高强钢热成形过程微观组织及多物理场耦合模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,汽车行业在节能减排,提高安全性等需求的驱动下,高强钢越来越多的被用来制造汽车零部件。热成形技术由于可以获得超高的强度和良好的成形性能,作为一种新的成形制备工艺已经成为加工高强钢的主要方法之一。热成形工艺先将材料加热保温使其奥氏体化,之后成形-淬火同步完成,得到完全马氏体化组织,提高零件强度。
     结合数值模拟及试验对热成形工艺过程进行了分析。
     基于材料热力学理论、菲克定理和元胞自动机法,建立了高强钢奥氏体化的计算模型,开发了相关程序,模拟了高强钢在保温过程中,珠光体和铁素体组织向奥氏体转变以及奥氏体粗化和碳扩散的过程,并进行了试验验证。得出如下结论:
     (1)保温温度为950℃时,高强钢达到奥氏体转变开始温度后13s左右能够实现完全奥氏体化。此时碳浓度分布不均匀,奥氏体晶粒尺寸相差较大。奥氏体在铁素体中的生长同时受碳浓度和温度的影响,开始时奥氏体晶核碳浓度较高,生长速度较快;之后碳浓度降低,生长速度变慢;随着温度的继续升高,即使碳浓度较低也可使奥氏体在铁素体中快速生长。
     (2)本文所建立的模型所得到的结果与金属学基本理论相符,能够反映晶界曲率驱动下,奥氏体竞争生长的过程,得到了奥氏体粗化过程晶粒尺寸分布的规律。但由于模型中忽略了溶质拖拽、偏析等因素,计算结果偏大。
     基于马氏体相变动力学、传热学、热弹塑性理论建立了一种适用于有限元模拟的高强钢材料模型。该模型考虑了相变塑性、马氏体体积膨胀、热应力、相变潜热、多相组织共存对材料力学性能的影响。推导了相关公式,并开发了材料子函数,在通用有限元软件平台上,实现了高强钢热成形过程的多物理场模拟。研究结果表明:
     (1)利用新的材料模型对U形件热成形进行了模拟,发现U形件法兰部分冷却速度最快,侧边其次,底部冷却速度最慢,底部最有可能马氏体转变不充分。
     (2)利用新的材料模型及传统Johnson-Cook模型对U形件的厚度进行了预测。新材料模型比Johnson-Cook模型计算数值偏大更接近于实测值,原因在于新模型中考虑相变引发的马氏体膨胀。
     (3)结合数值模拟和试验分析了热成形回弹,推断马氏体体积膨胀是导致热成形与冷冲压回弹角度相反的原因。
     最后,制定了防撞梁高强钢热成形的工艺,完成了样品的试制,利用多物理场耦合模拟分析了其热成形加工过程。发现汽车门内防撞梁鼓包和凹窝连接处由于与模具接触时间晚,导致温度比邻近区域高,周围区域冷却收缩过程会对其产生一定的拉力,致使该区域减薄,影响了汽车门内防撞梁的成形精度。
In recent years, for the demand of energy conservation and security improvement, high-strength steels are increasingly being used to produce the parts of an automobile. As an innovative process, hot stamping has become one of the main methods to process high-strength steel high strength because of its good formability and high strength obtained. In the hot stamping process, first the material was heated to obtain the uniform austenite and then form and quench the material at the same time.
     In this paper, analysis is made on the whole hot stamping process based on the numerical simulation and experiments.
     Based on the material thermodynamics theory and Fick diffusion Law, one cellular automata model is built to simulate the transformation process from ferrite and pearlite to austenite, the austenite coarsening and the carbon diffusion process of one HSS during the holding process in the furnace. The verification test is made after the simulation, and the conclusions are as follows:
     (1) The high strength steel blank could be fully austenitized within 13s after its temperature reached the austenite transformation start temperature, while it is heated in the furnace at constant 950℃. However, the carbon concentration distribution at this time is uneven, nor is the austenite grain size. High carbon concentration and high temperature can accelerate the growth rate of austenite grain. As a result, the growing up process shows a fast-slow- accelerating trend.
