混凝土板—柱结构设计相关问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板-柱结构是由平板和柱通过节点连结而成的一种结构形式,通常沿其周边轴线设置一定截面尺寸的边梁以承担扭矩作用并增强结构的整体性。板-柱结构具有突出优点,但工程界仍对板-柱结构的设计方法、抗震性能等一些问题存在模糊认识,阻碍了板-柱结构的推广普及。为此,本文开展了如下研究工作。
     以塑性铰线理论为基础,推导了无边梁板-柱结构和设边梁板-柱结构各类板格的极限荷载计算公式,提出了通过板内钢筋的合理布置来避免不合理破坏模式的方法,分析了五种不同预应力筋布筋形式对板-柱结构板格竖向极限荷载的影响。得出了板格极限荷载主要与板内所配预应力筋和非预应力筋的数量及预应力筋的线型和预应力水平等因素有关的初步结论。
     提出了为模型试验结果所验证的用双向条带变形叠加来计算板-柱结构板格中心变形的思想和方法。应用这种方法分析了预应力筋布筋形式对板格中心总变形的影响,得到了预应力筋在柱轴线附近布置越集中对控制板在使用荷载下的总变形起到的作用就越明显的结论。
     探索了竖向均布荷载作用下板-柱结构中各类板格的内力分布规律,分析了柱网尺寸,板格边长比和柱截面尺寸对支座控制截面弯矩最大值与平均值之比的影响,建立了该比值的计算公式,提出了适合于板-柱结构的裂缝控制及验算建议。
     通过pushover分析和弹塑性时程分析,研究了层数、板厚、柱截面尺寸及设置边梁对板-柱结构抗震性能的影响,评价了板-柱结构的抗震性能。分析结果表明,对于按《建筑抗震设计规范》(GB50011-2001)板柱-剪力墙结构中“板柱的柱”确定柱的抗震等级,结构的配筋同时满足计算要求和相关构造措施的不大于8层板-柱结构可用于7度抗震设防区Ⅰ~Ⅲ类场地。给出了板-柱结构的适用范围和设计建议,为板-柱结构在抗震设防区的应用提供了参考依据。
     探讨了板柱-剪力墙结构适用的最大高度,研究了板柱-剪力墙结构进入塑性后,水平地震力在板柱和剪力墙之间的分配规律,并按刚度特征值不同,给出了板柱部分所承担的最大层剪力占结构基底剪力的百分比。分析了剪力墙布置对结构扭转效应的影响,给出剪力墙的合理布置建议。对无边梁板柱-剪力墙结构、设边梁板柱-剪力墙结构及框架-剪力墙结构进行了弹塑性时程分析,评价了板柱-剪力墙结构的抗震性能。分析结果表明,按《建筑抗震设计规范》(GB50011-2001)确定柱和剪力墙的抗震等级,结构的配筋同时满足计算要求和相关构造措施的9层板柱-剪力墙结构,可用于8度抗震设防区Ⅰ~Ⅲ类场地。给出了板柱-剪力墙结构的设计建议。
Plate-column structure is a kind of structure that consists of plates and columns linked by the node. Normally, edge beams with a certain size are set along the peripheral axis to bear torsion and reinforce the integrity of structure. Although plate-column structure is excellent, there are some problems such as design method and seismic behavior not made clear in the circles of engineering, which retarded spreading this kind of structure. Therefore, the following researches were made in this dissertation.
     Based on the yield lines theory, the formulas of ultimate load were deduced for plate-column structures with and without edge beams. A method considering the reasonable reinforcement arrangement was proposed to avoid unreasonable failure modes. And the influence of five different disposal forms of prestressing tendons upon the ultimate vertical load on plate girds was analyzed. The preliminary conclusion was obtained that the ultimate load of plate grids were mainly determined by the total number of rebar in plate, profile of prestressing tendon and effective prestress etc.
     The idea and method that the deformation in the centre of plate grid could be calculated by superposing the two-way strip deformation were proposed, which were verified by model tests results. Using this method, the influence of different disposal forms of prestressing tendon upon the total deflection of plate was analyzed, and a conclusion was made that the more close the prestressing tendon arranged to the column axis, the more effective the total deformation under service load could be controled.
