小波基下的结构地震反应及动力可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对小波的基本概念、小波变换的基本原理,本文提出了用四种小波:Littlewood—Paley小波,meyer小波,谐波小波,单边指数小波来进行结构地震反应分析、并对二层框架模型进行振动台试验研究、也进行了在小波基下的地震地面运动能量分析和结构地震能量反应、以及结构地震反应在小波基下的动力可靠性分析。
     通过对这四种小波的结构地震反应分析研究说明:Littlewood—Paley小波不适合于用来作结构地震反应分析,因为在Littlewood—Paley小波下的结构地震反应太小,不符合实际情况;用meyer小波作结构地震反应分析比较合适,和有限元法的结果比较接近;也可以用谐波小波来作结构地震反应分析,只是在谐波小波下的结果略为偏大;单边指数小波下的结构地震反应分析比有限元法稍大一点,它通过小波变换大大简化了结构地震反应分析。用小波变换方法来进行结构地震反应分析和以往方法不同的是:它不仅可以知道地震波的具体频率段对结构反应的影响,而且同时考虑了地震波的幅值非平稳性以及频率非平稳性;另外与以前方法得到的结果有差异的是,第二振型及以后的高一点的振型的反应没有以前的方法衰减得快。
     通过对二层框架模型进行振动台试验研究说明:从小波变换得到的加速度反应和模型上的第一层及第二层的试验测得的加速度比较得出的结论是,Littlewood—Paley小波不适合于用来作结构地震反应分析,因为在此小波下的结构加速度反应太小,和实验情况不符;meyer小波、谐波小波、单边指数小波这三种小波从理论上得到的加速度反应同实验测得的加速度过程比较吻合,因此从试验上证明用meyer小波、谐波小波和单边指数小波来作结构地震反应分析是比较合适的。
     通过三种小波基(Littlewood—Paley小波、meyer小波、谐波小波)下的地震地面运动能量分析以及结构地震能量反应分析说明:直接通过加速度记录可以求得地震动能量,由于小波系数中同时含有时域和频域的能量,由此得出的能量比以往的方法更准确;在此基础上求得了结构的能量反应时程,为结构设计及结构中设计耗能体系提供了具体的方法;通过这一章对比分析得出,Littlewood—Paley小波不适合于作地震动能量分析和结构能量反应分析。由于求能量的特殊性,稍微修改了meyer小波,使得改造的meyer小波的频率积分为一常数,由改造的meyer小波求得的能量和谐波小波求得的能量是比较合适的,在改造的meyer小波下求得的地震动能量及结构地震反应能量比谐波小波求得的相应能量要小一些,但都处于同一能量级。
     通过结构地震反应在小波基下的动力可靠性分析说明:无论是单自由度还是多自由度从理论上推导在这四种小波下的结构动力可靠性是可行的,而且考虑的结构地震反应都是非平稳的高斯过程,方法实现也比较容易;在Littlewood—Paley小波基下求得的结构的动力可靠度比较大,由改造的meyer小波和谐波小波求得的动力可靠度略有差异;单边指数小波下的结构动力可靠性分析非常简单,不用求功率谱函数来积分,只需求得结构地震反应的位移方差,速度方差,利用最大值分布公式就可得到结构的动力可靠时程;另外也考虑了超越界限对结构动力可靠度的影响,超越界限越小,结构的动力可靠度越小,即破坏概率越大。
     最后,本文给出了研究的主要结论,并对今后进一步的研究工作提出了建议。
For the purpose of wavelet's basic concept and wavelet transform fundamental principle, four wavelets: Littlewood-Paley wavelet,meyer wavelet, harmonic wavelet and odd exponent wavelet are used to analyze structural response under earthquake; experimental investigation has been carried out for two-stories frame model; this paper also analyzes earthquake ground motion energy and structural energy response based on wavelet; this paper proposes dynamic reliability analysis for structure seismic response based on wavelet.
    It is shown by structural seismic response of four wavelets that Littlewood-Paley wavelet is not suitable for structural seismic response, because structural response is too small, meyer wavelet is a better wavelet for structural seismic response, for it's structural response is agreement with the finite element method, and also harmonic wavelet, structural response under earthquake is a little bigger than finite element method, structural response under odd exponent wavelet is also bigger than finite element method, this method is very simple by wavelet transform, wavelet transform method is different from old methods, one is with which not only knows the effects of earthquake wave detail frequency-band on structural response, but also considers earthquake wave's non-stationary of frequency and time-domain value, another is the second mode shape and higher mode shape response that don't attenuate so fast.
