冷轧带钢板形控制的矩阵模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以人工智能理论为基础,选择具有理论和工程实际意义的冷轧带钢板形控制的矩阵模型研究为课题,对平直度模式识别、平直度控制和断面形状控制进行了深入的理论研究,取得了新的研究成果。
     平直度模式识别是平直度控制系统的重要组成部分。考虑到现代轧机平直度控制手段多样化的实际,为提高平直度模式识别模型的精度,提出了含有3次分量的新型平直度模式识别方法。该模型采用基于最小二乘原理的勒让德多项式回归方法,使用1次、2次、3次和4次勒让德多项式作为平直度基本模式,利用小波消噪技术对平直度原始数据进行预处理,从整体上提高了平直度模式识别的精度,使平直度模式识别结果具有完备性,细化了平直度控制目标,有利于提高平直度控制的精度。
     为了分析各种平直度控制手段对平直度控制影响矩阵的影响规律,以HC轧机为例,以倾辊、工作辊弯辊、工作辊非对称弯辊和中间辊横移作为平直度控制手段,按照机理模型计算了各控制手段对1次、2次、3次和4次平直度分量的影响系数,系统地揭示了各种控制手段对各次分量的影响规律,为平直度在线控制模型的建立、实现提供了基础。
     为了提高平直度控制模型的精度,综合运用机理和智能建模方法,从轧制过程的本质和实测数据两个方面出发,建立了机理-智能型动态影响矩阵法平直度控制模型。采用微粒群算法优化的BP网络建立了机理影响矩阵快速计算网络模型,实现了机理影响矩阵的快速计算,避免了由于机理模型庞大复杂、计算时间长而不能满足在线快速计算需要的问题。采用聚类算法优化的RBF网络建立了实测影响矩阵快速计算网络模型,用现场实测影响矩阵数据作为样本,进行在线自学习,使平直度在线控制模型动态跟踪现场实际情况。将机理控制矩阵和实测控制矩阵有机结合,制定了平直度控制量计算方案,提高了平直度在线控制模型的通用性、灵活性和精确性。
     为了提高带钢断面形状的控制精度,首次提出了带钢断面形状影响矩阵控制模型。该模型采用1次、2次、3次和4次曲线精确描述带钢断面形状,根据影响函数法的原理,给出了断面形状控制影响矩阵的概念,并且建立了断面形状控制方程,为带钢断面形状在线控制提供了新的方法。应用机理模型计算了各种控制手段对断面形状的影响系数,系统分析了各种控制手段对断面形状的影响规律,为制定带钢断面形状控制策略提供了依据。为实现断面形状控制影响矩阵的快速计算,应用BP网络建立了带钢断面形状快速预报模型,使带钢断面形状影响矩阵控制模型能够方便地应用于在线断面形状控制。
     为了提高连轧机的平直度和断面形状控制能力,综合应用机理-智能型动态影响矩阵法平直度控制模型和断面形状影响矩阵控制模型,制定了连轧机平直度和断面形状综合控制方案,使在线平直度控制和断面形状控制相互配合,实现了各机架的在线并行控制。通过某1550连轧机实测平直度和断面形状数据对该控制方案进行了工业验证,结果表明该方案能具有较高的平直度和断面形状控制精度,控制过程稳定、可靠,提升了连轧机在线控制能力,对提高连轧机产品质量有重要意义。
     选择具有理论和工程实际意义的冷轧带钢板形控制的矩阵模型研究为课题,对平直度模式识别、平直度控制和断面形状控制进行了深入的理论研究,并进行了相应的仿真分析和工业验证,取得了新的研究成果,对平直度和断面形状控制理论的发展有重要意义。
In this paper, author chooses research on matrix model of shape control for cold strip mills as the research subject and done deep theory research on flatness pattern recognition, flatness control and section configuration control, achieving new research findings. Flatness pattern recognition is an important part of flatness control system. Considering the practical situation of modern mills with many different flatness control means, a new flatness pattern recognition method including the cubic flatness is brought forward. Using the Legendre polynomial regression method based on least square theory, the model processes with the original flatness data by wavelet de-noising techniques with linear, quadratic, cubic and biquadratic Legendre orthogonal polynomials as basic patterns. The model increases the precision of flatness pattern recognition, makes the results of flatness pattern recognition self-contained, refines flatness control target and makes for increasing the precision of flatness control.