     The distributive rule of internal force in plate-column structure under vertical uniform load was investigated. In the research, formulas which consider the influence of size of grid, side ratio and column section size were suggested to calculate the ratio of maximum moment to average moment at critical cross section, and an advice on crack control and check of plate-column structure was given.
     By the pushover analysis and nonlinear time-history analysis, the influence of the number of story, depth of slab, column section size and arrangement of edge beams to seismic behavior of plate-column structure was analyzed. The results showed that the plate-column structures were applicable inⅠ~Ⅲsoil site of intensity 7 seismic fortification zone when the column seismic degree accords with the plate-column and shear wall structure in“Code for seismic design of buildings (GB50011-2001)”with the number of story less than 8, and the reinforcement meets the demand of calculation and construction measure. The applicable range and design recommendations provide reference for the application of plate-column structure in seismic fortification zone.
     The applicable ultimate height of plate column-shear wall structure was explored. The distribution of horizontal seismic force between plate-column and shear walls was investigated when the plate-column and shear wall structure entered the plastic phase, and the ratio of maximal interstory shear born by plate-column to the total shear at foundation base was given with different characteristic value of stiffness. The influence of arranging shear walls to the structural torsion effect was analyzed, and the reasonably disposed recommendation of shear walls was given. The nonlinear time-history for plate-column and shear wall structure without and with edge beam, and frame-shear wall structure were analyzed, and the seismic behavior of plate-column and shear wall structure was evaluated. The analysis results show that the 9-story plate-column and shear wall structure were applicable inⅠ~Ⅲsoil site of intensity 8 seismic fortification zone when the column and shear wall seismic degree accord with“Code for seismic design of buildings (GB50011-2001)”, and the reinforcement meets the demand of calculation and constructional measure. According design recommendations were given.
引文
1郑文忠,王英.后张预应力混凝土平板-柱结构设计与工程实例.黑龙江科学技术出版社, 1999: 1~3, 19~30
    2建筑抗震设计规范(GB50011-2001).中国建筑工业出版社, 2001: 44~60
    3高层建筑混凝土结构技术规程(JGJ3-2002).中国建筑工业出版社, 2002: 27~40, 83~85
    4预应力混凝土结构抗震设计规程(JGJ140-2004).中国建筑工业出版社, 2004: 22~24
    5 D.A.Gasparini. Contributions of C.A.P.Turner to Development of Reinforced Concrete Flat Slabs 1905-1909. Journal of Structural Engineering, ASCE. 2002, 128(10): 1243~1252
    6 F.E.Richart. Reinforced Concrete Wall and Column Footings. Journal of the American Concrete Institute. 1948, 20(2): 97~127
    7 J.R.Nichols. Statical Limitations upon the Steel Requirement in Reinforced Concrete Flat Slab Floors. Transactions of the American Society of Civil Engineers, ASCE. 1914, 77: 1670~1687
