成形极限图的获取方法与其在金属板料成形中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成形极限图(Forming limit diagram-FLD)是在金属板料塑性成形中判断板料成形成功与失败的一个重要判据。在利用有限元仿真方法进行冲压工艺优化、汽车钣金零件选材等方面有着重要的应用。板料成形极限图的准确获得与应用非常复杂,影响因素众多,针对FLD的研究仍然存在很多问题:随着新材料和工艺方法的不断出现,使得最初的一些试验与理论无法直接应用在新的情况下;FLD受加载路径,应变速率,加载温度等影响因素的研究仍然不够成熟;FLD在选材等方面的应用研究仍然较少。基于以上问题,本文以冲压领域常用的低碳钢板料和变形铝合金板料作为研究对象,围绕金属板料成形极限的获得方法、影响因素及其在板料成形有限元仿真和板料选材领域的应用等方面进行了理论与试验研究。论文共计8章,主要完成的内容和所取得的成果如下:
     (1)通过试验研究了FLD的试验方法与影响因素。通过对现有试验方法的分析,找出了影响试验结果的主要因素。通过试验研究了应变路径的获得方法、极限状态的判断方法、以及试样形状与板料各向异性对FLD试验结果的影响。为提高板料成形极限试验的准确性与实用性提供了重要的参考依据。
     (2)基于Hill-Swift失稳理论,M-K失稳理论,以及MMFC失稳理论的基本原理,利用各向异性屈服准则和不同的本构方程,推导了板料成形极限预测的数值迭代计算方法。通过试验对一种低碳钢和一种铝合金板料进行了不同加载路径下的失稳规律预测,与理论预测结果进行了对比。结果表明所建立的FLD预测程序能够较为准确的预测各种加载路径下板料的成形极限。
     (3)探讨了失稳现象在基于有限元仿真的板料成形模拟中的表现形式,研究了利用有限元仿真软件来计算FLD的原理与方法。通过分析板料塑形成形有限元仿真结果中板料失稳时的应力应变等的变现形式,提出了利用数值仿真方法计算板料失稳行为的原理与流程。研究了可以用来作为失稳行为的判断准则及其在有限元仿真软件中的实现方法。并对一种高强度钢板和铝合金板料进行了仿真与试验,研究了这种预测方法的实用性以及失稳判断方法、材料模型等对试验结果的影响。
     (4)通过试验研究了基于应力和应变的FLD路径相关性。分析了应力成形极限的理论与试验获得方法及其等效形式。通过对不同预加载后的板料进行单向拉伸试验,研究了不同加载路径下的应力成形极限的差别。并通过试验对反向推导得出的结论,对应力成形极限的路径相关性进行了验证。结果表明应力成形极限的路径相关性较应变成形极限小,其路径相关性是由板料的硬化行为决定的,等向强化条件下板料的应力成形极限与加载路径无关,而符合随动强化和混合强化模型的板料应力成形极限则与加载路径相关。
     (5)通过试验研究了两种铝合金板料AA5182-O、AA7075T6和一种镁合金板料AZ31B在温成形条件下的单向拉伸失稳行为和成形极限,找出了与材料在室温下失稳规律的区别。分析了成形温度和成形速度对成形极限的影响。利用材料的单向拉伸数据建立了材料温成形下的材料模型,并通过有限元仿真预测了这种材料模型下板料的FLD,与试验结果进行了对比分析。为了解板料温热状态下的失稳规律与成形极限提供了重要的科研依据。
     (6)开发了基于FLD的汽车板选材系统。基于汽车公司的成形工艺设计部门和材料采购选择部门的需要,根据充分利用材料性能,减少制造成本的基本原则,开发了基于板料成形极限的选材系统。利用数据库程序语言建立了材料数据库、零件数据库等,并编制了基于安全欲度分析的选材程序。该系统基于板料FLD和实际零件成形中的安全欲度,为每种零件选择合适的板料提供重要的参考依据。
Forming limit diagram is a very important criterion in sheet metal forming for determination success or failure of a forming part. It is a good tool in FEM simulation and in material selection for the automotive parts. However due to the complexity of the forming process, many factors which effect the test and application has never been clearly understood.With some new material and forming technology are applied in industry, the traditional FLD study is not good enough. There are few study focus on material selection use FLD in China now. In this paper, experimental and theoretical methods for the development of FLD of the traditional softsteel and aluminum sheet were studied. Many factors that affect the FLD were investigated through experiment. The results and main contributions of the dissertation are as following:
     (1) Experimental investigation of FLD test method and factors which affect results. From the concept of forming limit diagram and its application. The process of conventional experiment method is analysised and factors in which affect the test results were find out. Realization of different strain path and estimation of forming limit condition are investigate and optimized. The effect of tools, specimens and strain measurement method was investigated through experiment. Application of the new developed automatic strain measurement in the experiment of forming limit diagram is introduced and analyzed.