     Taking HC mill for example and using tilting roll, bending work roll, asymmetry bending work roll and shifting intermediate roll as flatness control means, the effective coefficients on the linear flatness, the quadratic flatness, the cubic flatness and the biquadratic flatness for different control means are calculated by theory model in order to analyse the effective rules on flatness control effective matrix for different flatness control means, which opens out the effective rules on different order flatness for different control means and provides the foundation for the building and realizing on-line flatness control.
     In order to increase the precision of flatness control, considering the direction of rolling process essence and the direction of measured data, the theory-intelligent dynamic effective matrix flatness control model is built by using theory and intelligent methods synthetically. The network model for rapid calculating theory effective matrix is built by the BP network optimized by particle swarm algorithm, realizing the rapid calculation of theory effective matrix and avoiding the problem that theory model can not meet the need of rapid on-line calculation. The network model for rapid calculating survey effective matrix is built by the RBF network optimized by cluster algorithm, realizing the rapid calculation of survey effective matrix. The model can track practical situations by on-line self-learning with the measured effective data as samples. The scheme for flatness control quantity calculation is established by combing theory control matrix and survey control matrix, improving the commonality, flexibility and precision of on-line flatness control model.
     In order to increase the precision of strip section configuration control, the effective matrix control mode for strip section configuration control is brought forward for the first time. Using linear, quadratic, cubic and biquadratic orthogonal polynomials describing strip section configuration precisely, the model provides the conception of the effective matrix for section configuration control and builds the control equation for section configuration control by the theory of effect function method, which provides a new method for strip section configuration on-line control. The effective coefficients on section configuration for different control means are calculated by theory and the effective rules on section for different control means are analysed, which provides basis for establishing strip section configuration control strategy. In order to realize rapid calculating the effective matrix for section configuration control, the rapid prediction model for strip section configuration is built by BP network, making the effective matrix model for strip section configuration can be used in on-line section configuration control conveniently.
     Using theory-intelligent dynamic effective flatness control model and section configuration effective matrix control model synthetically, flatness and section configuration integration control scheme is built in order to enhance flatness and section configuration control capability of tandem mill, which makes on-line flatness control cooperate with on-line section configuration control and realizes the parallel control of different stands. According to the measured flatness and section configuration data of the 1550 tandem mill, the control scheme is validated and the result indicates that the scheme has high flatness and section configuration control precision with a steady and reliable control process and upgrades the control capability of tandem mill with much significance for increasing product quality.
     Choosing research on matrix model of shape control for cold strip mills as research subject, author has done deep theory research on flatness pattern recognition, flatness control and section configuration control and done relevant simulation analysis and industry validation. New research findings are acquired, which has much significance for the development of flatness and section configuration control theory.
引文
1徐乐江.我国钢铁工业的现状及未来发展.科技和产业,2003,3(12):1-3.
    2中国金属学会,中国钢铁工业协会.中国钢铁工业科技发展指南.冶金管理,2006,(9),1-6.
    3刘振刚.中国钢铁业在金融风暴中的现状及对策.冶金经济与管理,2009,(1):15-16.
    4杨丽梅,陈春华.中国钢铁国际贸易现状、问题及应对策略.商场现代化,2009,(7):9-10.
    5郑玉春.世界钢铁工业发展现状及未来发展分析.冶金管理,2008,(12):14-18.
    6翟博,孙荣生,孙建林.板形控制技术在鞍钢冷连轧机组的应用.鞍钢技术,2009,(1):49-52.
    7张静,秦久莲.热轧带钢中板形的计算和控制.控制工程,2008,15(增刊):21-22,93.
    8郑岗,谢云鹏,刘丁,等.板形检测与板形控制方法.重型机械,2002,(4):1-3.
    9张新宇,曹长修,唐芳纯.基于图像序列差分法的冷轧薄板板形识别.重庆工学院学报(自然科学),2008,22(4):31-35.