    8 H.M.Westergaard, W.A.Slater. Moments and Stresses in Slabs. Proceedings of the American Concrete Institute. 1921, 17(2): 415~538
    9 A.Hillerborg. Jamviktsteori for Armerade Betongplattor. Betong. 1956, 41(4): 171~182
    10 R.H.Wood, G.S.T.Armer. The Theory of the Strip Method for Design of Slabs. Proc. Inst. Civ. Eng. 1968, 41(10): 285~311
    11 G.S.T.Armer. Ultimate Load Tests of Slabs Designed by the Strip Method. Proc. Inst. Civ. Eng. 1968, 41(10): 313~331
    12 G.S.T.Armer. The Strip Method:A New Approach to the Design of Slabs. Concrete. 1968, 2(9): 358~363
    13 K.O.Kemp. A Strip Method of Slab Design with Concentrated Loads or Supports. Struct. Eng. 1971, 49(12): 543~548
    14 Di Stasio, M.R.V.Buren. Transfer of Bending Moment between Flat Plate Floor and Column. ACI Journal Proceedings. 1960, 57(3): 221~240
    15 W.G.Corley, J.O.Jirsa. Equivalent Frame Analysis for Slab Design. Proceedingsof the American Concrete Institute. 1970, 67(11): 875~884
    16 Y.H.Luo, A.J.Durrani. Equivalent Beam Model for Flat-Slab BuildingsⅠ:Interior Connections. ACI Structural Journal. 1995, 92(1): 115~124
    17 Y.H.Luo, A.J.Durrani. Equivalent Beam Model for Flat-Slab BuildingsⅡ: Exterior Connections. ACI Structural Journal. 1995, 92(2): 250~257
    18李俊兰,吕西林,周德源.地震作用下板柱结构等代框架法计算模型的研究.建筑结构学报. 1999, 20(1): 39~45
    19张宇峰,吕志涛.边梁对板柱结构等代框架宽度取值的影响.建筑结构. 2001, 31(2): 43~46
    20吴强,程文穰.水平力作用下板柱结构等代梁计算宽度的研究.工业建筑. 2004, 34(3): 77~79
    21苏毅,吴强,程文穰.低周反复水平荷载作用下板柱结构的试验研究.建筑结构学报. 2005, 26(5): 1~7
    22 W.G.Corley, N.M.Hawkins. Shearhead Reinforcement for Slabs. ACI Journal Proceedings. 1968, 65(10): 811~824
    23 F.P.Wiesinger. Design of Flat Plates with Irregular Column Layout. Proc. ACI. 1973, 70(2): 117~123
    24 E.L.Adrian. Punching Failure of Slabs-Transfer of Moment and Shear. Journal of the Structural Division. 1973, 99(4): 665~685
    25 S.Islam, R.Park. Test on Slab-Column Connections with Shear and Unbalanced Flexure. Journal of the Structural Division, ASCE. 1976, 102(3): 549~568
    26 R.Park, S.Islam. Strength of Slab-Column Connections with Shear and Unbalanced Flexure. Journal of the Structural Division, ASCE. 1976, 102(9): 1897~1901
    27 D.G.Morrison. Lateral-Load Tests of R/C Slab-Column Connections. Journal of Structural Engineering, ASCE. 1983, 109(11): 2698~2714
    28 P.E.Regan. Sysmmetic Punching of Reinforced Concrete Slabs. Magazine of Concrete Research. 1986, 38(136): 115~128
    29 P.R.Walker, P.E.Regan. Corner Column-Slab Connections in Concrete Flat Plates. Journal of Structural Engineering, ASCE. 1987, 113(4): 704~720
    30 D.B.Alexander Scott, H.Simmonds Sidney. Ultimate Strength of Slab-Column Connection. ACI Structural Journal. 1987, 84(3): 255~261
    31 H.Simmonds Sidney, D.B.Alexander Scott. Truss Model for Edge Column-SlabConnections. ACI Structural Journal. 1987, 84(4): 296~303
    32 A.A.Elgabry, A.Ghali. Moment Transfer by Shear in Slab-Column Connections. ACI Structural Journal. 1996, 93(2): 187~196