    It is shown by the two-stories frame model shake-table test that the contrast two response of acceleration based on wavelet and experiment draws on such conclusion: Littlewood-Paley wavelet does not agree with the test, so it is not suitable for structural seismic response, because structural acceleration response is too small. The wavelet transform result of acceleration response based on meyer wavelet, harmonic wavelet and odd exponent wavelet agree with the test, Thus they can be used to analyze structural seismic response.
    The analysis of earthquake ground motion energy and structural energy response based on these three wavelets(Littlewood-Paley wavelet,meyer wavelet, harmonic wavelet )shows that we can calculate earthquake ground motion energy by the record of acceleration, because the wavelet coefficient includes time-domain energy and frequency-domain energy. So the result is more accurate than old methods. The result of structural energy response based on wavelet provides a practicable method for structure design and design energy dissipation system in structure, this chapter's analysis and contrast tell us Littlewood-paley wavelet is not suitable for analyzing energy of earthquake ground motion and structural energy response. On the purpose of calculating energy, meyer wavelet must be modified so that its frequency integral is a constant, the result of energy by modified meyer wavelet and harmonic wavelet is practicable, only the later is bigger but in the same energy level.
    Dynamic reliability analysis for structure seismic response based on wavelet shows that whether signal of degree or multi of degree's system dynamic reliability analysis are practicable on theory, and also seismic response is to be considered nonstationary Gaussian process, these methods are easy to carry out. dynamic reliability under Littlewood-Paley wavelet is the biggest, dynamic reliability under modified meyer
    
    
    wavelet and harmonic wavelet are close. Analyzing the dynamic reliability of structure under odd exponent wavelet is very simple, it doesn't calculate Power Spectral Density function integral, it is only to calculate the square of displacement standard deviation and the square of velocity, then the dynamic reliability of structure can be concluded by max distribution. In addition the effects of upper limit is considered, when upper limit is smaller, the dynamic reliability of structure is less, that is, the damage possibility is bigger.
    At last, conclusion of the present investigation and suggestion for further study are presented
引文
[1] C.A.Cornell Engineering Seismic Risk Analysis BSSA.Vol.58,No.4,pp. 1583-1606,1968
    [2] Milne, W.G.and A.G.Davenport, Distribution of earthquake risk in Canada,BSSA,Vol,59,729-754,1969
    [3] R.K.Nccuite, Fortran, Computer Program for seismic Risk Analysis, Open-File Report 76-87,United State Department of the Interior Geological Survey,43-55,1976.
    [4] 李桂青,曹宏,李秋胜: Four Basic Formulas for Reliability of Earthquake resistant Structures, Proceedings of Asian Pacific Conference of computational mechanics.324-325,1991
    [5] A.Nccwin,R.Underwood,D.Penham, Earthquake Risk in Australia,国外地震工程,第三期。75-79,1984
    [6] P.W.Bashan, N.J. Berry, New seismic Zoning Maps of Canada,Proc of the Fourth Canadian Earthquake Engineering Congerence. 457-465, 1980
    [7] A.H-S Ang, Probability Concepts in Earthquake engineering in Applied Mechanics ,ASME, AMD, 1256-1270,1974
    [8] A. Der. Kinreghian and A.H-S Ang. A Fault-Rupture Model for Seismic Risk Analysis, BSSA, Vol.67, No.4 pp, 1173-1194,1977
    [9] Douglas, B.M. and A. Ryau, Seismic risk in linear source regions .with application to the San andreas fault, BSSA Vol.67,223-241,1977
    [10] A.S.Kiremidjian and H.C. Shan, Seismic risk analysis for California State water project Standford Univ, Report, No,33,368-374,1965
    [11] C. P. Mortgat ,H. C. Shan, , A Bayessian Model for Seismic Hazard Mapping. BSSA, Vol,69,No.4,75-79,1979
    [12] Y.Y .Kagan, L. Knopoff, A stochastic model of earthquake occurrence .Proc of 8th WCEE, 92-99,1984
    [13] H.C. Shan W.N.Dong r reevaluation of the current seismic Hazard Assessment Methodologics, Proc of 8th WCEE ,1984
    [14] Paolo EPinto, Camiuo Nuoti, Seismic Structural risk Model with Multiple Correlated Ground motion Parameters, ASME vol,26,204-215,1960.
