[M],北京:冶金工业出版社,1986,380-385.
    [1 3]于世果,李宏图.国外厚板轧机及轧制技术的发展(一)[J],轧钢,1999,(5):43-46.
    [14]赵其德.带钢层流冷却装置[A],一重技术(宝钢热连轧机专辑Ⅱ)[C],1995,(3):95-100.
    [15]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988,154-179.
    [16]成琦玲,周敏文.钢板轧制后直接淬火工艺研究[J],鞍钢技术,1997,(12):29-34.
    [17]陆松年.快速冷却和直接淬火技术[J],宽厚板,1996,2(5):1-8.
    [18]彭良贵,刘相华,王国栋.超快冷却技术的发展[J],轧钢,2004,21(1):1-3.
    [19]王国栋.以超快速冷却为核心的新一代TMCP技术[J],上海金属,2008,30(2):1-5.
    [20]王国栋.新一代TMCP的实践和工业应用举例[J],上海金属,2008,30(3):1-4.
    [21]刘宗昌.材料组织结构转变原理[M],北京:冶金工业出版社,2006,108.
    [22]Hawbolt E B, Chau B. Kinetics of Austenite-Ferrite and Austenite-Pearlite Transformation in a 1025 Carbon Steel[J], Metallurgical Transactions A,1985,16A(4): 565-578.
    [23]Hawbolt E B, Chau B, Brimacombe J K. Kinetics of Austenite-Pearlite Transformation in Eutectoid Carbon Steel[J], Metallurgical Transactions A,1983,14A(9):1803-1805.
    [24]Kuban M B, Jayaraman R. An Assessment of the Additivity Principle in Predicting Continuous-Cooling Austenite-to-Pearlite Transformation Kinetics Using Isothermal Transformation Data[J], Metallurgical Transactions A,1986,17A(9):1493-1503.
    [25]Liu W J, Jonas J J. Ti(CN) Precipitation in Microalloyed Austenite During Stress Relaxation[J], Metallurgical Transaction A,1988,19A(6):1415-1424.
    [26]Pham T T, Hawbolt E B, Brimacombe J K. Predicting the onset of Transformation under Noncontinuous Cooling Conditions[J], Metallurgical Transactions A,1995,26A (8):1987-1992.
    [27]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    [28]Picking F B. Physical Metallurgy and the Design of Steels [J], Applied Science Publishers LID, London,1978:31~37.
    [29]Kirkaldy J S. Prediction of alloy hardenability from thermodynamic and kinetic data[J], Metallurgical Transactions A,1973,4(10):2327-2333.
    [30]Umemoto M, Nishioka N. Prediction of hardenability from isothermal transformation diagrams[J], Transactions of the Iron and Steel Institute of Japan,1982,22(8): 629-636.
    [31]Umemoto M, Horiuchi K, Tamura I. Transformation kinetics of bainite during isothermal holding and continuous cooling[J], Transactions of the Iron and Steel Institute of Japan,1982,22(11):854-861.
    [32]Sun C G, Han H N, Lee J K, et al. Finite element model for the prediction of thermal and metallurgical behavior of strip on run-out table in hot rolling[J], ISIJ International, 2002,42(4):392-400.
    [33]张玉妥,沙孝春,兰勇军,等.热轧低碳钢不同冷却模式下的相变模拟与验证[J],钢铁,2004,39(6):55-58.
    [34]Andorfer J, Hribernig G, Luger A使用VAI_Q Strip系统首次实现热轧带钢力学性能的全面控制[J],钢铁,2001,36(1):42-46.
    [35]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M],沈阳:东北大学出版社,2004,258-260.
    [36]刘正东,董瀚,干勇.热连轧过程中组织性能预报系统的应用[J],钢铁,2003,38(2):68-71.
    [37]Loffler H U, Doll R, Dun W. Microstructure monitor controls product quality-successful implementation at the hot strip mill at Wuhan iron and steel group[C], China International Steel Congresses(shanghai china),2004,7:6-10.
    [38]Loffler H U, Doll R. Commercial application of microstructure modelling in hot strip mills[C], Recrystallization and Grain Growth Proceedings of the First Joint International Conference. Springer-Verlag,2001.
    [39]Trowsdale A J, Tunstall J P, Randerson K, et al. modeling of metal rolling processes[C], British steel plc. London:Church House Conference Centre London, UK,1999:12-21.
    [40]沙孝春,兰勇军,李殿中,等.带钢热轧组织性能预测与控制技术应用与发展[J],轧钢,2003,23(4):23-26.
    [41]刘相华,胡贤磊,杜林秀,等.轧制参数计算模型及其应用[M],北京:化学工业出版社,2007,13-15.
    [42]孙蓟泉,战波.热轧带钢生产新技术及其特点[J],山东冶金,2006,28(1):4-7.