    33 T.H.K.Kang, J.W.Wallace. Shake Table Tests and Analytical Studies of Reinforced and Post-Tensioned Concrete Flat Plate Frames. 13th World Conference on Earthquake Engineering. Canada, 2004: 350~361
    34 S.W.Han, S.H.Kee, Y.M.Park, etc. Hysteretic Behavior of Exterior Post-Tensioned Flat Plate Connections. Engineering Structures. 2006, 28(14): 1983~1996
    35李定国,舒兆发,余志武.无抗冲切钢筋的钢筋混凝土板柱连接冲切强度的试验研究.湖南大学学报. 1986, 13(3): 25~32
    36舒兆发,李定国.配置抗冲切钢筋的混凝土板柱连接的强度和性能试验研究.湖南大学学报. 1987, 14(1): 39~51
    37舒兆发.板柱结构边柱节点的受冲切承载力.湖南大学学报. 2007, 34(1): 19~23
    38楼板及基础冲切强度专题组.钢筋混凝土板和基础冲切强度的试验研究.建筑结构学报. 1987, 8(4): 13~17
    39曹宏杰, W.H.Dilger.钢筋混凝土板柱节点冲切强度计算.建筑结构学报. 1990, 11(1): 30~39
    40余志武.钢筋砼板和基础的极限承载力计算及破坏类型判别方法.建筑结构学报. 1990, 11(4): 46~54
    41郑建岚,郑作樵.钢筋混凝土板冲切强度的试验研究.福州大学学报(自然科学版). 1992, 20(2): 65~71
    42郭晓林,刘广义,曹声远等.钢筋混凝土板冲切破坏机理的试验研究及冲切承载力计算.哈尔滨建筑工程学院学报. 1993, (6): 75~79
    43刘广义,栾英,刘晓东.配抗冲切弯筋板冲切问题试验研究.哈尔滨建筑工程学院学报. 1994, (3): 47~52
    44曹明,龚绍熙.钢筋混凝土板柱节点弯冲界限破坏的分析.福州大学学报(自然科学版). 1996, 24(9): 184~190
    45周朝阳.配置抗冲切钢筋的混凝土板柱连接的破坏形态与承载力分析.建筑结构学报. 1997, 18(6): 26~31
    46李俊兰.钢筋混凝土板柱体系抗震性能研究.同济大学硕士学位论文. 1998: 11~29
    47田杰,许克宾.混凝土板柱节点配置抗冲切锚栓的试验研究.北方交通大学学报. 1999, 23(6): 73~77
    48许清风,蒋永生,梁书亭等.板柱节点的破坏形式及改进方法.建筑科学. 1999, 15(6): 21~29
    49马云昌,吕西林.钢筋混凝土板柱节点的抗震性能研究.建筑结构学报. 2001, 22(4): 49~54
    50崔峰,戴国亮,蒋永生等.带填充墙的新型梁柱-板柱组合结构振动试验研究.东南大学学报. 2002, 32(3): 460~465
    51李萍,苏慧.新型梁柱-板柱组合结构(住宅)体系抗震性能研究.连云港职业技术学院学报. 2005, 18(2): 65~67
    52蒋永生,梁书亭,陈德文等.新型梁柱-板柱组合结构(住宅)体系的试验研究.土木工程学报. 2005, 38(10): 5~13
    53徐登快.板柱结构的抗震性能及拟动力试验.浙江大学硕士学位论文. 2006: 15~35
    54王必刚.板柱结构静力弹塑性分析及试验研究.浙江大学硕士学位论文. 2007: 33~48
    55 A.Ingerslev. The Strength of Rectangular Slabs. J.Inst.Struct,Eng. 1923, 1(1): 3~14
    56 R.Park. Design of Reinforced Concretes Slabs by Yield-Line Theory. N.Z. Eng. 1963, 18(2): 45~65
    57 A.Zaslavsky. Yield-Line Analysis of Rectangular Slabs with Central Openings. ACI Journal Proceedings. 1967, 64(9): 838~844
    58 R.Park, W.L.Gamble. Reinforced Concrete Slabs. Tongji University Publishing Company. 1992: 215~223
    59 D.S.Hatcher, M.A.Sozen, C.P.Siess. Test of a Flat Slab with Welded Wire Fabric. J.Struct.Div., ASCE, 1966, 92(3): 199~244
    60 D.S.Hatcher, M.A.Sozen, C.P.Siess. Test of a Reinforced Concrete Flat Slab. J.Struct.Div., ASCE, 1969, 5(6): 1051~1072
    61 D.S.Hatcher, M.A.Sozen, C.P.Siess. Test of a Reinforced Concrete Flat Plate. J.Struct.Div., ASCE, 1965, 91(5): 205~231
    62吕志涛,杨宗放.现代预应力混凝土工程实践与研究.光明日报出版社, 1989: 105~108
    63陶学康,王逸,杜拱辰.无粘结部分预应力混凝土的变形计算.建筑结构学报.1989, 10(1): 20~27
    64郑文忠,王英.预应力混凝土房屋结构设计统一方法与实例.黑龙江科学技术出版社, 1998: 26~31
    65 Hibbitt, Karlsson, Sorensen. ABAQUS/Standard有限元软件入门指南.庄茁等译.清华大学出版社, 1998: 42~51
    66过镇海.混凝土的强度和变形-试验基础和本构关系.清华大学出版社, 1997: 33~92
    67 H.K.Ciskal, J.J.Skrzypek. CDM Based Modeling of Damage and Fracture Mechanisms in Concrete under Tension and Compression. Engineering Fracture Mechanics. 2004, 71: 681~698
    68 P.Grassl, M.Jira′sek. Damage-Plastic Model for Concrete Failure. International Journal of Solids and Structures. 2006, 43(22-23): 7166~7196
