地下结构随机荷载反演与可靠性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下空间结构诸如地铁隧道、共同沟等都是城市生命线工程的重要组成部分,如何保证大型地下工程结构的安全性与功能运行要求,已成为城市地下工程防灾减灾研究中的一个重要课题。在这一背景下,地下结构的安全性监测与预警变得越来越重要。
     本文分别对地下结构的安全性监测、荷载反演、可靠性分析作了相关研究,由于传统监测技术手段的不足,进行了新型传感器的应用研究:包括光纤光栅传感技术、应变膜监测技术、无线网络传感技术。它们可以实现大规模、分布式的监测,为现场监测的手段开辟一条新的道路。
     针对地下结构荷载分布的复杂性,提出了用样条插值函数曲线来近似代替地下结构的实际荷载曲线,进行结构荷载反演的方法。讨论了遗传算法在优化反演当中的应用。相比于传统的优化算法,遗传算法具有群体搜索的功能,易于收敛到全局最优解或近似全局最优解。提出了基于概率密度演化的随机荷载反演方法,概率密度演化方法揭示了随机系统样本点概率信息之间的本质关系,从而,不仅实现了对客观系统的正确反映,也大大降低了问题求解的难度和工作量。利用所发展的方法,不仅可以获得反演荷载的统计特征值,同时可以得到地下结构荷载的概率密度函数曲面。
     发展了基于概率密度演化思想的地下结构可靠性分析方法。在此方法中,通过求解概率密度方程,可以得到响应量的概率密度函数曲线,相比于其它随机分析方法,具有精确解答性,而且在计算效率上也得到大大提高。介绍了基于等价极值事件的结构体系可靠性分析方法,并将等价极值事件的基本思想推广应用到复杂失效准则下地下结构的可靠性分析之中。研究表明:采用概率密度演化分析,可以对地下结构可靠度给出较为准确的评价。同时,对前述方法实现了程序用户界面化。
     最后,关于进一步工作的方向进行了简要的讨论。
Underground space structures such as metro, utility tunnel, etc., are important components of a city's lifeline system. So ensuring the safety and functional performance of large underground structures has already been an important subject of researches on disaster prevention and mitigation for underground engineering of cities. In this context, the safety monitoring and pre-warning of underground structure should be put more attention on.
     In this thesis, safety monitoring, load identification and reliability analysis of underground structures are systematically studied in turn. Firstly, for the deficiency of traditional monitoring technologies, new types of sensors, e.g. fiber Bragg grating sensor, diaphragm pressure sensor, wireless network sensor, etc., are investigated in detail. Since all of the above mentioned technologies can realize large-scale and distributed monitoring, so a new path of in-situ monitoring can be created with their help.
     Secondly, spline function approximation of actual complex distribution of loads on underground structures is introduced and the loads are identified with this approach as basis. Then the application of Genetic Algorithms (GA) to optimal inverse analysis is discussed. Compared with classical optimal algorithms, the colony searching characteristics of GA helps to find the global optimal solution more easily. Moreover, the stochastic load identification approach based on probability density evolution method (PDEM) is proposed. The recently developed PDEM can reveal the substantial probability information among sampling points in a stochastic system, so it can not only truly reflect the objective system, but also significantly lower the difficulty and work of problem solving. Utilizing this stochastic load identification approach, the statistical characteristic value and the probability density function of the identified loads can be obtained at the same time.
     Thirdly, the PDEM based reliability analysis of underground structures is developed. Using this method to calculate the probability density surface of structure response is more accurate and more efficient than using traditional stochastic analysis methods. Furthermore, the system reliability analysis of structures based on equivalent extreme value event is introduced and applied to designs of underground structures under complex failure criteria. The results clearly prove the validity of the proposed method. Also a human-computer interaction interface of the load identification and stochastic reliability analysis codes is fulfilled for possible future users.
     Finally, problems need further studies are discussed.