    10张秀玲,刘宏民.板形模式识别的GA-BP模型和改进的最小二乘法.钢铁,2003,38(10):29-34.
    11王国栋.板形控制和板形理论.北京:冶金工业出版社,1986:1-5,138-145.
    12刘宏民.三维轧制理论及其应用.北京:科学出版社,1999:1-53.
    13彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用.[燕山大学工学博士学位论文].2000:60-65.
    14 Liu Hongmin, Zhang Xiuling, Wang Yingrui. Transfer matrix method of flatness control for strip mills. Journal of Materials Processing Technology, 2005, 166(2):237-242.
    15王国栋,刘相华.金属轧制过程人工智能优化.北京:冶金工业出版社,2000:21-130.
    16周旭东.人工神经网络板形板厚综合控制.轧钢,1995, (2):17-19.
    17王哲,邸洪双,刘相华,等.基于神经网络的UC轧机板形自适应预测控制系统.北京板形测量与控制学术会议论文集,1998,5(23-25):62-66.
    18陈炎.ABB板形仪在攀钢HC冷连轧机的应用分析.冶金自动化,1999,5(3):48-50.
    19李元.神经网络在热连轧精轧机组轧制力预报的应用.钢铁,1996,31(1):54-57.
    20张清东,陈先霖.板形模式识别的模糊分类方法.北京科技大学学报,1995,17(1):68-71.
    21乔俊飞,郭戈,柴天佑.板形模式的一种模糊识别方法.钢铁,1998,33(6):36-40.
    22王军.模糊逻辑在冷轧板形控制中的应用.宝钢技术,2002,(6):9-13.
    23王东升.模糊自整定PID控制器在热轧板形控制中的应用.宝钢技术,2001,(增刊):30-33.
    24吴刚,孙一康.多变量模糊预测控制在板形板厚综合系统中的应用.北京科技大学学报,1999, 21(4):403-405.
    25贾春玉,刘宏民,邱格君.神经模糊组合预报冷连轧机轧制力.燕山大学学报,2005,29(3):196-200.
    26贾春玉,单修迎,牛召平.自调整动态神经网络模型及其在带材板形预测中的应用.钢铁研究学报,2006,18(12):50-53.
    27 E. Orowan, K. J. Pascoe. A simple method of calculating roll pressure and power consumption in flat hot rolling. Iron and Steel Institute, London, 1946, (34):124-126.
    28 J. M. Alexander. A slip line field for the hot rolling process. Proceedings of the Institute of Mechanical Engineering, 1955,(169):1021-1030.
    29 R. Kumerling, H. Lippmann. On spread in rolling. Mech. Res. Communications, 1975, (2):113-120.
    30 S. I. Oh, S. Kobayashi. An approximate method for a three dimension analysis of rolling. International Journal of Mechanical Science, 1975,17(4):293-305.
    31许健勇.薄板冷轧厚度与板形高精度控制技术.钢铁, 2002,37(1):73-78.
    32杨利坡.板带轧制三维热力耦合条元法研究及仿真系统开发:[燕山大学工学博士学位论文]. 2007:1-15.
    33 V. B. Ginzburg. Strip profile control with flexible edge back up roll. Iron and Steel Engineer, 1987,64(7):26-30.
    34 Tomizawa, T. Masui, E. Hirooka.可变凸度轧辊的最新应用.第六届国际轧钢会议译文集(3),中国金属学会轧钢学会,1994:67-74.
    35王国栋.新型的板带轧机—HCX轧机和KZR轧机.轧钢,1995,(2):52-54.
    36刘玉礼,连家创,段振勇,等.板厚板形综合调节新型四辊轧机的研究.钢铁,1990,25(11):35-40.
    37 P. Hilton, K. J. King.一个不锈钢宽带钢厂的板形控制对策.第六届国际轧钢会议译文集(3),中国金属学会轧钢学会,1994:144-148.
    38 M. Morel, M. Bosch. Shape-roll actuator-results of hot and cold mill applications. Iron and Steel Engineer, 1992, (4):74-77.
    39胡国栋.磁弹变压器差动输出式冷轧带材板形仪.钢铁,1994,29(4):56-59.