     (2) From the calculating results, which comply with the basic theory of metallography, we can get the austenite grain coarsening process motivated by grain boundary curvature growth and the distribution regulation of grain size. The ignorance of solute drag and the segregation could account for the lager calculating results.
     As for the hot stamping process, one material model suitable for the finite element analysis is built based on the martensitic transformation kinetics, heat transfer, and thermal elastic-plastic theory. The relevant formulas are derived and subroutines are developed to make multi- physics coupling simulation of the high strength steel hot stamping process. The simulation results are as follows:
     (1) The new constitutive model is used to predict the U-shaped hot-forming and the simulation result were coMPared with experimental results, and find that in the U-shaped parts the fastest cooling part is the flange, and the second is the side, while the cooling rate of the bottom is the slowest, so the austenite transformation is possibly not so sufficient at this part.
     (2) CoMPared with the Johnson-Cook model, the new constitutive model which takes the phase transformation-induced martensite expansion into consideration gives a larger calculation result and more close to the measured values.
     (3) Combination of the numerical simulation and experimental analysis about the hot stamping springback angle, it is found that the martensite volume expansion is the main reason of the opposite between the springback angle of hot stamping and cold forming.
     Finally, based on the above theoretical analysis, the process parameters of the hot stamping of Collision beam with high strength steel is developed and completed the sample trial, combined with the multi-physics coupling simulation analysis. The analysis results shows that because of the later contact with the mould, the temperature of the connection part between the bulge and dimple of the car door collision beams is higher than the neighboring areas, while the cooling and contraction of the surrounding area will produce a certain tension which result in the thinning of the region, and affects the car door anti-collision beam forming accuracy.
引文
[1]鲁春艳.汽车轻量化技术的发展现状及其实施途径.轻型汽车技术.2007,(06):22-25.
    [2]Karbasian H, Tekkaya A E. A review on hot stamping. Journal of Materials Processing Technology.2010,210(15):2103-2118.
    [3]Shi Z, Liu K, Wang M, et al. Thermo-mechanical properties of ultra high strength steel 22SiMn2TiB at elevated temperature. Materials Science and Engineering:A. 2011,528(10-11):3681-3688.
    [4]Zhu B, Zhang Y, Li J, et al. Simulation research of hot stamping and phase transition of automotive high strength steel. Materials Research Innovations.2011, 15(1):s426.
    [5]Dumont M, Taibi S, Fleureau J-M., et al. Modelling the effect of temperature on unsaturated soil behaviour. Comptes Rendus Geoscience.2010,342(12):892-900.
    [6]Mori K, Ito D. Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil. CIRP Annals-Manufacturing Technology.2009,58(1): 267-270.
    [7]Karbasian H, Brosius A, Tekkaya A E, et al. Numerical process design of hot stamping processes based on verified thermo-mechanical characteristics. in: Materials Science and Technology Conference and Exhibition, MS and T'08, October 5,2008-October 9,2008. Pittsburgh, PA, United states:Materials Science and Technology Conference, vol.3,2008.1733-1743.
    [8]Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Annals-Manufacturing Technology. 2005,54(1):209-212.
    [9]Siltanen J. Utilizing laser-GMA hybrid welding in industrial application. in:29th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2010, September 26,2010-September 30,2010. Anaheim, CA, United states: Laser Institute of America, vol.103,2010.53-61.
    [10]Takagi S, Toji Y, Hasegawa K, et al. Evaluation methods of hydrogen embrittlement for ultra-high strength steel sheets for automobiles. in:Materials Science and Technology Conference and Exhibition 2010, MS and T'10, October 17,2010-October 21,2010. Houston, TX, United states:Association for Iron and Steel Technology, AISTECH, vol.3,2010.1769-1777.
    [11]Bariani P F, Bruschi S, Ghiotti A, et al. Testing formability in the hot stamping of HSS. CIRP Annals-Manufacturing Technology.2008,57(1):265-268.