    [15] 鲍霭斌,李中锡,高小旺,周锡元:我国部分地区基本烈度的概率标定,地震学报7卷,446-449,1985年。
    [16] 片山恒雄:用加速度反应谱表示的地震危险性分析,国外地震工程。No.4,65-71,1981
    [17] 鲍霭斌,董伟民:地震危险性分析,地震工程动态,No.2.48-53,1982
    [18] 高小旺,鲍霭斌:用概率方法确定抗震设防标准。建筑结构学报。No.2,22-26,1986
    [19] Shan .H.C ,Zsutty ,T.C.Krawinkler, H.Padilla.L, Diaon.J, A selsi-Design Procedure for Nicar agna,6th WCEE, New Deihi,165-180, 1977
    
    
    [20] 章在墉、陈达生:二滩水电站坝区场地地震危险性分析。地震工程与工程振动。Vol.2.No.3.29-33,1985
    [21] 李桂青、沈华:框架-砖墙结构的抗震安全度。第一届全国高层建筑抗震设计方法会议论文集。77-82,1986
    [22] Hu Yuxian,Tao xiaxin: Selection and Estimation of earthquake motion for critical engineering site. Proc, of 1st workshop on earthquake eng,Shanghai,157-168,1984
    [23] 王光远:论地震烈度的模糊性和随机性的表达方式。地震工程与工程振动。No.2.35—40,1985
    [24] 王光远:地震烈度的模糊综合评定及其在抗震结构设计中的应用。地震工程与工程振动。No.4.27-31,1982
    [25] 刘锡荟,王孟玫、汪培庄:模糊烈度。地震工程与工程振动。No.3,33-37,1985
    [26] 王光远:在非平稳强地震作用下结构反应的分析方法。土木工程学报。No.1,1964。
    [27] 胡聿贤、周锡元:弹性体系在平稳和平稳化地面运动下的反应。《地震工程研究报告集》第一集。科学出版社。128-33,962。
    [28] 胡聿贤、周锡元:弹性体系地震反应的振型耦合问题。土木工程学报。No.1,15-19.1964。
    [29] 王光远、李桂青:地震谱曲线的研究及地震作用下结构反应的分析方法。哈尔滨建筑工程学院学报。25-29,No.4,1960.
    [30] 李桂青:在平稳与非平稳地震作用下结构反应的研究。武汉城市建设学院学术论文集。结构—001,43-47,1962。
    [31] Rosenbluth E.and Bustamante .J. Distribution of Structural Response to Earthquakes.J .Eng.Mach.Div.ASCEEM3, 112-116,1962.
    [32] Sue,et al ,R.H. Stochastic Seismic Performance Evaluation of Buildings, Technical Report of Research, Department of Civil Engineering, Univ.of liiimois,Urbana lii. 66-76,1983.
    [33] A.H-S.ang,et al,Seismic Damage of R.C Buildings and Related Ground Motion and Building Damage Potential, San Francisco,March 27,662-674,1984.
    [34] R.H.Sues, Stochastic Seismic Damage Performance Evaluation of Structures.8th WCEE,541-550,1984.
    [35] S-S.P.Lai and E.H.Vanmarke ,Overall Safety Assessment of Multi Story Steel Building Subjected to Earthquake loads .M.I.T., Department of Civil Engineering, Research Report R80-20,Order No,678,june,46-58,1980.
    [36] Shan,H.C.Dong,W.M Reliability Assessment of Existing Buildings Subjected to Probabilistic Earthquake Loadings .Soil Dynamics and Earthquake Engineering, Vol.e No.1.99-105,1984.
    [37] Kiurgnia, Seismic Reliability of Structural System,3rd Int,Conf. On Structural Safety and reliability.1112-1125,1970
    [38] Solomos.G.P,and Spanos,P.I.D. Structural Reliability Under Evolutionary Seismic Exicitation, Soil Dynamics and Earthquake engineering Vol.2.No.2,420-438,1983.
    [39] Yao.J.J.P. Damage Assessment of Existing Structures. ASCE Eng,Mech Div,Vol,106 NO.4 106-120,1980
    [40] Brown,C.B.,A Fuzzy Safety Measure ASCE Eng. Mech.Div.Vol. 105,No.5,88-96,1979.