引文
[1]晏成.全站仪在隧道变形监测中的应用研究:[硕士学位论文].上海:同济大学,2005
    [2]F.Ansari.Fiber optic health monitoring of civil structures.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.University of Illinois at Chicago.2003.Voll.19-30
    [3]F.Caseiati.An overview of structural health monitoring expertise within the European Union.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.University of Pavia.2003.Voll.31-37
    [4]J.M.Ko.Health monitoring and intelligent control of cable-supported bridges.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.The Hong Kong Polytechnic University.2003.Voll.51-64
    [5]H.M.Koh,J.F.Choo,S.K.Kim,et.al.Recent application and development of structural health monitoring systems and intelligent structures in Korea.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.Korea.2003.Voll.99-111
    [6]J.P.Ou.Some recent advances of intelligent health monitoring systems for civil infrastructures in mainland China.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.School of Civil Engineering,Harbin Institute of Technology,China.2003.Voll.131-144
    [7]Z.S.Wu.Structural health monitoring and intelligent infrastructures in Japan.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.Ibaraki University,Japan.2003.Voll.153-167
    [8]D.Inaudi.State of the art in fiber optic sensing technology and EU strncural health monitoring projects.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.Switzerland.2003.Voll.191-198
    [9]Toshihiko Torigoe,Masaru KawaNo.Health monitoring technique of civil-engineering structures that used an optical fiber sensor and future directivity.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.NTT Infrastructure Network Corporation,Kansai Branch Office,Japan.2003.Voll.253-260
    [10]J.Braunstein,B.Hodac.Structural health monitoring with fiber-optic displacement and deformation sensors.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.Germany & France.2003.Vol 1.261-266
    [11]Y.Ding,B.Shi,H.L.Cui,et.al.The stability of optical fiber as strain sensor under invariable stress.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure.Nanjing University,China.2003.Voll.267-270
    [12]B.Xu,Z.S.Wu.Long-gage fiber optic sensors for dynamic strain measurement and structural identification.Proceedings of the first international conference on structural health monitoring and intelligent infrastructure,lbaraki University,Japan.2003.Voll.299-307
    [13]王建平.光纤光栅传感器在土木工程结构健康监测中的应用[J].贵州工业大学学报(自然科学版),2004,V0l.33(1):77-80,84
    [14]D.Inaudi,Nicoletta CASANOVA.SOFO:Tunnel Monitoring with Fiber Optic sensors[J].Reducing Risk in Tunnel Design and Construction,Basel Switzerland,1998,7-8,12
    [15]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子激光,2002,V0l.13(4):420-430
    [16]刘雄.光纤传感技术在岩土力学与工程中的应用研究[J].岩石力学与工程学报,1999,V0l.18(5):588-591
    [17]李辰砂等.光纤传感技术用于监测纤维复合材料固化过程的研究[J].纤维复合材料,1999,No.2:37-40,42.