    [43]钱振声.控制冷却过程中影响钢板均匀冷却的因素及其控制[J],宽厚板,2000,6(1):1-6.
    [44]蔡正,王国栋,刘相华.热轧带钢在冷却过程中的内应力解析[J],钢铁,2000,35(6):33-40.
    [45]蔡正,王国栋,刘相华.层流冷却中温度分布模型的开发[J],钢铁,1998,33(8):42-46.
    [46]王国栋.均匀化冷却技术与板带材板形控制[J],上海金属,2007,29(6):1-5.
    [47]Akio F, Kazuo O. JFE Steel's Advanced Manufacturing Technologies for High Performance Steel Plates[J], JFE TECHNICAL REPORT,2005, (5):10-15.
    [48]QC小组活动成果汇编之十八:运用过程控制手段降低带钢判废损失,上海质量,2000,(1):48-50.
    [49]金学俊.热轧新技术[J],上海金属,1995,17(5):1-11.
    [50]龚彩军,于明,王国栋,等.首钢中厚板加速冷却过程的微跟踪控制[J],冶金自动化,2005,(2):48-51.
    [51]尼托.采用直接淬火和回火工艺生产高强度钢板[J],宽厚板,1997,3(4):39-42.
    [52]林承江,时捷,王华昆.控轧直接淬火钢的微观组织与力学性能[J],天津冶金,2005,(3):30-33.
    [53]Chiako O. Development of Steel Plants by Intensive Use of TMCP and Direct Quenching Processes[J], ISIJ International,2001,41:542-553.
    [54]张训江,熊伟,王明亮.4300mm宽厚板热处理线工艺及主要设备介绍[J],鄂钢科技,2008,(1):38-40.
    [55]陈瑛.中厚板热处理技术综述[J],宽厚板,2008,14(2):1-6.
    [56]邵正伟.国内中厚板热处理工艺与设备发展现状及展望[J],山东冶金,2006,28(3):11-15.
    [57]Tong A Y. On the impingement heat transfer of an oblique free surface plane jet[J], International Journal of Heat and Mass Transfer,2003,46(11):2077-2085.
    [58]朱冬梅.缝隙流冷却特性分析[J],冶金能源,2006,25(5):34-37.
    [59]彭良贵,刘相华,王国栋.超快冷却技术的发展[J],轧钢,2004,21(1):1-3.
    [60]Simon P, Fishbach J P, Riche P. Ultra-fast cooling on the run- out table of the hot strip mill[J], Revue de Metallurgie,1996,93 (3):409-415.
    [61]Chen J, Nijhuis T热轧机的新型冷却系统[J],钢铁,2005,40(11):84-86.
    [62]王崇尚.中厚板轧后在线快速冷却系统ADCO的自动控制[J],冶金自动化,2002,(4):64-66.
    [63]钱振声,高波.控制冷却用的几种喷流方式及使用效果[J],宽厚板,2001,7(5):1-5.
    [64]万雪明ADCO系统的冷却控制策略[J],轧钢,1999,(6):16-18.
    [65]余海.热轧带钢轧后冷却技术的发展和应用[J],轧钢,2006,23(3):38-41.
    [66]刘相华,余广夫,焦景民,等.超快速冷却装置及其在新品种开发中的应用[J],钢铁,2004,39(8):71-74.
    [67]Leeuwen Y V, Onink M, Sietsma J. The gamma-alpha transformation kinetics of low carbon steels under ultra2fast cooling conditions[J], ISIJ International,2001,41(9): 1037-1046.
    [68]王昭东,袁国,王国栋,等.热带钢超快速冷却条件下的对流换热系数研究[J],钢铁,2006,41(7):54-64.
    [69]Buzzichelli G, Anelli E. Present status and Perspectives of European research in the field of advanced structural steels[J], ISIJ International,2002,42(12):1354-1363.
    [70]Schmitz A, Neutjens J, Herman J C, et al. New thermomechanical hot rolling schedule for the processing of high strength fine grained multiphase steels[A], ISS Technical paper,1-14.
    [71]Kagechika H. Recent Progress and Future Trends in the Research and Development of Steel[J], NKK TECHNICAL REVIEW,2003,22:6-9.
    [72]袁伟刚.日本JFE公司高性能中厚板生产技术介绍[J],冶金管理,2006,10:49-51.
    [73]王国栋,刘相华.日本热轧带钢技术的发展和现状-随中国金属学会代表团访问日本观感之一[J],轧钢,2007,24(1):1-6.
    [74]王国栋,刘相华.日本热轧带钢技术的发展和现状-随中国金属学会代表团访问日本观感之二[J],轧钢,2007,24(2):1-5.
    [75]Lucas A, Simon P, Bourdon G, et al. Metallurgical Aspects of Ultra-Fast Cooling in front of the Down-Coiler[J], Metal Forming,2004,75(2):139-146.