    
    
    [41] 刘锡荟:现行规范抗震设计方法安全度的评价及工程参数的确定。地震工程与工程振动。No.1.1-5,1982.
    [42] 尹之潜,李树桢:结构抗震的可靠度与位移控制设计。地震工程振动。No.2,35-40,1982.
    [43] 高小旺,鲍霭斌:地震荷载的概率模型及其统计参数。工程抗震研究报告,84-12。
    [44] 邬瑞峰,顾红霞:带构造柱多层砖房的抗震可靠度。全国地震工程会议论文集(二)。125-129.1984。
    [45] 韦承基,魏琏,高小量,李万智:结构抗震弹塑性变形可靠度分析,工程力学。Vol,No.1,7-11,1986.
    [46] 江近仁,洪峰:多层砖房的地震可靠性分析,地震工程与工程振动。No,4,11-15,1985.
    [47] 欧进萍、王光远:基于模糊破坏准则的抗震结构动力可靠性分析,地震工程与工程振动。No.1.22-25,1986.
    [48] D.E.Newland, 'Wavelet analysis of vibration, part: Theory',J,Vib. Acoust. Trans ASME 116,409-416(1994).
    [49] 王谓季:振动信号分析中的新方法—小波变换。英国固体力学新进展。1993,p151-158
    [50] BISWAJIT BASU and VINAY K.GUPTA : Non-Stationary Seismic Response of Mdof Systems By Wavelet Transform., Earthquake Engineering and Structural Dynamics .Vol.26, 1243-1258(1997)
    [51] BISWAJIT BASU and VINAY K.GUPTA : Seismic Response of SDOF Systems By Wavelet Modeling of Nonstationary Processes, Journal of Engineering Mechanics. 1142-1150(1997.10)
    [52] C. E.Chen and C.H.Hsiao: Haar Wavelet method for solving lumped and distributed-parameter systems, IEE. proceeding Control Theory, Appl, Vol,144,No,1,157-168,January 1997
    [53] 欧进萍、王光远:结构随机振动。高等教育出版社。126.1998.5
    [54] 胡聿贤:地震工程学。地震出版社。22-31。1988
    [55] T.K. Caughey and H.J .Stumpf : Transient response of a dynamic system under random excitation. J .Appl. Mech ASME 28(E),563-566(1961)
    [56] R.B.Corotis and E.H Vanmarck : Time dependent spectral content of system response. J .Eng Mech Div ASCE 101(EM5) 623-637 (1975)
    [57] T.Hasselman : Linear response of nonstationary random excitation. J .Eng Mech Div ASCE 98(EM3) ,519-530(1972)
    [58] Y.K Lin : Application of nonstationary short noise in the study of system response to a class of nonstationary excitations, J.Appl .Mech ASME 30,555-558 (1963)
    [59] I.P.Conte and B.F.peng : An explicit closed form solution for linear systems subjected to nonstationary random excitation. J.Prob .Eng .Mech .11(1),37-50 (1996)
    [60] D.Gasparini and A.Debchaudhury :Dynamic response to nonstationary nonwhite excitation .J Eng ,Mech Div ASCE 106(EM6) 1233-1248(1980)
    [61] R.B .Coretis and T.A.Marshall: Oscillator response to modulated random excitation. J.Eng .Mech Div ASCE 103(EM4). 501-513(1977)
    [62] R.L.Barnoski and J.R.Maurer: Mean square response of simple mechanical systems to nonstationary random excitation. J.Appl. Mech ASME,221-227(1969)
    [63] J.F .Unruh and D.D.Kana : An iterative procedure for the generation of consistent power response spectrum, Nucl ,Eng ,Des .66. 1233-1248(1980)
    
    
    [64] M.Shrikhande and V.K.Gupta: On generating ensemble design spectrum compatible accelerograms. European Earthquake Eng. Ⅹ(3),49-56 (1996)
    [65] M.Shrikhande and V.K.Gupta: A generalized approach for the seismic response of structural systems. European Earthquake Eng. Ⅺ(1), 565-570,(1997)
    [66] Kameda H. Evolutionary spectra of seismogram by multifilter. J Eng Mech Div ,ASCE, 1975,101 (6)
    [67] 刘贵忠、邸双亮:小波分析及其应用。西安电子科技大学出版社。44,1997
    [68] 胡昌华、张军波等:基于MALTLAB的系统分析与设计。西安电子科技大学出版社。33-34,1999
    [69] Barbara B H. The world according to wavelets : the story of a mathematical technique in the making, A K Peters Ltd. 98-111,1998
    [70] 李建平:小波分析与信号处理—理论、应用及软件实现。重庆出版社。180-181,1997.12
    [71] 泰前清、杨宗凯:实用小波分析。西安电子科技大学出版社。3-4,1998
    [72] 姚天任,孙洪:现代数字信号处理。华中理工大学出版社。120-121,1999.6
    [73] Z.Hou,M.Noori .et. al Wavelet-based Approach for Structural Damage Detection .J.of Eng, Mech, 2000,677-683
    [74] K.M.Liew and Q.Wang: Application of Wavelet Theory for Crack Identification in structures. J.of Eng .Mech. 1998,152-159.