    [18]梁磊,姜德生,孙东亚.光纤传感器在混凝土结构中的相容性研究[J].武汉工业大学学报,1995,V0l.22(10):761-765
    [19]潘树新,刘耀炜.光纤传感器在水文地球化学地震前兆观测中的应用及其前景[J].国际地震动态,2001,No.12:9-14
    [20]赵廷超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述[J].重庆大学学报,1997,V0l.20(5):104-109
    [21]查开德.用于大型结构应变测量的光纤传感器[J].中国激光,1995,V0l.22(10):761-765
    [22]赵鸣,何涛,李杰.光纤光栅传感器在大体积混凝土基础温度监测中的应用[J].实验力学,2005,V0l.20(1):23.29
    [23]姜德生,罗裴,梁磊.光纤布拉格光栅传感器与基于应变模态理论的结构损伤识别[J].仪表技术与传感器,2003,No.2:17-19
    [24]陆剑俊,张雄,江欢.FBG传感器在隧道管片结构中的应用[J].光纤与电缆及其应用技术,2006,No.4:24-26
    25]史学涛.结构健康监测系统的研究:[硕士学位论文].上海:同济大学,2006
    [26]Maser K.,Egri R.,Lichtenstein A.,et.al.Development of a wireless global bridge evaluation and monitoring system(WGBEMS).Structures Congress-Proceedings.Building an International Community of Structural Engineers,1996,Vol.2
    [27]Maser K.,Egri R.,Lichtenstein A.,et.al.Field evaluation of a wireless global bridge evaluation and monitoring system(WGBEMS).Proceedings of Engineering Mechanics.1996,Vol.2
    [28]Maser K.,Egri R.,Lichtenstein A.,et.al.Wireless global bridge evaluation & monitoring system(WGBEMS).Proceedings of the Speciality Conference on Infrastructure Condition Assessmenr:Art,Science,Practice,1997
    [29]Pines D.J.,Lovell P.A..Conceptual framework of a remote wireless health monitoring system for large civil structures.Smart Materials and Structures.1998,Vol.7(5):627-636
    [30]Straser E.G.A modular wireless damage monitoring system for structures.Ph.D.Thesis, Department of Civil and Environmental Engineering,Stanford University.Stanford,CA,1998
    [31]Lynch J.P.,Law K.H.,Straser E.G,et.al.The development of a wireless modular health monitoring system for civil structures.Proceedings of the MCEER Mitigation of earthquake disaster by advanced technology(MEDAT-2)workshop,Las Vegas,NV,USA.2000,November,30-31
    [32]Elgamal A.,Seible F.,Vernon F.,et.al.On-line structural monitoring and data management.Proceedings of 6~(th)seismic research workshop.California Department of Transportation,Sacramento,California,2001,May,12-13
    [33]Lynch J.P.,Law K.H.,Kiremidjian A.S.,et.al.Validation of a wireless modular monitoring system for structures.Proceedings of SPIE 9~(th)Annual International Symposium on Smart Structures and Materials,San Diego,CA,USA,2002,March 17-21
    [34]Kinawi H.,Taha M.R.,Sheimy N.E..Structural health monitoring using the semantic wireless.Proceedings of the 27~(th)Annual IEEE Conference on Local Computer Networks,2002
    [35]Kottapalli V.A.,Kiremidjian A.S.,Lynch J.P.,et.al.Two-tiered wireless sensor network architecture for structural health monitoring.Proceedings of the SPIE 10~(th)International Symposium on Smart Structures and Materials,San diego,CA,USA,2003,March,2-6
    [36]Lynch J.P.,Sundararajan A.,Law K.H.,et.al.Power-efficient data management for a wireless structural monitoring system.Proceedings of the 4~(th)International Workshop on Structural Health monitoring,Stanford,CA,USA,2003,September,15-17
