基于信号循环平稳特性的波达方向估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向(DOA)估计技术已广泛应用于雷达、声纳、通信、生物医学等多种军事和民用领域。常规的空间谱估计算法虽然具有超分辨的性能,但是对来波信号本身的时域信息利用并不充分,且在多信号处理能力、低信噪比适应能力等方面通常存在局限。随着研究的深入,人们发现许多人工信号和自然界信号都具有循环平稳特性,而利用信号的这种时域特性能够获得常规DOA估计方法无法达到的性能优势,如选择性测向能力、较强的干扰及噪声抑制能力和突破阵元数限制的多信号处理能力。因此,基于信号循环平稳特性的DOA估计技术逐渐成为阵列测向研究中的一个热点。
     现有基于循环平稳的DOA估计研究主要集中于一维问题,对实际中有广泛需求的二维DOA估计技术的研究较少,而且已有的二维DOA估计算法较普遍地存在由时延选择导致的稳健性问题,对非均匀阵列二维DOA估计的研究也基本属于空白。针对上述这些问题并同时考虑相干源、宽带源等实际环境和应用背景,本文对利用信号循环平稳特性的DOA估计技术进行了深入研究,主要包括以下内容:
     针对现有二维DOA估计技术存在由时延选择带来的算法稳健性问题,结合多时延采样及孔径扩展的空时等效阵列构造思想,分别提出了基于双平行均匀线阵的多时延共轭循环波达方向矩阵(ML-CCDM)算法和基于简化阵列的多时延共轭循环波达方向矩阵(SML-CCDM)算法。ML-CCDM算法充分利用了各阵元输出共轭循环相关函数的多时延采样数据,不仅避免了最优时延选择问题和谱峰搜索操作,还构造出了两倍于真实阵列孔径的虚拟阵列,相对于同样无需谱峰搜索的CCDM算法而言,获得了更高的DOA估计精度、更好的低信噪比适应能力以及更强的多信号处理能力。SML-CCDM算法在ML-CCDM算法的基础上,摆脱了双平行阵列的限制,并利用较少阵元获得了与ML-CCDM算法几乎相当的性能。
     研究了非均匀阵列二维DOA估计技术,将最小冗余线阵与基于多时延采样的空时等效阵列构造方法相结合,提出了两种不同结构的稀疏阵列以及分别基于这两种阵列的二维DOA估计算法,将最小冗余线阵的应用拓展到共轭循环平稳信号二维DOA估计领域。这两种基于稀疏阵列的算法不仅分别继承了ML-CCDM算法和SML-CCDM算法的优点,在阵元数相同的条件下还具有更大的阵列孔径,因而能获得更高的DOA估计精度。此外,相对于均匀阵列而言,稀疏阵列的阵元间距更大,因此在工程实现时能够降低阵元间互耦等问题的影响。
     研究了相干循环平稳信号DOA估计技术,通过构造与真实阵列阵元具有一一对应关系的空时等效虚拟阵列,并结合现有去相干预处理技术,提出了基于虚拟阵列前后向空间平滑(VA-FBSS)的算法,避免了前后向空间平滑循环MUSIC算法面临的最优时延选择问题并获得了更高的DOA估计精度。同时,与循环前后向线性预测算法相比,VA-FBSS算法在来波方向接近的低信噪比环境下具有更好的DOA估计性能。在此基础上,针对VA-FBSS算法只适用于一维DOA估计的局限,采用双平行均匀线阵将基于虚拟阵列空间平滑的方法推广到了相干循环平稳信号二维DOA估计领域。
     研究了宽带循环平稳信号二维DOA估计技术,在现有基于阵元输出循环自相关的算法基础上,归纳总结出一种基于阵元输出循环互相关的信号处理模型,并提出了相应的宽带信号二维DOA估计算法,进一步提高了DOA估计精度。
Direction of arrival (DOA) estimation techniques have been widely used in many military and civil areas, such as radar, sonar, communication, biological engineering and so on. Although the ordinary spatial spectrum estimation techniques break the Rayleigh Resolution Limit, they do not sufficiently exploit the signals’time domain information. And they usually have some drawbacks in multiple signal processing and low SNR signal processing. With the development of researches, people found that many man-made and natural signals possess the character of cyclostationarity. And, by exploiting the cyclostationarity of the signals, better DOA estimation performances in signal selective direction finding, interference or noise suppression and multiple signal processing can be achieved. Thus, the cyclostationarity-based DOA estimation techniques have been gradually becoming one of the hot research topics in array signal direction finding areas.