    [76]刘彦春,董瑞峰,闰波,等.应用超快冷工艺开发级-双相钢试验[J],轧钢,2007,24(2):6-9.
    [77]兰兴昌.川崎制铁多用途快速冷却系统的开发[J],102-119.
    [78]Champion N西门子奥钢联的中厚板轧机技术与能力[J],钢铁,2006,41(4):88-90.
    [79]Paisley P. MULPIC technology improves steel plate quality for linepipe applications[J], metals&mining,2007,1:38-39.
    [80]王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5.
    [81]Rodrigues P C M, Pereloma E V, Santos D B. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J], Materials Science and Engineering,2000, (A283):136-143.
    [82]王佳夫,林清华,漆世泽,等.冷却速度对高强度低合金钢组织和性能的影响[J],钢铁研究学报,2004,16(5):51-55.
    [83]陈娟,孙蓟泉.窄带钢轧后冷却速度研究及其温度场模拟[J],机械工程与自动化,2006,(3):69-72.
    [84]王涛,闫洪.船板钢E36轧后控冷工艺的制定[J],锻压技术,2008,33(1):47-49.
    [85]Baragar D L. The High Temperature and High Strain Rate Behavior of a Plain Carbon and an HSLA Steel[J], Journal of Mechanical Working Technology,1987,14:295-307.
    [86]Pereloma E V, Timokhina I B, Miller M K, et al. Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels[J], Acta Materialia,2007,55(8):1-12.
    [87]康永林,王波TRIP钢板的组织、性能与工艺控制[J],钢铁研究学报,1999,11(3):62-66.
    [88]刘彦春,董瑞峰,闰波,等.应用超快冷工艺开发540MPa级C-Mn双相钢试验[J],轧钢,2007,24(2):6-9.
    [89]马鸣图,吴宝榕.双相钢:物理和力学冶金[M],北京:冶金工业出版社,1988.
    [90]朱伏先,佘广夫,张中平,等.冷却工艺对HP295焊瓶钢板屈强比的影响[J],钢铁,2005,40(8):38-42.
    [91]王国栋,刘相华,杜林秀,等.C-Mn超级钢的工业化生产和应用[J],中国冶金,2004,(8):7-13.
    [92]末宏正芳,濑沼武秀,等.低炭素普通钢の冷却中の变态进行の定式化[J],铁と钢,1987,73(8):1026.
    [93]西尺泰二.铁合金の热力学[J],日本金属学会会报,1973,12(1):35.
    [95]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988,144.
    [96]陈连生,狄国标,任吉堂,等.热变形奥氏体CCT曲线实用化修正研究[J],上海金 属,2006,28(2):21-25.
    [97]Pereloma E V, Hodgson P D. The effect of transformation path on the final microstructure of high- and low-silicon 0.1 wt%C steels[J], Materials Science & Engineering A,1998,251(1):30-39.
    [98]Ichiro T, Shun I H, Tsuyoshi I. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite[J], ISIJ International,1991,31(9):992-1000.
    [99]Wang G D. New generation TMCP based on ultra-fast cooling, State Key Lab. of Rolling and Automation, Northeastern University, the 5th International Symposium on Advanced Structural Steels and New Rolling Technologies[C]. Shenyang,2008:1-7.
    [100]胡贤磊.中厚板轧机过程控制模型的研究[D],沈阳:东北大学,2003.
    [101]赵镇南.传热学[M],北京:高等教育出版社,2002,267-270.
    [102]袁国.中厚板辊式淬火机冷却技术的研究与应用[D],沈阳:东北大学,2007.
    [103]姚新,顾剑锋,胡明娟.P20钢大型塑料模具几种淬火工艺的三维温度与组织模拟[J],金属热处理,2003,28(7):33-37.
    [104]顾剑锋.淬火应力场的模拟的研究与表面换热系数的测算[D],上海:上海交通大学,1998.
    [105]Sjostrom S. Interactions and constitutive modes for calculating quench stresses in steels[J]. Material Science & Technology,1985,1(10):823-829.
    [106]Filipovic, Viskanta, Incropera, et al. Cooling of a moving steel strip by an array of round jets[J],1994,65(12):541-547.
    [107]Fomichev V M. Influence of heat transfer on the stability of a laminar boundary layer and the laminar-turbulent transition[J], Heat Transfer Research,1996,27(1):97-101.
    [108]Vallejo, Trevino. Convective cooling of a thin flat plate in laminar and turbulent flows[J], International Journal of Heat and Mass Transfer,1990,33(3):543-554.
    [109]Quintana D L, Amitay M, Ortega A, et al. Heat transfer in the forced laminar wall jet[J], Journal of Heat Transfer,1997,119(3):451-459.
    [110]Guo R M. Heat transfer of laminar flow cooling during strip acceleration on hot strip mill runout tables[J], Iron & Steelmaker,1993,20(8):49-59.