     (2) Forming limit diagram prediction method based on the conventional plastic theory. A detail introduction of Swift diffuse necking theory, Hill localized necking theory and M-K theory is given. In addition, a numerical forming limit diagram prediction method based on these three theories is developed. A detail failure process of a soft steel and aluminum alloy is investigated through experiment. Results of theory prediction and experiment are compared with each other. Results show that the new developed FLD prediction method is convenient and can give a reasonable accurate prediction.
     (3) Numerical prediction method of the forming limit diagram based on Fem software. The forming limit diagram prediction method based on the FEM software is introduced. The failure criterion and theirs realization in the FEM software prediction are detailed. The effect of the material model and failure criterion to the results of the FEM predicted forming limit diagram are investigated through simulation experiment. A good model for the FEM forming limit diagram prediction method is developed.
     (4) Investigation on the path dependency of the stress and strain based forming limit diagram. The definition and develop method of the forming limit stress diagram are introduced. Path dependent of the stress and strain based forming limit diagram were investigated through experiment. An effective strain based path independent forming limit diagram is developed. A good guide for application of forming limit diagram in multistage forming process is given out.
     (5) Forming limit diagram for the forming process at elevated temperature. Failure criterion and forming limit of aluminum alloy AA5182、AA7075T6 and AZ31B at elevated temperature are investigated through experiment. Flow behavior of aluminum alloy at warm forming condition is investigated through tensile test and forming limit is got through experiment. Effect of the temperature and strain rate of the aluminum alloy are investigated through experiment. A fem based forming limit prediction method for aluminum at warm forming condition is developed.
     (6) Development of the material selection system for automotive sheet metal forming. A material selecting system based on forming limit diagram for the automotive company is developed. The system include a material database which can give a detail formability of different material, and a spare parts database which gives the information of different spare parts of automobile. This system can help the process and tools design department and the material supply department to select best material for certain part and reduce cost.
引文
[1]柳百成. 21世纪的材料成形加工技术.航空制造技术,2003,6: 17-21.
    [2] S.P. Keeler. Sheet metal stamping technology-need for fundamental understanding. Symposium on mechanics of sheet metal forming, Warren, Michigan, 1977 ,《Mechanics of sheet metal forming》Newyork,1978:3~10.
    [3]张琦,张永星.低碳钢冲压制品吕德斯带的预防措施.理化检验,物理分册,2004,2:36-39.
    [4] T. Peplnjak, B.Barisic. Analysis and elimination of the stretcher strains on TH415 tinplate rings in the stamping process. Journal of Material processing technology, 2007, 186:111-119.
    [5] Luc Papeleux, Jean-Philippe Ponthot. Numerical and experimental evaluation of springback in a front side member. Journal of Materials Processing Technology 125–1210 (2002) :785–791.
    [6] A. Andersson. Numerical and experimental evaluation of springback in a front side member. Journal of Materials Processing technology, 2005, 169:352-356.
    [7]李光,胡佳楠,张向奎等.板料成形回弹特征及其控制技术.汽车工艺与材料,2008,6:12-19
    [8]严曾新,孙慧平.板料成形过程中的起皱研究及发展趋势.模具工程,2006,11: 45-48.
    [9] R.Narayanasamy, C.Sathiya Narayanan. Forming, Fracture and wrinkling limit diagram for IF steel sheets of different thickness. Materials and Design, 2008, 29:1467-1475.