    40 Fukuhara. Development of shape control system for cluster-type cold reduction mill. Iron and Steel Engineer, 1991, (10):34-37.
    41 J. J. Yi, W. K. Hong.利用机架间张力分布控制带钢平坦度.钢铁,2000,35(9):86-92.
    42 Th. Von Karman. On the theory of rolling. Z. Angew. Mech., 1925, 5:130-134.
    43 E. Orowan. The calculation of roll pressure in hot and cold flat rolling. Proceedings Institute of Mechanical Engineering, 1943, 50(4):140-167.
    44 R. Kumerling, H. Lippmann. On spread in rolling. Mech. Res. Communications, 1975, (2):113-120.
    45连家创.变分法求解辊缝中金属横向流动问题.东北重型机械学院学报,1980,(1):1-10.
    46 Lian Jiachuang. Analysis of profile and shape control in flat rolling. Proceeding of the First International Conference on Steel Rolling, Tokyo, 1980:713-724.
    47杜凤山.三维弹塑性有限元法模拟板带轧制过程.[燕山大学工学博士学位论文].1990:1-100.
    48刘相华.刚塑性有限元及其在轧制中的应用.北京:冶金工业出版社,1994:1-120.
    49肖宏.三维弹塑性边界元法模拟板带轧制过程的研究.[燕山大学工学博士学位论文].1991:1-100.
    50 Chandra. Simulation of rolling processes by the boundary element Method. Advanced Boundary Element Method, Edited by cruse, T. A., Spring-Verlg, 1987:93-100.
    51 Chandra, S. Mukherjee. A boundary element formulations for large strain-large deformation problems of viscoplasticity. International Journal of Solid Structure, 1984, 20(1):41-53.
    52 J. Kihara, T. Aizawa, X. P. Ma. Application of BEM to calculation of the roll profile in flat rolling. The Science and Technology of Flat Rolling, 4th International Steel Rolling Conference, Deauville, France, 1987, 2(E1):1-12.
    53 Kihara Junji. Application of boundary element method to rolling technology with special respect to flatness and crown of plate and sheet. ISIJ International, 1991,31(6):543-549.
    54 H. Xiao, T. Aizawa, J. Kihara. Development of three dimensional boundary element simulater for rolling. Boundary element methods, Tokyo, Japan: Elsevier Press, 1996:287-296.
    55 Deyi Liu, GuangXian Shen, Chunxiao Yu, et al. Study on the multi-pole boundary element method for three-dimensional elastic contact problem with friction. Advance in Boundary Element Techniques IV, Queen Mary University of London, 2003:155-161.
    56刘宏民,连家创,段振勇.模拟带材轧制过程的条元法.机械工程学报,1993,29(4):36-42.
    57彭艳,郑振忠,刘宏民.六辊轧机冷轧带材板形控制的仿真研究.中国机械工程,2000,11(9):1061-1063.
    58 Liu Hongmin, Lian Jiachuang, Peng Yan. Third-power spline function strip element method and its simulation of the three-dimensional stresses and deformations of cold strip rolling. Journal of Materials Processing Technology, 2001,116(2-3):235-243.
    59 Liu Hongmin, Zheng Zhenzhong, Peng Yan. Streamline strip element method for analysis of the three-dimensional stresses and deformations of strip rolling. International Journal for Numerical Methods in Engineering, 2001,50(5):1059-1076.
    60 Liu Hongmin, Jin Dan, Wang Yingrui. Stream surface strip element method for simulation of the three-dimensional deformations of plate and strip rolling. International Journal of Mechanical Sciences, 2003,45(9):1541-1561.
    61 Liu Hongmin, Jin Dan, Wang Yingrui. Strip layer method for simulation of the three- dimensional deformations of plate and strip rolling. Communications in Numerical Methods in Engineering, 2004,20(3):183-191.
    62 Liu Hongmin, Peng Yan, Chu Yupeng, Wang Yingrui. Strip element method for shape discrimination of strip rolling. Communications in Numerical Methods in Engineering, 2004,20(9):709-720.
    63刘宏民,王英睿.模拟板带轧制三维变形的流面条元法.机械工程学报,2003,39(7):94-100.