    [37]Lynch J.P.,Sundararajan A.,Law K.H.,et.al.Embedment of structural monitoring algorithms in a wireless sensing unit.Structuring Engineering and Mechanics,2003,Vol.15(3)
    [38]Lynch,J.P..2004.Over view of wireless sensors for real-time health monitoring of civil structures.Proceedings of the 4th international workshop on structural control and monitoring.New York City,NY,USA.2004,June,10-11
    [1]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社,2002
    [2]孙钧,候学渊.地下结构[M].北京:科学出版社,1987
    [3]杨林德等.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996
    [4]吕爱钟,蒋斌松.岩石力学反问题[M].北京。煤炭工业出版社,1998
    [5]王芝银等.岩石力学位移反演分析回顾及进展[J].力学进展,1998,V0l.28(4):488.498
    [6]Kavanagh K T,Clough R W.Finite element application in the characterization of elastic solids[J],lnt J Solids structures,1972,No.7:11-23
    [7]高玮,郑颖人.岩土工程非确定性反分析研究动态[J].地下空间,2000,V0l.20(2):81-85
    [8]李立新,石程云.岩土工程位移反分析方法综述[J].沈阳建筑工程学院学报,1996,V0l.12(3):354-358
    [9]Kirsten H A D.Determination of rock mass elastic modulus by back analysis of deformation measurements.In:Proceedings Symposium on Expliration for Rock Engineering.Johannesburg,1976,1154-1160
    [10]Maiar G,Jurina L,Podolak K.On model identification problems in rock mechanics.In:Proceedings Symposium on the Geotechnics of Structurally Complex Formation.Capri,1997,257-261
    [11]Gioda G Some remarks on back analysis and characterization problems.In:Proceedings 5~(th)International Conference on Num Meth in Geom.Nagoya,1985,No.1:47-61
    [12]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel.Rock Meth and Rock Eng.1983,Vol.16(3):173-180
    [13]K.Kovari.Intergrated measuring technique for rock pressure determination[J].Int.Symp.On Measurement in Rock Mech.,Zurich,1977,April 4-6
    [14]G Gioda.Numerical identification of soil-structure interaction pressure[J].Int.J.For Numer.Anal.Meth.In Geomech,1981,Vol.5:33-56
    [15]刘怀恒,熊顺成.隧道衬砌变形监控及安全预测[J].岩石力学与工程学报,1990,V0l.9(2):91-99
    [16]刘怀恒.支护荷载反演及安全度预测[J].西安矿业学院学报,1991,No.4:1-8
    [17]杨海天,姜磊.粘弹性静位移荷载反演[J].大连理工大学学报,1995,V0l.35(5):618-622
    [18]朱永全,景诗庭,张清.桃坪隧道围岩参数的随机反演[J].石家庄铁道学院学报,1995,V0l.8(2):37-4 1
    [19]朱永全,景诗庭,张清.隧道支护结构荷载作用的随机反演[J].岩土力学,1996,V0l.17(2):57.63
    [20]张中生,陈子荫,朱维申.地下结构荷载的广义反演方法[J].土木工程学报,2001,V0l.34(2):38-42
    [2l]张中生.地下结构荷载反算中解的稳定性研究[J].中国矿业,1999,V0l.8(5):79.84
    [22]张中生.地下结构荷载反算中的两类测线网优化布置准则[J].岩石力学与工程学报(增刊),1999
    [23]张中生.地下结构荷载反算中的测线网优化布置[J].岩石力学与工程学报,2000,V0l.19(2):219-224
    [24]朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩士工型学报,2000,V0l.22(2):190-194
    [25]Gioda C,Pandolfi A,Cividini A.A comparative evaluation of some back analysis algorithms and their application to in situ load tests[J].In Proc 2~(nd)Int Symp on field Measurement in Geom.Kobe.1987,1131-1144