    [10] Kumar S , Date P P , Narasimhan K. A New Criterion on to Predict Necking Failure under Biaxial Stretching. Journal of Materials Processing Technology ,1994 ,45 :583O588.
    [11]王晓林.蒙皮拉形过程有限元数值模拟技术研究.博士学位论文.北京:北京航空航天大学, 1999.
    [12]陈劼实,周贤宾,刘长丽.数值模拟中应用最小厚度准则预测板料成形极限.中国机械工程,2006,17(2):67-70.
    [13] Assempour, A. Safikhani, A. R. Hashemi, et al. An improved strain gradient approach for determination of deformation localization and forming limit diagrams. Journal of materials processing technology, 2009, 209 (4):1758-1769.
    [14] Keeler S P. Determination of forming limits in automotive stampings. SAE report, 1965, NO.650535: 1-9.
    [15] Goodwin. G. M. Application of Strain analysis on sheet metal forming problems in the press shop. SAE report, 1968, NO.680093,
    [16] L.M.Smith. FLC`s past present and future. IDDRG 22thBiennial congress,Nagoya,2002,5.
    [17] Gensamer M. Strength and ductility Campbell lecture. Trans. ASM, 1946, 361949.
    [18] Stuart P. Keeler. On the origins of forming limit diagram. The Minerals, Metals & Materials Society, Forming Limit Diagrams: Concepts, Methods, and Applications. 1989: 3-8.
    [19] Stuart P. Keeler. Walter A. Backofen. Plastic instability and fracture in sheets stretched over rigid punches. Transactions of the ASM, 1963, 56: 25~48.
    [20]李春峰,李雪春,杨玉英.椭圆凹模液压胀形法制造成形极限图.材料科学与工艺,1996,6 ,4(2):101-105.
    [21] Marian Gutierrez, Labein Tecnalia. Material characterisation for accurate simulation of new sheet metal forming processes. Sixth Amework framework programme priority
    [22] Thomas, J. D, M. Seth. Forming limits for electromagnetically expanded aluminum alloy tubes: Theory and experiment. Acta Materialia, 2007, 55(8): 2863-2873.
    [23]张庆,周磊,赵长财等.复合管胀形成形极限研究.中国机械工程. 2002, 13(17):1455-1458
    [24] Nakazima, K, Kikuma T. Study on the formability of steel sheets. Yawata technical report, 264, 1968. 8517-8530.
    [25] Hecker S S. Formability of HSLA steel sheets. Metals engineering quarterly, 1973, 8: 42-48.
    [26] Zdzislaw Marciniak, Kazimierz Kuczynski. Limit strains in the processes of stretch-forming sheet metal. International journal of mechanical science, 1967, 9: 609-620
    [27] Veerman, C.C. The determination and application of the FLC-onset of localized necking. IDDRG Meeting, 1972, 151-152
    [28] Bragard, A. Baret, J. A simple technique to determine the FLD of the onset of necking. IDDRG, Amsterdam, Document DDR/21P/72.
    [29] Kobayashi T, Ishigaki H. Effect of strain ratios on the deforming limit of steel sheet and its application to actual press forming. 1972, IDDRG, Amsterdam.
    [30] Kleemola H J, Kumpulainen J O. Factors influencing the forming limit diagram: Part I -- The experimental determination of the forming limits of sheet steel. Journal of Mechanical Working Technology,1980, 3: 289-302
    [31] Kleemola H. J, Kumpulainen J. O. Factors influencing the forming limit diagram: Part II -- Influence of sheet thickness. Journal of Mechanical Working Technology, 1980, 3: 303-311.
    [32] A.R. Ragab, B.Baudelet. Forming limit curves: Out–of–plane and in-plane stretching. Journal of Mechanical working technology, 1982, 6(4): 267~276.
    [33] Banabic D, M. Vos. Modelling of the Forming Limit Band -A new Method to Increase the130 Robustness in the Simulation of Sheet Metal Forming Processes. CIRP Annals - Manufacturing Technology, 2007, 56(1): 249-252.
    [34] Janssens, K., F. Lambert. Statistical evaluation of the uncertainty of experimentally characterised forming limits of sheet steel. Journal of materials processing technology,2001, 112(2-3): 174-184.