    [12]Tian X, Zhang Y, Li J. Investigation on Tribological Behavior of Advanced High Strength Steels:Influence of Hot Stamping Process Parameters. Tribology Letters. 2012,45(3):489-495.
    [13]柯常波,马骁,张新平.孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟.金属学报.2011,47(2):129-139.
    [14]柯常波,马骁,张新平.外应力对NiTi合金中共格Ni 4Ti 3沉淀相长大行为影响的相场法模拟.金属学报.2010,46(8):921-929.
    [15]Artemev A, Wang Y, Khachaturyan A G.. Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta Materialia.2000,48(10):2503-2518.
    [16]Zhu P, Smith R W. Dynamic simulation of crystal growth by Monte Carlo method-Ⅱ. Ingot microstructures. Acta Metallurgica et Materialia.1992,40(12): 3369-3379.
    [17]Zhu P, Smith R W. Dynamic simulation of crystal growth by Monte Carlo method-Ⅰ. Model description and kinetics. Acta Metallurgica et Materialia.1992, 40(4):683-692.
    [18]Yang B J, Stefanescu D, Leon-Torres J. Modeling of microstructural evolution with tracking of equiaxed grain movement for multicomponent Al-Si alloy. Metallurgical and Materials Transactions A.2001,32(12):3065-3076.
    [19]Stephen W. Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena.1984,10(1-2):1-35.
    [20]Wolfram S. Computation theory of cellular automata. Communications in Mathematical Physics.1984,96(1):15-57.
    [21]Li D Z, Xiao N M, Zheng C W, et al. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels. Acta Materialia.2007, 55(18):6234-6249.
    [22]Li D Z, Xiao N M, Zheng C W, et al. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Materialia.2005,53(4):991-1003.
    [23]花福安,杨院生,郭大勇,等基于曲率驱动机制的晶粒生长元胞自动机模型.金属学报.2004,40(11):1210-1214.
    [24]李殿中,杜强,胡志勇,等.金属成形过程组织演变的Cellular Automaton模拟技术.金属学报.1999,35(11):1210-1214
    [25]Lan Y, Li D Z, Li Y Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metallurgical and Materials Transactions B.2006,37(1):119-129.
    [26]张林,张彩培,王元明,等.连续冷却过程中低碳钢奥氏体、 铁素体相变的元胞自动机模拟.金属学报.2004,40(1):8-13
    [27]Zheng C, Xiao N M, Li D Z, Li Y Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling:A cellular automaton modeling. Computational Materials Science.2008,44(2):507-514.
    [28]Xing Z W, Bao J, Yang Y Y. Numerical simulation of hot stamping of quenchable boron steel. Materials Science and Engineering:A.2009,499(1-2):28-31.
    [29]Liu H S, Xing Z W, Bao J, et al. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation. Journal of Materials Engineering and Performance.2010,19(3):325-334.
    [30]朱巧红.热成形模具热平衡分析及冷却系统设计优化:[硕士学位论文].上海:同济大学,2007.
    [31]Hoffmann H, So H, Steinbeiss H. Design of Hot Stamping Tools with Cooling System. CIRP Annals-Manufacturing Technology.2007,56(1):269-272.
    [32]Firat M. Computer aided analysis and design of sheet metal forming processes:. Part III:Stamping die-face design. Materials and Design.2007,28(4):1311-1320.
    [33]Firat M. Computer aided analysis and design of sheet metal forming processes: Part Ⅰ-The finite element modeling concepts. Materials and Design.2007,28(4): 1298-1303.
    [34]周全.汽车超高强度硼钢板热成形工艺研究[硕士学位论文].上海:同济大学图书馆,2007.
    [35]杨伟俊,李东升,李小强,等.复杂形状钛合金热成形零件工艺仿真及参数优化研究.塑性工程学报.2009,16(01):42-47.
    [36]Zimniak Z, Piela A. Finite element analysis of a tailored blanks stamping process. Journal of Materials Processing Technology.2000,106(1-3):254-260.