    64刘宏民,王英睿,金丹.条层法及其对板带轧制三维变形的仿真.工程力学,2003,20(6): 39-45.
    65彭艳,刘宏民.带材轧制过程应力及变形的计算机仿真.机械工程学报,2004,40(9):75-79.
    66 K. N. Shohet, N. A. Townsend. Roll bending methods of crown control in four-high plate mills. Journal of Iron and Steel Institute, 1969, (11):1088-1098.
    67 W. J. Edwards, P. D. Spooner. Automation of tandem mills. Edited by G. F. Bryant. Iron Steel Institute, London, 1973:34-45.
    68 Y. Tozawa, T. Ishikawa, N. Iwata. Improved three-dimensional analysis for strip rolling. Journal of Japanese Society for Technology and Plastic, 1982, 263(23):1181-1187.
    69 Y. Tozawa. Study on stress distribution in strip rolling. Memoirs of the Faculty of Engineering. Nagoya University, 1984, (2):81-91.
    70王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵算法.重型机械,1982,(8):9-18.
    71小园东雄.人工智能の压延工程へ适用例.塑性と加工,1991,32(363):441-444.
    72小田高士,佐藤直树.フアジイ推论なをもちぃたダイナミツクセツトアツブによる热延钢板の先端板厚精度の向上.塑性と加工,1995,36(10):1145-1156.
    73蔡自兴.智能控制.第二版.北京:电子工业出版社,2004:1-5.
    74王文杰,叶世伟.人工智能原理与应用.北京:人民邮电出版社,2004:1-5.
    75韦巍.智能控制技术.北京:机械工业出版社,2000:1-3.
    76程武山.智能控制理论与应用.上海:上海交通大学出版社,2006:1-6.
    77李翔.从复杂到有序——神经网络智能控制理论新进展.上海:上海交通大学出版社,2006:1-14.
    78李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨上业大学出版社,1998:1-6.
    79李少远,李柠.复杂系统的模糊预测拉制及其应.北京:科学出版社,2003:3-20.
    80 Fogel L.J. Artificial intelligence through simulated evolution, New York: Wiley, 1996:1-11.
    81 Y. Katayama, M. Nakajima, H. Koyama. A Neural Fuzzy Control System For Rolling Mills. Steel Technology International, 1992:189-196.
    82小西正躬.塑性加工の智能化技术.塑性と加工,1993,34(387):337-344.
    83 Dukman Lee, Yongsug Lee. Application of Neural Network for Improving Accuracy of Roll-force Model in Hot-rolling Mill. Control Engineering Practice, 2002,10(4):473-478.
    84 Joon-Sik Son, Duk-Man Lee, III-Soo Kim, et al. A Study on On-line Learning Neural Network for Prediction for Rolling Force in Hot-rolling Mill. Journal of Materials Processing Technology, 2005,164-165:1612-1617.
    85 J. Larkioa, P. Myllykoski, J. Nylandder, et al. Prediction of Rolling Force in Cold by Physical Models and Neural Computing. Journal of Materials Processing Technology, 1996,(60):381-386.
    86 L.E. Zarate. A Method to Determinate the Thickness Control Parameters in Cold Rolling Process Tthrough Predictive Model via Neural Networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2005,27(4):357-363.
    87 Fan J, Kiet Tieu,Yuen WY D. Neural Network for Modeling of the Transient Rolling Process in a Reversing Mill. In: Proc. of 7th int. Conf. On Steel Rolling: Chiba, Japan: Nov.9-11, 1998:173-177.
    88 Ge-Wen Kang, Hong-Bing Liu. Surface Defects Inspection of Cold Rolled Strips based on Neural Network. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China. Piscataway, NJ, USA, IEEE, 2005,8:5034-5037.
    89 J.C. Lin. Prediction of Rolling Force and Deformation in Three-dimensional Cold Rolling by Using the Finite-element Method and a Neural Network. International Journal of Advanced Manufacturing Technology, 2002,20(11):799-806.
    90 K. Aistleitner, L. G. Mattersdorfer, W. Hass, et al. Neural Networks for Identification of Roll Eccentricity in Rolling Mills. Journal of Material Processing Technology, 1996(53):387-392.