    [75] 高宝成,时良平等:基于小波分析的简支梁裂缝识别方法研究。振动工程学报。Vol.10(3),1997(81-85)
    [76] 章在墉:地震危险性分析及其应用。同济大学出版社。44-45,1995.5
    [77] 杨福生:小波变换的工程分析与应用。科学出版社。7,2000
    [78] 崔锦泰:小波分析导论。西安交通大学出版社。83,1995
    [79] 于开平,邹经湘,杨炳渊:小波函数的性质及其应用研究。哈尔滨工业大学学报。2000.4,P36-39
    [80] 王亚勇,黎家佑:澜沧—耿马地震校正加速度记录和反应谱。地震出版社。1989.10,(27-100)
    [81] 赵玉成,袁树清,许庆余:奇异信号的谐波小波分析。工程力学,第17卷第3期。2000.6(60-65)
    [82] 陈桂明,张明照,戚红雨:应用MATLAB语言处理数字信号与数字图像。科学出版社。299,2000
    [83] Vanmacke E H. Lai S S P. Strong motion duration and RMS amplitude of earthquake records [J] BSSA. 1980.7(4):7.No.4:1293-1307
    [84] Park Y J. Ang A H-S. A mechanistic seismic damage model for reinforced concrete [J] J.Struct. Eng. ASCE. 1983.111:722-739.
    [85] 刘伯权:钢筋混凝土抗震结构的破坏准则及可靠性分析。重庆建筑大学。36,1994
    [86] Yang J N.Shinozuka M, On the first - excursion probability in stationary narrow band random vibration(Ⅱ). J. Appl. Mech .ASME. 1972.Vol 39 : 733-738
    [87] Wu F. Envelope crossing rate and first passage probability [A], The 5th international conference on structural safety and reliability[c]. 1989:1271-1278.
    [88] 欧进萍:多自由度体系的动力可靠性分析。地震工程与工程振动。第7卷,4期。1987.12,p51-58.
    
    
    [89] V. K .Gupta and M.D. Trifunac, 'Investigation of building response to transnational and rotational earthquake excitation ' Report CE 89-02, University of Southeast California ,Los angeles ,CA, 1989.
    [90] V. K .Gupta and M.D. Trifunac, 'Response of multistoried buildings to ground transnational and rocking during earthquakes, J. Prob. Eng. Mech. 5(3), 138-145(1990)
    [91] 中华人民共和国国家标准。建筑抗震设计规范(GBJ11-89)1989
    [92] 朱伯龙、张琨联:建筑结构抗震设计原理。同济大学出版社。1993
    [93] CHIA-MING UANG AND VITELMO V.BERTERO, EVALUATION OF SEISMIC ENERGY IN STRUCTERS. Earthquake engineering and structural dynamics, Vol. 19, 77-99(1990)
    [94] JUN IYAMA AND HITOSHI KUWAMURA, Application of wavelets to analysis and simulation of earthquake motions. Earthquake engineering and structural dynamics, Vol. 28,255-272,1999
    [95] 程正兴:小波分析算法与应用。西安交通大学出版社。1997.9,P57
    [96] 杨蔚彪:多、高层建筑二级减振控制体系研究。中国建筑科学研究院博士学位论文。1996.6 P89
    [97] 沈聚敏,周锡元,高小旺,刘晶波:抗震工程学。中国建筑工业出版社。35,2000。
    [98] 周立超:整体预应力梁(板)柱体系抗震性能研究报告。33,2002.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700