    [26]Y.S.Jeon,H.S.Yang.Development of back analysis algorithm using FLAC[J].Int.J.Rock Mech.Min.Sci.2004,Vol.41(3):1-7
    [27]赵新铭,刘宁,张剑.岩土力学反分析的数值反演方法[J].水利水电科技进展,2003,V0l.23(2):55-58
    [28]刘勇健,李子生.岩土工程位移反分析的智能反演综述[J].地下空间,2004,V01.24(1):84-88
    [29]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报,2002,V0l.30(3):52-56
    [30]高玮,郑颖人.岩土工程非确定性反分析研究动态[J].地下空间,2000,V0l.20(2):81-85
    [31]刘世君等,遗传算法的改进及其在岩体位移反分析中的应用[J].电力勘测,2002,V0l.34(2):10-13
    [32]Xia-Ting Feng.Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method[J].International Journal of Rock Mechanics & Mining Sciences 37.2000,1034-1054
    [33]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报,2003,V0l.22(2):197-202
    [34]郝跃天等.位移监控及预报方法在地下工程中的应用[J].两安矿业学院学报,1993,V0l.13(4):303-308
    [35]朱合华.地下建筑结构[M].北京:中国建筑工业出版社,2005
    [36]孙钧,候学渊.地下结构[M].北京:科学出版社,1987
    [37]曹卫华,郭正.最优化技术方法及MATLAB的实现[M].北京:化学工业出版社,2005
    [38]王小平,曹立明.遗传算法一理论、应用[M].西安:西安交通人学出版社,2002
    [39]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003
    [40]李刚等.遗传算法求解精度与种群人小的函数关系[J].计算机技术与发展,2006,V0l.16(7):96-98
    [1]袁勇.围岩弹塑性参数反演的极大似然法[J].工程勘察,1991,No.5:5-7
    [2]Hoshiya M,Yoshida I.Identification of conditional stochastic Gaussian field[J].J of Engineering Mechanics ASCE,1996,Vol.122(2):101-108
    [3]陈斌,卓家寿,刘宁.岩土工程反分析的非确定性模型研究与发展[J].水利水电科技进展,2001,V0l.21(5):5-9
    [4]黄宏伟,孙钧.基于Bayesian广义参数分析[J].岩石力学与工程学报,1994,V0l.13(3):219-228
    [5]黄宏伟.岩土工程中位移量测的随机逆反分析[J].岩士工程学报,1995,V0l.17(2):36-41
    [6]朱永全,景诗庭,张清.围岩参数Monte-Carlo有限元反分析[J].岩土力学,1995,V0l.16(3):29-34
    [7]蒋树屏.扩张卡尔曼滤波器有限元耦合算法及其隧道工程应用[J].岩土工程学报,1996,V0l.18(4):11-19
    [8]刘维宁.岩土工程反分析方法的信息论研究[J].岩石力学与工程学报,1993,V0l.12(3):193-205
    [9]林育梁,樱井春辅.应用模糊有限元法的一种反分析形式[J].岩土工程学报,1995,V0l.17(5):48-55
    [10]高玮,郑颖人.岩土工程非确定性反分析研究动态[J].地下空间,2000,V0l.20(2):81-85
    [11]孙道恒,胡俏,徐灏.力学反问题的神经网络分析法[J].计算结构力学及其应用,1996,V0l.13(3):308-312
    [12]樊琨,刘宇敏,张艳华.基于人工神经网络的岩土工程力学参数反分析[J].河海大学学报,1998,V0l.26(4):98-102
    [13]王芝银等.岩石力学位移反演分析回顾及进展[J].力学进展,1998,V0l.28(4):488-498
    [14]朱永全,景诗庭,张清.隧道支护结构荷载作用的随机反演[J].岩土力学,1996,V0l.17(2):57-63
    [15]朱永全,景诗庭.随机一荷载结构模型的位移随机反分析[J].铁道工程学报,1996,V0l.50(2):95-99
    [16]李杰,陈建兵.随机结构反应的概率密度演化分析[J].同济人学学报,2003,V0l.31(12):1387.1391
    [17]陈建兵,李杰。随机结构静力反应概率密度演化方程的差分方法[J].力学季刊,2004,V0l.25(1):21-28
    [18]陈建兵,李杰.基于概率密度演化方法的随机结构可靠度分析[J].计算力学学报,2004,V0l.21(3):285-290
    [19]李杰.随机结构系统一分析与建模[M].北京:科学出版社,1996
    [20]李杰.随机动力系统的物理逼近[J].中国科技论文在线,2006,V0l.1(2):95-104
    [21]陈华明.蛋形消化池流固耦合反应研究与动力可靠度分析:[博士学位论文].上海:同济大学,2005
    [22]李杰,陈建兵.随机结构响应密度演化分析的映射降维法[J].力学学报,2005,V0l.37(4):460-466
    [23]陈建兵,李杰.随机结构反应概率密度演化分析的切球选点法[J].振动工程学报,2006,V0l.19(1):1-8
    [24]陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006:V0l.38(1):134-140
    [25]方开泰,王元.数论方法在统计中的应用[M].北京:科学出版社,1996
    [26]华罗庚,王元.数论在近似分析中的应用[M].北京:科学出版社,1978
    [27]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社,2002