     Most of the cyclostationarity-based DOA estimation researches are focused on the one-dimensional (1-D) case. As for the two-dimensional (2-D) case, which is much more required, the existing researches are inadequate, and they commonly suffered from the lag selecting problem. Besides, few researches on the non-uniform array-based 2-D DOA estimation can be found. Considering the above limitations along with the practical environments with coherent signals and wideband signals, the following topics on the cyclostationarity-based DOA estimation techniques are investigated in this dissertation.
     To improve the robustness of the DOA estimation, which is threatened by the lag selecting problem, the ML-CCDM and the SML-CCDM are proposed. Both methods are based on the idea of combing the multiple lag sampling and the aperture extension oriented spatial-time equivalent array constructing. The ML-CCDM utilizes two parallel uniform linear arrays. By exploiting the conjugate cyclic correlations of the sensor outputs at multiple lags, this method not only avoids the optimal lag selecting problem or the 2-D spectrum peak searching, but also obtains a space-time equivalent array with twice the aperture of the real array. Compared with the CCDM, the ML-CCDM achieves better performance in estimation accuracy, noise suppressing and multiple signal processing. Based on the framework of the ML-CCDM, the SML-CCDM not only gets rid of the drawbacks of two parallel geometry arrays, but also obtains a performance which is almost the same as that of the ML-CCDM with fewer sensors.
     By combining the minimum redundancy linear array (MRLA) with the multiple lag sampling-based spatial-time equivalent arrays constructing idea, two sparse arrays along with the corresponding 2-D DOA estimation methods are proposed. These methods extend the application of MRLA to the 2-D DOA estimation of conjugate cyclostationary signals. The two sparse array-based methods not only inherit the merits of ML-CCDM and SML-CCDM separately, but also achieve larger array aperture with the same number of sensors, which also leads to an improved accuracy in DOA estimation. Besides, when compared with the uniform array, the sparse array possesses larger sensor distances. Therefore, the effects of mutual coupling in real-world implementations can be reduced by the above sparse array-based methods.
     By combing the spatial-time equivalent array with the existing decorrelating methods, a VA-FBSS method for DOA estimation of coherent signals is proposed. The VA-FBSS avoids the optimal lag selection problem faced by the FBSS-CMUSIC, and obtains a better performance in accuracy. Besides, when compared with the CFBLP, remarkable improvements in performance can be achieved on the condition of low SNR and relatively closer impinging signals. Considering the VA-FBSS is a 1-D method, the virtual array-based spatial smoothing technique is also extended to the 2-D case.
     Based on the existing cyclic autocorrelation-based method, a cyclic crosscorrelation-based signal processing model along with the corresponding 2-D DOA estimation method for cyclostationary signals is induced. This method improves the accuracy of the DOA estimation.
引文
[1] Viberg M, Krim H. Two decades of array signal processing research: the parametric approach [J]. IEEE Signal Processing Mag., 1996, 13(4): 67~94.
    [2] Haykin S, Reilly J P, Kezys V, Vertatschitsch E. Some aspects of array signal processing [J], IEE Proc. F Radar and Signal Processing, 1992, 139(1): 1~26.
    [3]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [4]刘德树,罗景青,张剑云.空间谱估计及其应用[M].合肥:中国科学技术大学出版社, 1997.
    [5]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社, 2002.
    [6] Winters J H, Salz J, Gitlin R D. The capacity of wireless communication systems can be substantially increased by the use of antenna diversity [C]. Proc. 1st International Conference on Universal Personal Communications (ICUPC-92), Dallas, TX, USA, 1992.
    [7] Chryssomallis M. Smart antennas [J]. IEEE Antennas and Propagation Mag., 2000, 42(3): 129~136.
    [8]刘学斌.智能天线中阵列设计与波达方向估计的研究[D].广州:华南理工大学, 2005.
    [9]汪仪林.利用信号的循环平稳性改善DOA估计性能的研究[D].西安:西安交通大学博士论文, 2001.
    [10] Schmidt R. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. Antennas and Propagation, 1986, 34(3): 276~280.
    [11] Paulraj A, Roy R, Kailath T. A subspace rotation approach to signal parameter estimation [C]. Proc. IEEE, 1986, 74(7): 1044~1045.
    [12] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1989, 37(7): 984~995.
    [13] Barabell A. Improving the resolution performance of eigenstructure-based direction finding algorithms [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-83), Boston, MA, USA, 1983, 8: 336~339.
    [14] Rao B D, Hari K V S. Performance analysis of Root-MUSIC [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1989, 37(12): 1939~1949.
    [15] Rubsamen M, Gershman A B. Performance analysis of root-music-based direction-of-arrival estimation for arbitrary non-uniform array [C]. 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, 2008, 381~385.
    [16] Silvertein S D, Zoltowski M D. The mathematical basis for element and Fourier beam space MUSIC and Root-MUSIC algorithms [J]. Digital signal processing, 1991, 1(4): 1~15.