    [35] Strano, M, B. M. Colosimo. Logistic regression analysis for experimental determination of forming limit diagrams. International Journal of Machine Tools and Manufacture,2006, 46(6): 673-682.
    [36] Jeong Kim, B.-S. K., June K. Lee. Statistical evaluation of forming limit in hydroforming process using plastic instability combined with FORM. International Journal of Advanced Manufacture Technology, 2009 42: 53-59.
    [37]梁炳文,陈孝戴,王志恒.板金成形性能.机械工业出版社,北京,1999
    [38]陈孝戴,硬铝板和低碳钢板成形极限曲线的试验研究,北京航空学院科研报告,1984.
    [39]胡世光板料拉深变形的稳定性与成形极限图的建立.北航科研报告BH-B417.
    [40]陈光南,胡适光.成形极限曲线的新概念.机械工程学报,1994,30(2):82~86
    [41]中华人民共和国机械工业部. GB/T 15825.8-1995.金属薄板成形性能与试验方法成形极限图(FLD)试验.
    [42]余海燕,陈关龙,李淑慧. TRIP高强度钢板成形极限的试验研究.中国机械工程. 2004,15(23):2158-2161.
    [43]陈劼实,周贤斌.考虑可靠度的成形极限曲线建立方法.中国机械工程,2005,7,16(13),1214-1221.
    [44]杨玉英.大型薄板成形技术.国防工业出版社,北京,1996,2,138-140.
    [45]林大为屠挺生戴一一.板料真实成形极限的测定及其应用.锻压技术2001 3 18-21
    [46] B. Eberle, W.Volk, P. Hora. Automatic approach in the evaluation of the experimental FLC with a full 2D approach based on a time depending method. Numisheet 2008, September, Interlaken Switzerland 279-283.
    [47] W.Volk. New experimental and numerical approach in the evaluation of the FLD with the FE-method. Proceedings of FLC-ZURICH 2006: 26-30.
    [48] M. Merklein , A. Kuppert, M. Geiger. Time dependent determination of forming limit diagrams. CIRP Annals - Manufacturing Technology, 2010.59: 295-298.
    [49] Walter Hotz, Jurgen Timm. Experimental determination of forming limit curves (FLC). Numisheet 2008, September, Interlaken Switzerland 271-278
    [50] Metallic materials-Determination of Forming Limit Curves. ISO Standard ISO12004-2,2008.
    [51]金属材料,薄板和薄带,成形极限曲线的测定,中华人民共和国国家标准,GB/T 24171.2-2009.
    [52] Feldmann Peter, Schatz Marko. Effective evaluation of FLC-Test with the optical in-process strain analysis system qutogrid. Proceedings of the FLC Zurich 2006, 15th– 16th March 2006, IVP, ETH Zurich, Switzerland.
    [53] Alejandro graf, William.,Hosford. Effect of changing Strain path on forming limit diagram of Al 2008-T4. Metallurgical transactions A, 1993, 24A: 2503-2512.
    [54] Graf,A., Hosford, W. F.,1994. The influence of strain-path changes on forming limit diagrams of AL-6111T4. Journal of mechanical science, 1994, 10:897-910.
    [55] Chu, C.C. An investigation of the strain path dependence of the forming limit curve. International journal of solids structure,1982, 18: 205-215.
    [56] Kleemola H J , Pelkkikangas M T. Effect of pre-deformation and strain path on the forming limits of steel, copper and brass. Sheet Metal Industry, 1977. 63 (6) : 591-596.
    [57] R. Arrieux, Determination and use of the forming limit stress surface of orthotropic sheets, J. Materials processing technology, vol. 54 (1997), 25-32.
    [58] R. Arrieux. Determination and use of the forming limit stress diagrams in sheet metal forming. Journal of materials processing technology, 1995, 53: 47-56.
    [59] Gronostajski,I. Sheet metal forming limits for complex strain paths. Journal of mechnical work technology. 1984,10,:349-362.
    [60] Zhao L.R., Sowerby R, Sklad M.P. A theoretical and experimental investigation of limit strains in sheet metal forming. International journal of mechanical science, 1996, 38: 1307-1317.