    91 N. F. Portmann, D. Linhoff, G. Sorgel, et al. Application of Neural Networks in Rolling Mill Automation. Iron and Steel Engineer, 1995,(2):33-36.
    92帅习元,宋耀华.中厚板轧制平面形状模糊控制.武钢技术,2000,38(3):9-11.
    93 F. Janabi-Sharifi, Jingrong Liu. Design of a Self-adaptive Fuzzy Tension Controller for Tandem Rolling. IEEE Transactions on Industrial Electronics, 2005,52(5):1428-1438.
    94 F. Janabi-Sharifi, G. Li. Fuzzy Multiple Stand Tension Control of a Roughing Rolling Mill. 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings, New Orleans, LA, USA. Piscataway, NJ, USA, IEEE, 2002:560-565.
    95前田英树,界俊夫,服部哲ほか.压延形状御へのフアジイ制御の应用.塑性と加工,1991, 2(361):136-140.
    96广田ほガ.フアジイ理论による板厚、张力干涉防止システムの开发.147回塑加シンボテキスト,1992,(59):381-385.
    97王宏文,李韶远,梁涛,等.唐钢无头轧制多级传动系统.冶金自动化,2002,26(6):37-39.
    98大贝晴俊,藤井章,野口幸雄.棒钢ミルのセツトアツブへのフアジイ应用,塑性と加工, 1993,34(387):405-410.
    99镰田宪幸.热延制御システムけるフアジイ理论の应用.塑性と加工,1991,32(361):130-135.
    100 V. Odugawa, R. Roy, D. Farrugia. Fuzzy Multi-objective Optimisation Approach for Rod Shape Design in Long Product Rolling. Fuzzy Sets and Systems - IFSA 2003. 10th International Fuzzy Systems Association World Congress. Proceedings, Istanbul, Turkey. Berlin, Germany, Springer - Verlag, 2003: 636-643.
    101 Wang Hongwen, Ge Gang, Yan Liping, et al. Multi-drive Control System of Endless Rolling with Adaptive-fuzzy Controller. International Conference on Machine Learning and Cybernetics, Xi'an, China. Institute of Electrical and Electronics Engineers Inc., 2003,2:797-799.
    102 YoneGi Hur, DaeKeun Rhee. Application of Fuzzy Logic for Automatic Shape Control in Stainless Steel Rolling Process. Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, BC, Canada. Piscataway, NJ, USA, IEEE, 2001,1:251-256.
    103 R. Bambang, S. Fata Mahbub, T. Abas. Application of Fuzzy Logic Control to Tea Rolling Process. Proceedings of 2nd Workshop on Intelligent Control for Agricultural Applications, Bali, Indonesia. Kidlington, UK, Elsevier Sci, 2002:233-238.
    104 S. Guan, H.X. Li, S.K. Tso. Multivariable Fuzzy Supervisory Control for the Laminar Cooling Process of Hot Rolled Slab. IEEE Transactions on Control Systems Technology, 2001,9(2): 348-356
    105 H.T. Zhu, Z.Y. Jiang, A.K. Tieu. A Fuzzy Algorithm for Flatness Control in Hot Strip Mill. Journal of Materials Processing Technology, 2003,140:123-128.
    106贾春玉,宋耀增.在轧制力预报中应用模糊控制的研究.冶金设备,2000,(6):5-8.
    107 H. Viale, O. Martin, U. Bertezzolo, et al. Interactive Real Time Expert System Applied to Hot Rolling Mill. Proceedings of 4th Symposium on Intelligent Components and Instruments for Control Application (SICICA 2000), Buenos Aires, Argentina. Kidlington, UK, Elsevier Science, 2001:17-22.
    108王淑华,刘晓峰.智能型穿轧机压下控制仪.计算机与现代化,2000,(3):52-54.
    109小田高士,佐藤直树.フアジイ推论なをもちぃたダイナミツクセツトアツブによる热延钢板の先端板厚精度の向上.塑性と加工,1995,36(10):1145-1156.
    110赵德文,懂学新,刘相华,等.中厚板坯料设计软件研究与应用.应用科学学报,2002,20(2):211-214.