    [17] Krim H, Forster P, Proakis J G. Operator approach to performance analysis of Root-MUSIC and root min-norm [J]. IEEE Trans. Signal Processing, 1992, 40(7): 1687~1696.
    [18] Zoltowski M D, Kautz G M, Silverstein S D. Beamspace Root-MUSIC [J]. IEEE Trans. Signal Processing, 1993, 41(1): 344~364.
    [19] Zoltowski M D, Silverstein S D, Mathews C P. Beamspace Root-MUSIC for minimum redundancy linear arrays [J]. IEEE Trans. Signal Processing, 1993, 41(7): 2502~2507.
    [20] Ren Q S, Willis A J. Fast Root-MUSIC algorithm [J]. IEE Electronics Letters, 1997, 33(6): 450~451.
    [21]智婉君,严胜刚,李志舜.宽带方位估计的波束域Root-MUSIC算法[J].电子与信息学报, 2002, 24(5): 644~648.
    [22] Tayem N, Naraghi P M. Unitary Root MUSIC and Unitary MUSIC with real-valued rank revealing triangular factorization [C]. Proc. IEEE Military Communications Conference (MILCOM-07), Orlando, FL, USA, 2007, 1~7.
    [23] Kung S, Lo C, Foka R. A Toeplitz approximation approach to coherent source direction finding [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-86), 1986, 11: 193~196.
    [24] C Hui, H Benxiong, D Bin, H Yaoqin. A modified Toeplitz algorithm for DOA estimation of coherent signals [C]. International Symposium on Intelligent Signal Processing and Communication Systems, 2007, 28: 80~83.
    [25] Hu Xiaoqin, Chen Jianwen, Chen hui, Wang Yongliang. Estimation DOAs of the coherent sources based on Toeplitz decorrelation [C]. Congress on Image and Signal Processing, 2008, 5: 54~58.
    [26] Almidfa K, Tsoulos G V, Nix A. Performance analysis of ESPRIT, TLS-ESPRIT and Unitary-ESPRIT algorithms for DOA estimation in a W-CDMA mobile system [C]. Proc. IEE 1st International Conference on 3G Mobile Communication Technologies, London, UK, 2000, 200~203.
    [27] Vasylyshyn V I. Antenna array signal processing with superresolution by 2-D Unitary TLS-ESPRIT with structure weighing [C]. Proc. 4th International Conference on Antenna Theory and Techniques (ICATT-03), 2003, 1: 366- 369.
    [28]殷勤业,邹理和, Newcomb R W.一种高分辨二位信号参量估计方法-波达方向矩阵法[J].通信学报, 1991, 12(4): 1~7.
    [29] Yin Q Y, Newcomb R W, Zou L H. Estimating 2-D angles of arrival via two parallel linear arrays [C]. Proc. IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP-89), 1989, 4: 2803~2806.
    [30]殷勤业.高分辨率波达方向估计[D].西安:西安交通大学, 1989.
    [31] Bohme J. Estimation of source parameters by maximum likelihood and nonlinear regression [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-84), Piscataway, NJ, USA, 1984, 9: 271~274.
    [32] Jaffer A G. Maximum likelihood direction finding of stochastic sources: a separable solution [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-88), New York, NY, USA, 1988, 5: 2893~2896.
    [33] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-88), New York, NY, USA, 1988, 4: 2296~2299.
    [34] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisions [J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38(12): 2140~2150.
    [35] Sheinvald J, Wax M, Weiss A J. On maximum-likelihood localization of coherent signals [J], IEEE Trans. Signal Processing, 1996, 44(10): 2475~2482.
    [36] Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1988, 36(7): 965~979.
    [37] Viberg M, Otteraten B. Sensor array processing based on subspace fitting [J]. IEEE Trans. Signal Processing, 1991, 39(5): 1110~1121.
    [38] Viberg M, Otteraten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting [J], IEEE Trans. Signal Processing, 1991, 39(11): 2436~2449.
    [39] Deli C, Cong Z, Huanzhang L. UCA gain/phase calibration in the presence of multipath based on weighted subspace fitting [C]. Proc. IEEE International Conference on Information and Automation (ICIA-08), Changsha, China, 2008, 1364~1367.
    [40] Gardner W A. Exploiting spectral redundancy in cyclostationary signals [J]. IEEE ASSP Mag., 1991, 8(2): 14~36.
    [41] Gardner W A. An introduction to cyclostationary signals [A]. Cyclostationarity in communications and signal processing, Ch.1, IEEE Press, 1994, 1~99.
    [42] Gardner W A. The spectral correlation theory of cyclostationary time-series [J]. Signal Processing, 1986, 11(1): 13~36.