    [111]Zumbrunnen D A. A method and apparatus for measuring heat transfer distributions on moving and stationary plates cooled by a planar liquid jet[J], Experimental Thermal and Fluid Science,1990,3(2):202-213.
    [112]Quintana D L, Amitay M, Ortega A, et al. Heat transfer in the forced laminar wall jet[J], Journal of Heat Transfer,1997,119(3):451-459.
    [113]Gertsev A, Pavlenko V, Maksimenko G, et al. Improvement of metal cooling systems on sheet and plate mills[J], Steel in the USSR,1987,17(4):197-199.
    [114]杨世铭,陶文铨.传热学[M],北京:高等教育出版社,1998,25-28.
    [115]崔忠圻.金属学与热处理[M],北京:机械工业出版社,1994,248-279.
    [116]徐祖耀.马氏体相变与马氏体[M],北京:科学出版社,1999,492-499.
    [117]方鸿生,王家军,杨志刚,等.贝氏体相变[M],北京:科学出版社,1999,363.
    [118]Tamura I. Some fundamental Steps in Thermomechanical Processing of steels[J], Transactions of the Iron and Steel Institute of Japan,1987,27(10):763-779.
    [119]Suehiro M, Kazuaki, Tsukano Y, et al. Computer Modeling of Microstructural Change and Strength of Low Carbon Steel in Hot Strip Rolling[J], Transactions of the Iron and Steel Institute of Japan,1987,27(6):439-445.
    [120]Umenoto M, Nishioka N. Prediction of Hardenability from Isothermal Transformation Diagrams[J], Transactions of the Iron and Steel Institute of Japan,1982,22(8): 629-636.
    [121]Umemoto M, Horiuchi K, Tamura I. Transformation to Pearlite from Worked -hardened Austenite [J], Transactions of the Iron and Steel Institute of Japan,1983,23(9): 775-784.
    [122]Koistien D F, Marburger R E. General equation prescribing the extent of the austensit transformation in pure iron-carbon alloys and plain carbon steels [J], Acta Metall, 1959,7:50-60.
    [123]谭真,郭广文.工程合金热物性[M],北京:冶金工业出版社,1994,1-4.
    [124]孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1998,8-40.
    [125]翁荣周.传热学的有限元方法[M],广州:暨南大学出版社,2000,55-86.
    [126]胡贤磊,李建民,王昭东,等.中厚板轧制过程温度计算的二次曲线建模法[J],轧钢,2002,19(6):12-14.
    [127]张铁,闫家斌.数值分析[M],北京:冶金工业出版社,2001,28-30.
    [128]支颖,刘相华,王国栋.热轧带钢层流冷却中的温度演变及返红规律[J],东北大学学报,2006,27(4):410-413.
    [129]Yu Q B, Wang Z D, Liu X H, et al. The Effect of Delay Time after Hot Rolling on the Grain Size of Ferrite[J], ISIJ International,2004,44(4):710-716.
    [130]彭良贵.热轧带钢层流冷却策略研究及其应用[D],沈阳:东北大学,2007.
    [131]蔡尔辅.蝶阀的应用[J],管道技术与设备,1999,(1):25-28.
    [132]Wang S C, Chiu F J, Ho T Y. Characteristics and prevention of thermo-mechanical controlled process plate deflection resulting from uneven cooling[J]. Materials science and technology,1996,12(1):64-71.
    [133]赵林明,胡浩云,魏德华,等.多层前向人工神经网络[M],河南:黄河水利出版社, 1999,122-140.
    [134]贾春玉.热轧带钢宽展预报的人工智能方法[J],轧钢,2001,18(1):13-15.
    [135]周凤岐,强文鑫.现代控制理论及其应用[M],成都:电子科技大学出版社,1994,219-237.
    [136]符曦.系统最优化及其控制[M],北京:机械工业出版社,2004,3-19.
    [137]Saroj K B, Chen S J, Satyanarayana A. Optimal temperature tracking for accelerated cooling processes in hot rolling of steel[J], Dynamics and Control,1997,7(4): 327-340.
    [138]Nicholas S S, Marwan A S. Water-Cooled End-Point Boundary Temperature Control of Hot Strip via Dynamic Programming[J], IEEE Transactions ON Industry Applications, 1998,34(6):1335-1340.
    [139]Nicholas S S, Marwan A S. Optimized Trajectory Tracking Control of Multistage Dynamic Metal-Cooling Processes[J], IEEE Transactions ON Industry Applications, 2001,37(3):920-927.
    [140]Nicholas S S, Marwan A S. Optimized Trajectory Tracking Control with Disturbance Attenuation of Dynamic Multistage Metal-Cooling Process[J], IEEE Transactions ON Industry Applications,2004,40(4):926-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700