    [37]Peng L, Hu P, Lai X, et al. Investigation of micro/meso sheet soft punch stamping process-simulation and experiments. Materials & Design.2009,30(3):783-790.
    [38]Grass H, Krempaszky C, Werner E.3-D FEM-simulation of hot forming processes for the production of a connecting rod. Computational Materials Science.2006, 36(4):480-489.
    [39]Lin J, Dean T A. Modelling of microstructure evolution in hot forming using unified constitutive equations. Journal of Materials Processing Technology.2005, 167(2-3):354-362.
    [40]Naderi M, Uthaisangsuk V, Prahl U, Bleck W. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels. Steel Research International.2008,79(2):77-84.
    [41]Bontcheva N, Petzov G. Microstructure evolution during metal forming processes. Computational Materials Science.2003,28(3-4):563-573.
    [42]陈明和,茆汉湖,朱知寿.热成形过程微观组织模拟研究进展.塑性工程学报.2005,12(2):23-27.
    [43]陈劫实,周贤宾.板料成形极限的理论预测与数值模拟研究.塑性工程学报.2004,11(01):13-17.
    [44]Zimniak Z. Implementation of the forming limit stress diagram in FEM simulations. Journal of Materials Processing Technology.2000,106(1-3):261-266.
    [45]郭英乔,Li Y M, Saanounin K,等.金属板材成形中拉深损伤模拟的两种求解方法.塑性工程学报.2002,9(04):47-55.
    [46]郭晓锋,杨合,孙志超,等.三通件多向加载成形热力耦合有限元分析.塑性工程学报.2009,16(04):85-90.
    [47]吴欣,赵国群,管延锦,等反向挤压过程无网格伽辽金热力耦合分析.工程力学.2007,24(06):180-184.
    [48]Gauchia A, Alvarez-Caldas C, Quesada A, et al. Material parameters in a simulation of metal sheet stamping. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2009,223(6):783-791.
    [49]Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations. Journal of Materials Processing Technology.2006,177(1-3): 396-400.
    [50]Mohr D, Ebnoether F. Plasticity and fracture of martensitic boron steel under plane stress conditions. International Journal of Solids and Structures.2009,46(20): 3535-3547.
    [51]Choi H-S, Park G.-H, Lim W-S, et al. Evaluation of weldability for resistance spot welded single-lap joint between GA780DP and hot-stamped 22MnB5 steel sheets. Journal of Mechanical Science and Technology.2011,25(6):1543-1550.
    [52]Kwon K-Y, Kim N.-H., Kang C-G. The effect of cooling rate on mechanical properties of 22MNB5 steel sheet during Hot Press Forming. in:International Conference on Advances in Materials and Processing Technologies, AMPT 2009, October 26,2009-October 29,2009. Malaysia:Trans Tech Publications, vol. 264-265,2011.241-247.
    [53]Min J, Lin J. Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures. SAE International Journal of Materials and Manufacturing.2011,4(1):1147-1154.
    [54]Akerstrom P, Wikman B, Oldenburg M. Material parameter estimation for boron steel from simultaneous cooling and compression experiments. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING.2005, 13(8):1291-1308.
    [55]Lechler J, Merklein M. Investigation of the thermo-mechanical properties of hot stamping steels. Journal of Materials Processing Technology.2006,177(1-3): 452-455.
    [56]Lechler J, Stoehr T, Kuppert A, et al. Basic investigations on hot stamping of tailor welded blanks regarding the manufacturing of lightweight components with functionally optimized mechanical properties. in:38th Annual North American Manufacturing Research Conference, NAMRC 38, May 25,2010-May 28,2010. Kingston, ON, Canada:Society of Manufacturing Engineers, vol.38,2010. 593-600.
    [57]Leblond J B, Mottet G., Devaux J,et al. MATHEMATICAL MODELS OF ANISOTHERMAL PHASE TRANSFORMATIONS IN STEELS, AND PREDICTED PLASTIC BEHAVIOUR. Materials Science and Technology.1984, 1(10):815-822.