    69 J.Faleiro, S.Oller, A.H.Barbat. Plastic-damage seismic model for reinforced concrete frames. Computers and Structures. 2008, 86(7-8): 581~597
    70 P.Y.Lu, Q.B.Li, Y.P.Song. Damage Constitutive of Concrete under Uniaxial Alternate Tension-Compression Fatigue Loading Based on Double Bounding Surface. International Journal of Solids and Structures. 2004, 41(11-12): 3151~3166
    71 S.Marfia, Z.Rinaldi, E.Sacco. Softening Behavior of Reinforced Concrete Beams under Cyclic Loading. International Journal of Solids and Structures. 2004, 41(11-12): 3293~3316
    72 U.Cicekli, G.Z.Voyiadjis, R.K.A.Al-Rub. A Plasticity and Anisotropic Damage Model for Plain Concrete. International Journal of Plasticity. 2007, 23(10-11): 1874~1900
    73 G.Z.Voyiadjis, Z.N.Taqieddin, P.I.Kattan. Anisotropic damage-plasticity model for concrete. International Journal of Plasticity. 2008, 24(10): 1946~1965
    74 L.Jason, A.Huerta, G.P.Cabot, etc. An Elastic Plastic Damage Formulation for Concrete:Applicationto Elementary Tests and Comparison with an Isotropic Damage Model. Computer Methods in Applied Mechanics and Engineering. 2006, 195(52): 7077~7092
    75王中强,余志武.基于能量损失的混凝土损伤模型.建筑材料学报. 2004, 7(4): 365~369
    76李兆霞.损伤力学及其应用.科学出版社, 2002: 61~92
    77朱伯龙.钢筋混凝土非线性分析.同济大学出版社, 1985: 34~38
    78 J.Lee, G.L.Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics. 1998, 124(8): 892~900
    79 J.Lubliner, J.Oliver, S.Oller, etc. A Plastic-Damage Model for Concrete. International Journal of Solids and Structures. 1989, 25(3): 299~329
    80 D.C.Drucker, W.Prager. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics. 1952, 10(2): 157~165
    81 S.Antoniou, R.Pinho. Advantages and Limitations of Adaptive and Non-Adaptive Force-Based Pushover Procedures. Journal of Earthquake Engineering. 2004, 8(4): 497~522
    82 S.Antoniou, R.Pinho. Development and Verification of a Displacement-Based Adaptive Pushover Procedure. Journal of Earthquake Engineering. 2004, 8(5): 643~661
    83刘铁.套建增层框架结构房屋设计与施工方法研究及实践.哈尔滨工业大学博士学位论文. 2006: 86~96
    84 J.Nie, K.Qin, Y.Xiao. Push-Over Analysis of the Seismic Behavior of a Concrete-Filled Rectangular Tubular Frame Structure. Tsinghua Science and Technology. 2006, 11(1): 124~130
    85 W.Huang, P.L.Gould. 3-D Pushover Analysis of a Collapsed Reinforced Concrete Chimney. Finite Elements in Analysis and Design. 2007, 43(11-12): 879~887
    86 X.K.Zou, C.M.Chan. Optimal Seismic Performance-Based Design of Reinforced Concrete Buildings Using Nonlinear Pushover Analysis. Engineering Structures. 2005, 27(8): 1289~1302
    87 T.K.Makarios. Optimum Definition of Equivalent Non-Linear SDF System in Pushover Procedure of Multistory R/C Frames. Engineering Structures. 2005, 27(5): 814~825
    88 B.Borzi, R.Pinho, H.Crowley. Simplified Pushover-Based Vulnerability Analysis for Large-Scale Assessment of RC Buildings. Engineering Structures. 2008, 30(3): 804~820
    89 T.S.Jan, M.W.Liu, Y.C.Kao. An Upper-Bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-Rise Buildings. Journal of Engineering Structures. 2004, 26(1): 117~128