    [61] P.H.Matin, L.M.Smith, S.Petrusevski. A method for stress space forming limit diagram construction for aluminum alloys. Journal of materials processing technology, 2006, 174:258-265
    [62] W.M. Sing, K.P. Rao. Study of sheet metal failure mechanisms based on stress-state conditions. Journal of Materials processing technology, 1997, 67: 201-206.
    [63] T. B. Stoughton. A general forming limit criterion for sheet metal forming, International Journal of Mechanical Sciences, 2000, 42 : 1-27.
    [64] T B Stoughton, Zhu Xinhai. Review of theoretical models of the strain-based FLD and their relevance to the stress based FLD. International Journal of Plasticity, 2004. 20: 1463~1486.
    [65] T. B. Stoughton. The Influence of the Material Model on the Stress-Based Limit Criterion. SAE Report, 2002, No. 010157.
    [66] Zimniak, Z. Implementation of the forming limit stress diagram in FEM simulations. Journal ofmaterials processing technology, 2000, 106(1-3): 261-266.
    [67] Hashemi R, A. Assempour. Implementation of the forming limit stress diagram to obtain suitable load path in tube hydroforming considering M-K model. Materials & Design 2009, 30(9): 3545-3553.
    [68] ZHOU Lin, X. K.-m., LI Ping. Determination and application of stress-based forming limit diagram in aluminum tube hydroforming. Transaction of Nonferrous Metals Society of China 2007, 17: 21-26.
    [69]张京,周贤斌.板料成形极限应力图的研究.第7界全国锻压学术年会论文集,北京,航空工业出版社,1999,299~302.
    [70]谢英,万敏,韩非.板料成形极限应变与极限应力的转换关系.塑性工程学报. 2004. 11 (3) : 55~58.
    [71]韩非,万敏,吴向东.板料成形极限理论与试验研究进展.塑性工程学报,2006,10 13 (5): 80-86.
    [72]曹宏深.复合变形路径下的板材冲压成形极限应变(Ⅰ)—冲压成形极限应变的立论与解析.机械工程学报, 2008, 44(2): 54-61
    [73]曹宏深.复合变形路径下的板材冲压成形极限应变(Ⅱ)—冲压成形极限应变的计算与试验.机械工程学报, 2009, 45(1): 125-130
    [74]陈明和,高霖,薛玉雷.板料应力成形极限判据的有限元分析程序开发与应用.南京航空航天大学学报,2005 S1.
    [75]陈明和,高霖,王辉.板料成形极限应力图及其应用研究进展.中国机械工程,2005,9,16(17):1593~1597.
    [76] M.H.Chen, L.Gao. Application of the forming limit stress diagram to forming limit prediction for the multi-step forming of auto panels. Journal of material processing technology, 2007, 187: 173-177.
    [77] Yoshida K., Kuwabara T, et al. Experimental verification of the path-dependence of forming limit stresses. International journal of Forming processes, 2005, 8: 283-298.
    [78] Yoshida K, Kuwabara,T., Kuroda,M. Path-dependence of the forming limit stresses in a sheet metal. International journal of Plasticity. 2007, 23: 361-384.
    [79] Yoshida. K, Toshihiko Kuwabara. Effect of strain hardening behavior on forming limit stresses of steel tube subjected to nonproportional loading paths. International journal of Plasticity, 2007, 23(7): 1-25
    [80] Swift. H. W. Plastic instability under plane stress. Journal of the mechanics and Physics of solid. 1952, 1: 1~18.
    [81] Hill. R . On discontinuous plastic states with special reference to localized necking in thin sheets.Journal of the mechanics and Physics of solid, 1952, 1: 19~30.
    [82]吴建军,周维贤.板料成形性基础.西安,西北工业大学出版社,2004,8:106~110.
    [83] K. C. Chan and L Gao, On the susceptibility to localized necking of defect-free metal sheets under biaxial stretching, J. Materials processing technology, vol. 58 (1996), 251-255.
    [84] S. Str?ren and J.R. Rice. Localized necking in thin sheets. Journal of Mechical and Physics Solids, 1975, 23: 421-441.
    [85] A. Needleman and N. Triantafyllidis. Void growth and local necking in biaxially stretched sheets. Journal of Engineering Materials and Technology, 1978, 100: 164-169.