    111王益群,高英杰.液压AGC系统故障诊断专家系统的实现.液压气动与密封,2000,(1):29-31.
    112井口弘明,北尾斋治,佐能克明ほか.冷间夕ンデムミル板厚精度诊断ェキスバートシステム.川崎制铁技报,1991,23(3):225-231.
    113丸山昭男,佐藤智一,佐坂晋二.棒钢压延机にぉける抽出ピツチ制御ェキスバートシステム.塑性と加工,1993,34(387):363-368.
    114周凤星,程耕国,高立新.高速线材轧机机械故障诊断系统.冶金自动化,2001,25(5):63-65.
    115李铁军,郑瑞,孙佳.高速线材尺寸精度控制专家系统.重型机械科技,2004,(3):9-12.
    116西川达也,岸田宏昭,多田吉男ほか.热间压延ラインのオンライン驱动系诊断システム. CAMP-ISIJ,1991(4):1559-1564.
    117罗永军,曹建国,王长松,等.基于遗传算法的热连轧机弯辊力预设定控制.钢铁研究,2004,32(3):42-45.
    118李建更,杨敏,乔俊飞.基于GA的模糊控制器在弯辊控制中的应用.控制工程,2006,13(1):18-21.
    119王莉,孙一康.基于递阶遗传算法的RBF神经元网络板形板厚综合控制.计算机仿真,2003,20(2):82-85.
    120伊国芳,王益群,孙旭光.基于遗传算法的电液弯辊力伺服控制.流体传动与控制,2004,(3):4-5.
    121罗永军,王长松,刘江,等.热连轧精轧机组的板形最优控制.冶金设备,2004,(4):9-11.
    122刘华强,唐荻,杨荃,等.多目标遗传算法在八辊五机架全连续冷连轧机轧制策略优化中的应用.冶金自动化,2006,30(4):49-53.
    123秦斌,王欣,吴敏,等.基于MAS的分布式棒线材轧制在线生产调度系统.钢铁,2005,40(9):49-53.
    124牟善文,张杰,曹建国,等.硅钢板轧制中工作辊磨损模型参数的研究.冶金设备,2005,(2):28-30.
    125朱锋,王京,张大志,等.基于全局并行遗传算法的冷连轧机轧制策略优化研究.天津冶金,2003,(2):16-18.
    126刘进.冷轧带钢板形缺陷表达式回归及数学模型.轧钢,1996, (5): 5-9.
    127 Peng Yan, Liu Hongmin. A Neural Network Recognition Method of Shape Pattern. Journal of Iron and Steel Reseach International, 2001, 8(1):16-20.
    128张秀玲.冷带轧机板形智能识别与智能控制研究.[燕山大学工学博士论文].2002:20-45.
    129华建新,周泽雁.冷轧带钢板形缺陷的多项式回归数学模型.钢铁, 1992, 27(3):27-31.
    130邸洪双,张晓峰,刘相华,等.冷轧薄带板形检测信号正交多项式分解及数学模型.钢铁,1995, 3(9):33-36.
    131周旭东,王国栋.冷轧板形正交多项式分解模型.钢铁,1997,32(8):46-47.
    132周会锋.板形识别·预测和控制仿真的智能方法研究.[燕山大学工学硕士学位论文].2005:1-49.
    133刘建,王益群,孙福,等.基于粒子群理论的板形模糊模式识别方法.机械工程学报,2008,44(1):173-178.
    134任海鹏,刘丁,郑岗.一种基于遗传算法的板形模式识别方法.重型机械,2002,(3):9-12.
    135伊国芳,王益群,孙旭光.基于神经网络的板形信号模式识别方法的研究.中国机械工程,2004,15(24):2207-2210.
    136张材,谭建平.基于遗传算法-反向传播模型的板形模式识别.中南大学学报,2006,37(2):294-299.
    137张秀玲,张志强.DHNN优化设计新方法及在板形模式识别的应用.智能系统学报,2008,3(3):250-253.
    138 Jia Chunyu, Shan Xiuying, Liu Hongmin, et al. Fuzzy neural model for flatness pattern recognition. Journal of Iron and Steel Research, International, 2008, 15(6):33-38.