    [58]Leblond J B. Mathematical modelling of transformation plasticity in steels:Ⅱ. Coupling with strain hardening phenomena. International Journal of Plasticity. 1989,5(6):573-591.
    [59]Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels:I. Case of ideal-plastic phases. International Journal of Plasticity.1989,5(6):551-572.
    [60]Akerstrom P, Bergman G, Oldenburg M. Numerical implementation of a constitutive model for simulationof hot stamping. Modelling and Simulation in Materials Science and Engineering2007,15(2):15-24.
    [61]Sirakoulis G. C, Karafyllidis I., Thanailakis A. A cellular automaton methodology for the simulation of integrated circuit fabrication processes. Future Generation Computer Systems.2002,18(5):639-657.
    [62]Hotzendorfer H, Estelberger W, Breitenecker F,et al. Three-dimensional cellular automaton simulation of tumour growth in inhomogeneous oxygen environment. Mathematical and Computer Modelling of Dynamical Systems.2009,15(2): 177-189.
    [63]Matic P, Geltmacher A B. A cellular automaton-based technique for modeling mesoscale damage evolution. Computational Materials Science.2001,20(1): 120-141.
    [64]Kutlu B. The simulation of the 2D ferromagnetic Blume-Capel model on a cellular automaton. International Journal of Modern Physics C.2001,12(9):1401-1413.
    [65]Adachi S, Jia L, Peper F, et al. Kaleidoscope of life:a 24-neighbourhood outer-totalistic cellular automaton. Physica D.2008,237(6):800-817.
    [66]Janina J, Jurga I, Arturas K, et al. Research of congestions in Urban transport network using cellular automaton model. Transport.2011,26(2):158-165.
    [67]Brockfeld E, Barlovic R, Schadschneider A, et al. Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics).2001,64(5):056132-056131.
    [68]Raabe D, Hantcherli L.2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science.2005,34(4):299-313.
    [69]Rios P R, De Oliveira J C P T, De Oliveira, et al. Comparison of analytical models with cellular automata simulation of recrystallization in two dimensions. Materials Research.2005,8(3):341-345.
    [70]Rios P R, De Oliveira V T, Pereira L d O, et al. Cellular automata simulation of site-saturated and constant nucleation rate transformations in three dimensions. Materials Research.2006,9(2):223-230.
    [71]Mukhopadhyay P, Loeck M, Gottstein G. A cellular operator model for the simulation of static recrystallization. Acta Materialia.2007,55(2):551-564.
    [72]Liu Y, Baudin T, Penelle R. Simulation of normal grain growth by cellular automata. Journal Name:Scripta Materialia; Journal Volume:34; Journal Issue:11; Other Information:PBD:1 Jun 1996.1996:Medium:X; Size:pp.1679-1683.
    [73]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Materials Science and Engineering:A.1997,238(2):219-274.
    [74]Spittle J A, Brown S G. R. A 3D cellular automaton model of coupled growth in two component systems. Acta Metallurgica et Materialia.1994,42(6):1811-1815.
    [75]Raabe D. Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Philosophical Magazine A.1999,79(10):2339-2358.
    [76]Marx V, Reher F R, Gottstein, G Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Materialia.1999,47(4): 1219-1230.
    [77]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia.2001,49(16): 3163-3175.
    [78]Rollett A D, Raabe D. A hybrid model for mesoscopic simulation of recrystallization. Computational Materials Science.2001,21(1):69-78.
    [79]Kundu S, Dutta M, Ganguly S, et al. Prediction of phase transformation and microstructure in steel using cellular automaton technique. Scripta Materialia. 2004,50(6):891-895.
    [80]Salazar T C, Da S A, Rios P R, et al. Simulation of recrystallization in iron single crystals. Materials Research.2008,11(1):109-115.
    [81]Janssens K G. F. An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials. Mathematics and Computers in Simulation.2010,80(7):1361-1381.