    [86] L. Gao, G.Q. Tong and Y. Guo. Surface roughness evolution and formability of IF sheet steel to grain size and sheet thickness, Transactions of NUAA, 1999, l:.16-23
    [87] Zdzislaw Marciniak, Kazimierz Kuczynski, Tadeusz Pokora. Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. International Journal of mechanical science, 1973, 15, 789-805.
    [88] Azrin M, Backofen W A. Deformation and failure of a biaxially stretched sheet. Metal . Trans, 1970. (1) : 2857~2865.
    [89] Tadros A K, Mellor P B. Experimental study of the in plane st retching of sheet metal. International Journal of Mechanical Sciences , 1978. 20: 121~134.
    [90]陈光南,胡世光.用电阻率变化作为损伤参数的试验研究.钢铁研究,1987,3:74-78.
    [91]陈光南,胡世光.薄钢板塑成形损伤与断裂.北京航空航天大学学报, 1989,3,39-45.
    [92] Aretz, H. An extension of Hill's localized necking model. International Journal of Engineering Science, 2010,48(3): 312-331.
    [93] Chu, C.-C. An analysis of localized necking in punch stretching. International Journal of Solids and Structures, 1980, 16(10): 913-931.
    [94] Hill, R. On the mechanics of localized necking in anisotropic sheet metals. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 2055-2070.
    [95] P. Hora, L.Tong, et al. Prediction methods for ductile sheet metal failure using FE-Simulation, IDDRG`94,Lisbon,1994.
    [96] L.Tong, P. Hora et al. Prediction of forming limit with nonlinear deformation paths using modified maximum force criterion.
    [97] Kjell Mattiasson, Mats Sigvant et al. Methods for forming limit prediction in ductile metal sheets.
    [98] Guo, Z. and H. j. Tan (1988). "Modification of swift criterion by damage mechanics and itsapplication to theoretical analysis of forming limit." Mathematical and Computer Modelling 11: 1017-1021.
    [99] Tabourot.L, Vacher.P, Numerical determination of strain localisation during finite element simulation of deep-drawing operations, Journal of Materials Processing Technology, 2004, 10(1), 94~101.
    [100]王辉,高霖,陈明和.一种基于有限元仿真的板料成形极限预测方法.山东大学学报(工学版),2006,36(2):95~99.
    [101] M. Samuel. Numerical and experimental investigations of forming limit diagrams in metal sheets. Journal of Materials Processing Technology, 2004 153: 424–431.
    [102]曹宏深林敦文关绍康.冲压成形极限图虚拟试验.农业机械学, 2007, 38(1): 137-144.
    [103]陈劼实,周贤宾,板料成形极限的理论预测与数值腄庋芯浚苄怨こ萄Пǎ?004,2,11(1):13~17.
    [104] Oyane M, Sato T. Criteria for ductile fracture and their applications. Journal of Mechanical Working and Technology, 1980 , 4 : 65~81
    [105] G?nser, H. P., Werner E. A. Forming limit diagrams: a micromechanical approach." International Journal of Mechanical Sciences, 2000, 42(10): 2041-2054.
    [106] Zhu, Y. Y . Contribution to the local approach of fracture in solid dynamics. [Doctoral thesis]. Liege university, December 1992.
    [107] Simo.J.C, Ju.J.W. Strain and stress based continue damage models-1 formulation. International Journal of Solids Struetures, 1987, 12(23):821~840.
    [108]黄婧.基于连续损伤力学的金属板材成形极限研究,武汉理工大学博士论文,2006年,11月
    [109] Keeler, S. P. and W. G. Brazier, "Relationship Between Laboratory Material Characterization and Press-Shop Formability," Microalloying 75 (1977).
    [110] Buchar, Z. Circle grid analysis applied to the production problems of the car body panel. Journal of materials processing technology,1996, 60(1-4): 205-208.
    [111] Zimniak, Z. Application of a system for sheet metal forming design. Journal of materials processing technology, 2000, 106 (1-3): 159-162.