    90吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动. 2004, 24(1): 39~48
    91叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报. 2000, 21(1): 37~43
    92 M.B.D.Hueste, J.W.Bai. Seismic Retrofit of a Reinforced Concrete Flat-Slab Structure:Part I-Seismic Performance Evaluation. Engineering Structures. 2007, 29(6): 1165~1177
    93叶列平, U.Q.Asad,马千里等.高强钢筋对框架结构抗震破坏机制和性能控制的研究.工程抗震与加固改造. 2006, 28(1): 18~24
    94 X.K.Zou, C.M.Chan. An Optimal Resizing Technique for Seismic Drift Design of Concrete Buildings Subjected to Response Spectrum and Time History Loadings. Computers and Structures. 2005, 83(19-20): 1689~1704
    95 K.T.Chau, C.Y.Shen, X.Guo. Nonlinear Seismic Soil-Pile-Structure Interactions: Shaking Table Tests and FEM Analyses. Soil Dynamics and Earthquake Engineering. 2009, 29(2): 300~310
    96 X.Zhang, K.K.F.Wong, Yi.Wang. Performance Assessment of Moment Resisting Frames During Earthquakes Based on the Force Analogy Method. Engineering Structures. 2007, 29(10): 2792~2802
    97 R.Sadjadi, M.R.Kianoush, S.Talebi. Seismic Performance of Reinforced Concrete Moment Resisting Frames. Engineering Structures. 2007, 29(9): 2365~2380
    98 E.Salajegheh, A.Heidari. Time History Dynamic Analysis of Structures Using Filter Banks and Wavelet Transforms. Computers and Structures. 2005,83(1):53~68
    99 T.Kobayashi, K.Yoshikawa, E.Takaoka, etc. Time History Nonlinear Earthquake Response Analysis Considering Materials and Geometrical Nonlinearity. Nuclear Engineering and Design. 2002, 212(1-3): 145~154
    100王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究.建筑结构学报. 1991, 12(2): 51~60
    101黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述.地震工程与工程振动. 1996, 16(2): 95~105
    102刘波,肖明葵,赖明.结构地震总输入能量的分配.重庆建筑大学学报. 1996, 18(2): 100~109
    103 D.G.Lee, W.H.Choi, M.C.Cheong, etc. Evaluation of Seismic Performance of Multistory Building Structures Based on the Equivalent Responses. Engineering Structures. 2006, 28(6): 837~856
    104白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法研究评述.建筑结构. 1997, (4): 54~58
    105董欣.板柱-剪力墙结构的地震反应分析.南京航空航天大学硕士学位论文. 2007: 11~23
    106吴强,程文瀼.边梁对板柱结构侧向刚度影响的研究.建筑结构. 2006, 36(2): 34~36
    107刘劲松,唐锦春,裘涛.板式柱帽对板柱结构等代框架宽度取值的影响.建筑结构. 2004, 34(2): 64~66
    108包世华.新编高层建筑结构.中国水利水电出版社, 2001: 251~252
    109 ACI Committee 318. Building Code Requirements for Structural Concrete (ACI318-05) and Commentary(ACI318R-05). American Concrete Institute, Farmington Hills, MI, 2005: 219~233
    110 CSA-A23.3-94. Design of concrete structures. Canadian Standards Association. 1999
    111 U.Albrecht. Design of Flat Slabs for Punching-European and North American practices. Cement and Concrete Composites. 2002, 24(6): 531~538
    112程懋堃.关于板柱结构的适用高度.建筑结构学报. 2003,24(1):1~6
    113刘文珽,黄承逵.钢筋混凝土板配置抗冲切锚栓的设计建议.建筑结构. 2006, 36(1): 67~71
    114沈涛.钢筋混凝土板柱节点受力性能的试验研究.东南大学硕士学位论文. 2002: 61~65
    115许清风.新型梁柱-板柱组合结构(住宅)体系板柱节点的研究.东南大学博士学位论文. 2001: 89~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700