    [82]刘宗昌,任慧平,王海燕.奥氏体形成与珠光体转变.北京:冶金工业出版社,2010.273-274
    [83]Yang B J, Hattiangadi A, Li W Z, et al. Simulation of steel microstructure evolution during induction heating. Materials Science and Engineering:A.2010, 527(12):2978-2984.
    [84]由伟,白秉哲,方鸿生,等.用人工神经网络模型预测钢的奥氏体形成温度.金属学报.2004,40(11):1133-1137.
    [85]Liu Y N. Mechanistic simulation of deformation-induced martensite stabilisation. Materials Science and Engineering:A.2004,378(1-2):459-464.
    [86]Tong M, Li D, Li Y. Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Materialia. 2004,52(5):1155-1162.
    [87]Lan Y J, Li D Z, Li Y Y. Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method. Acta Materialia. 2004,52(6):1721-1729.
    [88]胡丽娟.AZ31镁合金板材温热变形行为的数值分析与试验研究:[博士学位论文].上海:上海交通大学图书馆,2009.
    [89]Mats H. Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Materialia.1999,47(18):4481-4505.
    [90]陶文铨.数值传热学.西安:西安交通大学出版社,2001.245-245
    [91]Caballero F, Capdevila C, Andres C, et al. Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metallurgical and Materials Transactions A.2001,32(6): 1283-1291.
    [92]Porter D A,Easterling K E,Sherif M Y著.金属和合金中的相变.陈冷,余永宁译.北京:高等教育出版社,2010.1-438
    [93]Svoboda J, Fischer F D, Fratzl P, Gamsjager E, et al. Kinetics of interfaces during diffusional transformations. Acta Materialia.2001,49(7):1249-1259.
    [94]Geiger J, Roosz A, Barkoczy P. Simulation of grain coarsening in two dimensions by cellular-automaton. Acta Materialia.2001,49(4):623-629.
    [95]Abbruzzese G. Computer simulated grain growth stagnation. Acta Metallurgica. 1985,33(7):1329-1337.
    [96]Liu Y, Baudin T, Penelle R. Simulation of normal grain growth by cellular automata. Scripta Materialia.1996,34(11):1679-1683.
    [97]Lan Y J, Li D Z, Li Y Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metallurgical and Materials Transactions B (Process Metallurgy and Materials Processing Science).2006,37B(1):119-129.
    [98]王仁芳,陈家新.一种面向对象的三维晶粒形貌建模与仿真算法.计算机仿真.2004,21(3):43-47.
    [99]Yang B J, Chuzhoy L, Johnson M L. Modeling of reaustenitization of hypoeutectoid steels with cellular automaton method. Computational Materials Science.2007,41(2):186-194.
    [100]汪守朴.金相分析基础.北京:机械工业出版社1990.153-154
    [101]西泽泰二,郝士明.微观组织热力学.武汉:化学工业出版社,2006.134-134
    [102]Kim J, Song W J, Kang B S. Probabilistic modeling of stress-based FLD in tube hydroforming process. Journal of Mechanical Science and Technology.2009, 23(11):2891-2902.
    [103]Intaek L, Carleer B D, Haage S. High Fidelity Springback Simulation and Compensation with Robust Forming Process Design. in:8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (numisheet 2011),26 June-21 Aug.2011. USA:American Institute of Physics, vol.1383,2011.1100-1107.
    [104]Jin X, Lu S.3D FEM simulation and experimental research of springback in bending process of aluminum alloy sheet. in:10th International Conference on Machining and Advanced Manufacturing Technology, November 7,2009 November 9,2009. Jinan, China:Trans Tech Publications Ltd, vol.431-432,2010. 487-490.
    [105]谭海艳.汽车钢板弹簧热成形工艺的研究及仿真.[硕士学位论文]武汉:武汉理工大学图书馆.2008.
    [106]王洪俊,范海雁.轿车车身零件制造中的热成形技术.模具制造.2005,12(04):23-27.
    [107]林建平,王立影,田浩彬,等.超高强度钢板热冲压成形研究与进展.金属铸锻焊技术.2008,37(31):140-144.