    [112]赵润敏.汽车冲压零件应变分类及选材专家系统的开发.汽车工艺与材料,2000.2: 32-37
    [113]汪承璞.轿车零件变形分析与FLD选材预测,钢铁,1999,2(1): 22-26.
    [114] L. R. Morris, R. A. George. Warm Forming High-Strength Aluminum Automotive Parts . Society of Automotive Engineers, 2005, 2005-01-1388.
    [115]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展.机械工程学报,2008, 44(6):27-33.
    [116] M. Kleiner, M.Geiger. Manufacturing of Lightweight Components by Metal Forming . Manufacturing Technology, 2003, 2 (2): 521-542.
    [117]侯波,于忠奇.温成形中铝合金板成形极限图的预测研究.材料科学与工艺, 2009, 17(5): 616-619.
    [118]马高山,万敏.基于M-K模型的铝锂合金热态下成形极限预测.中国有色金属学报,2008,06,18(6),980-984.
    [119]阮雪榆.先进制造技术中的技术转移. 21世纪初机械制造技术新视野论坛. 2000, 11, 4: 32-34
    [120]林治平,谢水生,程军.金属塑性变形的试验方法.冶金工业出版社.北京,2002.-6-1
    [121]王辉,高霖.凸模直径以及试样形状对成形极限图的影响.机械科学与技术,2006,25(11):1291-1293.
    [122] L.M.Smith, R.C.Averill,et al. Influence of transverse normal stress on sheet metal formability. International Journal of Plasticity. 2003, 19:1567-1583.
    [123] P. H. Martin, L.M. Smith. Practical limitations to the influence of through-thickness normal stress on sheet metal formability. Internation Journal of Plasticity. 2005, 21:671-690.
    [124] Julian M. Allwood , Daniel R. Shouler. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Internation Journal of Plasticity. 2009, 25:1207-1230.
    [125] Christian Leppin, Jun Li, Dominique Daniel. Application of a method to correct the effect of non-proportional strain paths on Nakazima test based forming limit curves. Numisheet2008, Interlaken, Switzerland.217-221
    [126]王辉,高霖,陈明和.各向异性板料成形极限面的研究.南京航空航天大学学报,2007,6,39(3):329-332
    [127]梁炳文,胡世光.板料成形塑性理论.北京:机械工业出版社,1987:252~271
    [128] D. Banabic, S. Comsa, et al. FLD theoretical model using a new anisotropic yield criterion. Journal of Materials Processing Technology 157–158:2004 ,23–27
    [129] Holger Aretz. Numerical analysis of diffuse and localized necking in orthotropic sheet metals. International journal of plasticity 23 2007, 798-840
    [130] Zdzislaw Marciniak, Kazimierz Kuczynski, Tadeusz Pokora Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. International Journal of mechanical science 1973, vol 15, 789-805.
    [131] J.W.Hutchinson, K.W.Neale. Sheet necking-ⅡTime dependent behavior. Mechanics of sheet metal forming, D.P.Koistinen and N.M.Wang, Plenum Press,New York/London, 127-153 1978.
    [132] S. Ahmadi a, A.R. Eivani b, A. Akbarzadeh. An experimental and theoretical study on the prediction of forming limit diagrams using new BBC yield criteria and M–K analysis. Computational material science 2008.
    [133] D. Banabic, S. Comsa. FLD theoretical model using a new anisotropic yield criterion. Journal of Materials Processing Technology, 2004,157–158:23–27
    [134] M.C.Butuc,D.Banabic et al. The performance of YLD96 and BBC2000 yield functions in forming limit prediction. Journal of material processing technology. 125-126, 2002,281-286.
    [135] Dorel Banabic, Liana Paraianu. An improved version of the modified maximum force criterion (MMFC) used for predicting the localized necking in sheet metals. Proceeding of the Romanian Academy, 2009, Series A,10 : 002–027.
    [136] Wolfram Volk, Robert Illig, Heinz Kupfer. Virtual forming limit curves Part A: Physical Tryout Report. Benchmark study Numisheet 2008, Switzerland.
    [137]王辉,高霖,赵明琦.一种基于有限元仿真的板料成形极限预测方法.山东大学学报(工学版),2006,4,36(2):95-103.