    [1]吴世伟.结构安全度与可靠度分析论文集.南京:河海大学出版社,1988
    [2]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996
    [3]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社,2002
    [4]张伟,崔维成.结构可靠性计算的直接积分法[J].上海交通大学学报.1997,V0l.31(2)114-116
    [5]肖刚,李天柁.结构可靠性计算的直接积分法[M].北京:科学出版社,2003
    [6]M.D.Sciuva,D.Lomario.A Comparison between Monte Carlo and FORMs in Calculating the Reliability of a Composite Structure.Composite Structures.2003,No.59:155-162
    [7]秦权,林道锦,梅刚.结构可靠度随机有限元一理论及工程应用[M].北京:清华大学出版社,2006
    [8]W.J.Hill,W.G Hunter.A Review of Response Surface Methodology:a Literature Survey.Technometrics.1996,Vol.8(4):571-589
    [9]X.L.Guan,RE.Melchers.Effect of Response Surface Parameter Varation on Structural Reliability Estimates.Structural Safety.2001,No.23:429-444
    [10]Katsunori Ogura.Comparison of Uncertainty Approaches to System Failure Probability.http://www.google.com
    [11]Dennis Alexander,et al.Application of Monte Carlo simulations to system reliability analysis[J].Proceedings of the twentieth international pump users symposium,2003
    [12]A.Dey,S.Mahadevan.Ductile Structural System Reliability Analysis Using Adaptive Importance Sampling[J].Structural Safety.1998.No.20:137-154
    [13]A.Dey.Efficient simulation for system reliability analysis[D].Vanderbilt University.1996
    [14]吕凤梧.深基坑施工过程多支撑挡土墙动态可靠度计算[J].工业建筑.2003,V0l.33(7):1-6
    [15]Matsuo M,Kawamura KA.Design Method of Deep Excavation in Cohesive Soil Based on Reliability Theory[J].Soil and Foundation,1980,Vol.20(1).
    [16]松尾稔.地基工程学Κ一可靠性设计的理论和实际[M].北京:人民交通出版社,1990
    [17]Dershowitz W S,Einstein H H.Characterizing rock joint geometry with joint system models [J].Rock Mechanics and Rock Engineering,1988,Vol.21(1):21-51
    [18]Shigcyuki KohNo.Reliability evaluation of idealized tunnel system[J].Structural Safety,1992,No.11:81-93
    [19]谭忠盛.直墙式隧道衬砌结构的可靠度分析:[硕士学位论文].兰州:兰州铁道学院,1990
    [20]张弥,沈永清.用响应面方法分析铁路明洞结构荷载效应[J].土木工程学报.1993,V01.26(2):58-66
    [21]张清,王东元,李建军.铁路隧道衬砌结构可靠度分析[J].岩石力学与工程学报.1994,V01.13(3):209-218
    [22]谢锦昌,王兵.浅埋隧道荷载的试验研究.铁道标准设计.1995,No.11
    [23]高波,蔺安林,赵万强.隧道衬砌结构可靠指标计算方法的研究[J].西南交通大学学报.1996,V0l.31(6):583-589
    [24]景诗庭.地下结构可靠度分析研究之进展[J].石家庄铁道学院学报.1995,V0l.8(2):13-19
    [25]谭忠盛,谢锦昌.用蒙特卡罗法分析隧道衬砌荷载效应的统计特征[J].铁道标准设计通讯.1991,No.2:1-4
    [26]谭忠盛.隧道结构模糊失效概率计算的改进M-C法[J].西部探矿工程.2001,V0l.71(4):65-66
    [27]谭忠盛.隧道支护结构体系可靠度的理论研究及其工程应用:[博士学位论文].成都:西南交通大学,1999
    [28]钟湘江,刘义虎,周旭.公路隧道衬砌结构可靠度分析研究[J].中外公路.2003,V0l.23(1):51-53
    [29]赵旭峰,严松宏.响应面法在隧道衬砌结构可靠度分析中的应用[J].岩石力学与.[程学报.2003,V0l.22(增2):2583-2586
    [30]宋玉香,刘勇,朱永全.响应面方法在整体式隧道衬砌可靠性分析中的应用[J].岩石力学与工程学报.2004,V0l.23(11):1847-185l
    [31]G L.Sivakumar,Amit Srivastava,Reliability analysis of allowable pressure on shallow foundation using response surface method[J].Computers and Geoteclmics,in press(already available online).