    [108]夏开明,潘同燕,刘山洪.形状记忆合金相变过程三维大变形有限元模拟.应用数学和力学.2010,31(10):1201-1211.
    [109]Chan C W, Chan S H J, Man H C, et al.1-D constitutive model for evolution of stress-induced R-phase and localized Luders-like stress-induced martensitic transformation of super-elastic NiTi wires. International Journal of Plasticity.2012, 32-33(0):85-105.
    [110]Levitas V I, Lee D W, Preston D L. Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. International Journal of Plasticity.2010,26(3):395-422.
    [111]Paradkar A G., Kamat S V, Gogia A K, et al. On the validity of Hall-Petch equation for single-phase β Ti-Al-Nb alloys undergoing stress-induced martensitic transformation. Materials Science and Engineering:A.2009,520(1-2):168-173.
    [112]Frick C P, Lang T W, Spark K, et al. Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Materialia.2006,54(8):2223-2234.
    [113]王安良,赵剑锋.接触热阻预测的研究综述中国科学:技术科学.2011,41(5):545-556.
    [114]Abdulhay B, Bourouga B, Dessain C, et al. Development of Estimation Procedure of Contact Heat Transfer Coefficient at the Part-Tool Interface in Hot Stamping Process. Heat Transfer Engineering.2011,32(6):497-505.
    [115]Hay B A, Bourouga B, Dessain C. Thermal contact resistance estimation at the blank/tool interface:experimental approach to simulate the blank cooling during the hot stamping process. International Journal of Material Forming.2010,3(3): 147-163.
    [116]Bahrami M, Culham J R, Yovanovich M, et al. Thermal contact resistance of nonconforming rough surfaces, part 1:Contact mechanics model. Journal of Thermophysics and Heat Transfer.2004,18(2):209-217.
    [117]Bahrami M., Culham J R, Yovanovich M M, et al. Thermal contact resistance of nonconforming rough surfaces, part 2:Thermal model. Journal of Thermophysics and Heat Transfer.2004,18(2):218-227.
    [118]Wang K F, Chandrasekar S, Yang H T Y Experimental and Computational Study of the Quenching of Carbon Steel. Journal of Manufacturing Science and Engineering. 1997,119(3):257-265.
    [119]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure ironcarbon alloys and plain carbon steel. Acta Metallurgica.1959,7(1):59-60.
    [120]陈惠发,A.F.萨里普.弹性与塑性力学.北京:中国建筑工业出版社,2004.244-245
    [121]Merklein M, Lechler J, Geiger M. Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5. CIRP Annals-Manufacturing Technology.2006,55(1):229-232.
    [122]Grass H, Krempaszky C, Reip T, et al.3-D Simulation of hot forming and microstructure evolution. Computational Materials Science.2003,28(3-4): 469-477.
    [123]Eriksson M, Oldenburg M, Somani M C, et al. Testing and evaluation of material data for analysis of forming and hardening of boron steel components. Modelling and Simulation in Materials Science and Engineering.2002,10(3):277-384.
    [124]王勖成.有限单元法.北京:清华大学出版社,2003.1-776
    [125]Erturk S, Sester M, Selig M, et al. Simulation of tailored tempering with a thermo-mechanical-metallurgical model in AutoFormplus. in:8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (numisheet 2011),26 June-21 Aug.2011. USA:American Institute of Physics, vol.1383,2011.610-617.
    [126]崔振山,徐秉业,刘才.金属热成形过程的综合数值模拟.工程力学.2002,19(1):42-46.
    [127]毕文权,王春忠,陈岗.桥壳热冲压成型过程的数值模拟.材料科学与工艺.2008,(04):43-46.
    [128]Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping. Journal of Materials Processing Technology.2011,211(6):1117-1125.
    [129]刘红生,包军,邢忠文,等.22MnB5超高强钢板热成形中的回弹机理分析.航空学报.2010,31(4):865-869.
    [130]李立军.汽车深冲薄钢板冲压成形及损伤机理研究:[博士学位论文].武汉:武汉理工大学图书馆2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700