    [138] Narasimhan K. A Novel Criterion for Predicting Forming Limit Strains. Materials Processing and Design : Modeling , Simulation and Applications. NUMIFORM ,2004 :850~855.
    [139] M. Sigvant, K. Mattiasson and M. Larsson. The definition of incipient necking and its impact on experimentally or theoretically determined forming limit curves. IDDRG2008, proceedings.
    [140] Sujit Kumar, P.P Date, K. Narasimhan. A new criterion to predict necking failure under biaxial stretching. Journal of material processing technology, Vol45(1-4),1994, 583-588.
    [141]陈伟,郭伟刚,侯波.基于厚度梯度准则的薄板成形极限图建立方法.中国机械工程,2007,9,Vol18(18),2246-2249.
    [142] Fyllingen, O.S.Hopperstad et al. Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation. Computers and structures. 2009, 87:128-139
    [143] Narisimhan K, Zhou D, Wagoner RH. Application of the Monte Carlo and finite element methods to predict the scatter band in forming limit strains. Scr Metall Mater 1992;26:41–6.
    [144] Horstemeyer, M F; Chiesa, M L; Bammann, D J. Predicting Forming Limit Diagrams With Explicit and Implicit Finite Element Codes. SAE paper , 1994.
    [145]韩非,万敏,吴向东,王海波.基于极限应力分析的十字形双向拉伸试件设计.北京航空航天大学学报. 2007,5,33(5):600-604.
    [146] Marin,J.,Hu,L.W., Hamburg, J.F., Plastic stress-strain relations of Alcoa 14S-T6 for variable biaxial stress ratios. 1953, ASM 45: 686-709.
    [147] Kuwabara, T., Yoshida, K., Narihara, K et al . Anisotropic plastic deformationextruded aluminum alloy tube under axial forces and internal pressure. International Journal of Plasticity. 2005,21,:101-117.
    [148] Yoshida, K., Kuwabara,T., Narihara,K., Takahashi,S., Experimental verification of the path dependence of forming limit stresses. International Journal of Forming Processes. 2005, 8,:283-298.
    [149]王海波,万敏,吴向东,韩非.不同强化模型下的板料成形极限.机械工程学报,2007,8,43(8):60-65.
    [150] P.A.Friedman, S.G.Luckey. Overview of superplastic forming research at Ford motor company. Journal of materials engineering and performance. 2004, volume,13(4), 670-677
    [151] H. L. Xing, C. W. Wang, Recent development in the mechanics of superplasticity and its applications. Journal of materials processing technology,2004,9,Vol:151,196-202.
    [152] Nader Abedrabbo a, Farhang Pourboghrat b, et al. Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. International Journal of Plasticity 23 (2007) 841–875.
    [153] M.Merklein, J.Lechler. Determination of Material and Process Characteristics for hot stamping processes of quenchenable ultra high strength steels with respect to a FE-based process design.
    [154] A.Turetta ?, S. Bruschi, A. Ghiotti. Investigation of 22MnB5 formability in hot stamping operations. Journal of Materials Processing Technology 177 (2006) 396–400.
    [155] P.F. Bariani, S. Bruschi, A. Ghiotti et al. Testing formability in the hot stamping of HSS. CIRP Annals - Manufacturing Technology.2008,57,265-268
    [156] Standard Test Methods for Tension Testing of Metallic Materials,E 8/E 8M– 08.
    [157] Nader Abedrabbo, Farhang Pourboghrat, John Carsley. Forming of aluminum alloys at elevated temperatures– Part 1: Material characterization. International Journal of Plasticity 2006,22: 314–341
    [158] Abedrabbo, N., F. Pourboghrat, et al. Forming of aluminum alloys at elevated temperatures - Part 2: Numerical modeling and experimental verification. International Journal of Plasticity 2006,22(2): 342-373.
    [159] A. H. van den Boogaard, P. J. Bolt.A material model for warm forming of aluminum sheet. International Conference on Computational Plasticity, 1-17 COMPLAS 2003.
    [160] Barlat, F., Maeda, Y., et al. Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 1997a ,45 (11/12), 1727–1763
    [161] Vegter H., Boogaard A.H. van den: A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, International Journal of Plasticity, 22, 557-580, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700