    [32]李伦贵,高波.翼墙式隧道洞门可靠性分析[J].西南交通大学学报.2002,V0l.37(5):496-499
    [33]马运康.隧道洞门结构可靠度分析[J].山西建筑.2004,V0l.30(11):29-30
    [34]朱永全,刘勇,宋玉香.隧道工程结构可靠度计算方法分析[J].石家庄铁道学院学报.1997,V0l.10(4):41-47
    [35]谭忠盛,王梦恕.隧道衬砌结构可靠度分析的二次二阶矩法[J].岩石力学与工程学报.2004,V0l.23(13):2243-2247
    [36]白小亮,杨成永,赵慧丽.隧道结构可靠性分析的一种新方法[J].岩土工程技术.2000,No.4:222-225
    [37]景诗庭,宋玉香,吴康保.地下结构的概率极限状态设计[J].石家庄铁道学院学报.2000,V0l.13(3):13-17
    [38]刘勇,宋玉香,景诗庭.铁路隧道混凝土衬砌结构概率极限状态设计研究[J].石家庄铁道学院学报.2001,V0l.14(2):1-4
    [39]陈建兵,李杰.随机结构静力反应概率密度演化方程的筹分方法[J].力学季刊,2004,V0l.25(1):21-28
    [40]陈建兵,李杰.基丁概率密度演化方法的随机结构可靠度分析[J].计算力学学报,2004,V0l.2 l(3):285-290
    [41]李杰,陈建兵.随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,V0l.17(2):121-125
    [42]Jian-bing Chen,Jie Li.Extreme value distribution and reliability of nonlinear stochastic structures[J],Earthquake Engineering and Engineering Vibration,2005,Vol.4(2):275-286
    [43]陈建兵,李杰.复合随机振动系统的动力可靠度分析[J].工程力学,2005,Vol.22(3):52-57
    [44]李杰.随机动力系统的物理逼近[J].中国科技论文在线,2006,V0l.1(2):95-104
    [45]Jie Li,Jian-bing Chert,Wen-liang Fan,The equivalent extreme-value event and evaluation of the structural system reliability[J],Structural Safety,2006,1-20,in press(already available online).
    [46]宋强辉,赵燕明,刘东升.ANSYS的概率设计系统在结构可靠性分析中的应用[J].中国科技论文在线
    [47]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003
    [48]唐明裴,阎贵平.结构灵敏度分析及计算方法概述[J].中国铁道科学,2003,V0l.24(1):74-79
    [49]陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,Vol.38(1):134-140
    [50]杨林德等.软弱岩层中隧道结构体系的可靠度[J].同济大学学报,2004,Vol.32(6):705-709
    [51]S.Park,S.Choi,C.Sikorsky,N.Stubbs.EfiScient Method for Calculation of System Reliability of a Complex Structure[J].Solids and Structures.2004,No.41:5035-5050
    [52]P.Thort-Christensen,Y.Murotsu.Application of Structural Systems Reliability Theory.Springer-Verlag Berlin.Heidelberg.1986
    [53]张志涌等.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003
    [54]尹泽明,丁春利等.精通MATLAB6[M].北京:清华大学出版社,2002
    [1]上海市轨道交通6号线工程浦电路站~蓝村路站区间详细勘察报告,上海岩土工程勘察设计研究院
    [2]何涛,赵鸣,谢强,李杰.光纤光栅传感器用于盾构隧道施工的监测[J].地下空间与工程学报,已录用

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700