    139张秀玲,陈丽杰,季颖,等.基于径向函数神经网络的板形模式识别研究.工业仪表与自动化装置,2009,(3):7-9.
    140冯晓华,马坚,郑岗.基于模糊距离的RBF神经网络板形模式识别.西安工业大学学报,2006,26(5):427-430.
    141何海涛,李楠.基于SVM的改进RBF网络板形模式识别方法研究.自动化仪表.2007,28(5):1931-1935.
    142 YoneGi Hur, DaeKeun Rhee. Application of Fuzzy Logic for Automatic Shape Control in Stainless Steel Rolling Process. Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, BC, Canada. Piscataway, NJ, USA, IEEE, 2001,1:251-256.
    143 H.T Zhu, Z.Y Jiang, A.K. Tieu. A Fuzzy Algorithm for Flatness Control in Hot Strip Mill.Journal of Materials Processing Technology, 2003,140:123-128.
    144 Zhe Wang, Hongshuang Di, Jun Yang. Application of Self-Adaptive Strip Shape Control for UC Mill Based on Neural Networks Prediction Model. Proc. of 7th int. Conf. on Steel Rolling: Chiba, Japan, 1998, 11(9-11): 60-64.
    145陶红勇,王京,陆秀志.神经网络在板形控制中的应用.轧钢,2003,(4):10-12.
    146周晓敏,张清东,王长松,等.基于Hopfield神经网络的板形预测控制模型.上海金属,2007,29(2):44-47.
    147胡小平,毛征宇,胡燕平.基于人工神经网络的一种板形反馈控制.制造业自动化,2001,23(3):40-14,45.
    148王粉花,孙一康,王新平.基于免疫算法的模糊神经网络在板厚板形控制中的应用.信息与控制,2004,33(4):504-507.
    149张云鹏,王长松,张清东.基于效应函数的冷轧机板形闭环控制策略.北京科技大学学报,1999, 21(2):195-197.
    150何海涛.宽带钢冷轧机板形在线控制智能模型的研究与应用:[燕山大学工学博士学位论文]. 2008:41-75.
    151杨光辉,曹建国,张杰,等.冷轧边降控制与凸度及平坦度综合控制研究.冶金设备,2008,(6):1-4,13.
    152岳晓丽,连家创,焦景民,等.热连轧机板凸度和板形控制技术工业试验的研究.钢铁,2003,38(3):34-37,63.
    153马正贵.中厚板轧机的板形控制.安徽工业大学学报,2008,25(3):259-262.
    154唐晓初.小波分析及其应用.重庆:重庆大学出版社,2006:32-54.
    155李庆扬,王能超,易大义.数值分析.武汉:华中科技大学出版社,1986:68-74.
    156张秀玲,刘宏民.板形控制的传递矩阵方法.机械工程学报,2003,39(11):100-103.
    157 LIU Hong-min, HE hai-tao, SHAN Xiu-ying, JIANG Guang-biao. Flatness control based on dynamic effective matrix for cold strip mills. Chinese Journal of Mechanical Engineering, 2009, 22(2):287-296.
    158周开利,康耀红.神经网络模型及其matlab仿真程序设计.北京:清华大学出版社,2005:69-100.
    159王洪元,史国栋.人工神经网络技术及其应用.北京:中国石化出版社,2002:26-39.
    160钟珞,饶文碧,邹承明.人工神经网络及其融合技术应用.北京:科学出版社,2007:12-25.
    161朱大奇,史慧.人工神经网络原理及其应用.北京:科学出版社,2006:17-42.
    162刘希玉,刘弘.人工神经网络与微粒群优化.北京:北京邮电大学出版社,2008:15-66.
    163李盼池,李欣,李荣花,等.基于模糊聚类的学习样本选取方法.大庆石油学院学报,2002,26(3):59-61.
    164翟东海,李力.基于模糊神经网络的非线性系统模型的辨识.计算机学报,2004,27(4):561-565.
    165李映,焦李成.应用聚类和模糊神经网络设计模糊系统.西安电子科技大学学报, 2001,28(5):593-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700