    [43] Schell S V, Calabretta R A, Gardner W A, Agee B G. Cyclic MUSIC algorithms for signal-selective direction estimation [C]. Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-89), 1989,4(5): 2278~2281.
    [44] Manimohan V B, Fitzgerald W J. Direction estimation using conjugate cyclic cross-correlation: more signals than sensors [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-99), Phoenix, AZ, USA, 1999, 5: 2877~2880.
    [45] Gardner W A. Measurement of spectral correlation [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1986, 34(5): 1111~1123.
    [46] Schell S V. Asymptotic moments of estimated cyclic correlation matrices [J]. IEEE Trans. Signal Processing, 1995, 43(1): 173~180.
    [47] Shrimpton T E, Schell S V. Source enumeration using a signal-selective information theoretic criterion [C]. Proc. IEEE Military Communications Conference (MILCOM-97), Monterey, CA, USA, 1997, 3: 1092~1097.
    [48] Gardner W A, Napolitano A, Paura L. Cyclostationarity: half a century of research [J]. Signal Processing, 2006, 86(4): 639~697.
    [49] Gardner W A, Franks L E. Characterization of cyclostationary random signal process [J]. IEEE Trans. Information Theory, 1975, IT-21 (1): 4~14.
    [50] Gardner W A. Statistical spectral analysis: a nonprobabilistic theory [M]. Englewood Cliffs,NJ:Prentice Hall, 1988.
    [51] Gardner W A. Spectral correlation of modulated signals: part I-analog modulation [J]. IEEE Trans. Communications, 1987, 35(6): 584~594.
    [52] Gardner W A, Brown W, Chih K C. Spectral correlation of modulated signals: part II-digital modulation [J]. IEEE Trans. Communications, 1987, 35(6): 595~601.
    [53]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [54]于宏毅,保铮.平稳过程循环相关处理的有限数据消失特性[J].西安电子科技大学学报, 1999, 26(2): 133~136.
    [55]汪仪林,金梁,姚敏立等.离散白噪声序列循环自相关函数估计的误差分析[J].数据采集与处理, 1999, 14(2): 148~152.
    [56] Gardner W A. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity [J]. Proc. IEEE, 1998, 76(7): 845~847.
    [57] Yan H, Fan H H. Improved cyclic and conjugate cyclic MUSIC [C]. Proc. IEEE Sensor and Multichannel Signal Processing Workshop, 2004, 289~293.
    [58] Huiqin Y, Fan H H. On Improvements of cyclic MUSIC [J]. EURASIP Journal on Applied Signal Processing, 2005, 61~68.
    [59] Charge P, Yide W. A Root-MUSIC-Like direction finding method for cyclostationary signals [J]. EURASIP Journal on Applied Signal Processing, 2005, 69~73.
    [60] Xuebin L, Gang W. Pseudo-snapshot based on forward-backward cycliccorrelation function for narrow-band signals [J]. Journal of Communication and Computer, 2006, 3(7): 64~67.
    [61] Sahmoudi M, Amin M G. Unitary cyclic MUSIC for direction finding in GPS receivers [C]. Proc. 4th IEEE workshop on Sensor Array and Multichannel Processing, Waltham, MA, USA, 2006, 70~73.
    [62]杨延光,黄晓涛,金添,周智敏.利用修正Cyclic MUSIC算法估计循环平稳信号的到达角[J].系统工程与电子技术, 2006, 28(3): 355~358.
    [63]杨延光,黄晓涛,张小义.基于均匀圆阵的循环平稳信号源方位估计[J].现代雷达, 2005, 27(8): 35~42
    [64] Zhigang L, Jinkuan W, Yanbo X. Unitary cyclic ESPRIT-like direction finding [C]. Proc. IEEE Asia-Pacific Microwave Conference (APMC-05), 2005, 3: 4~7.
    [65] Zhigang L, Jinkuan W, Yanbo X. Improving the performance of cyclic ESPRIT via real-valued decomposition [C]. Proc. IEEE International Symposium on Communications and Information Technology (ISCIT-05), 2005, 1: 788~791.
    [66] Tsuji H, Xin J, Yoshimoto S, Sano A. New approach for finding DOA in array antennas using cyclostationarity [C]. Proc. IEEE Wireless Communications Conference (WCC-97), Boulder, CO, USA, 1997, 73~78.
    [67] Xu G, Kailath T. Direction-of-arrival estimation via exploitation of cyclostationarity-a combination of temporal and spatial processing [J]. IEEE Trans. Signal Processing, 1992, 40 (7): 1775~1786.
    [68]陈辉,王永良,皮兴宇.基于信号共轭循环平稳特性的算法研究[J].电子与信息学报, 2004, 26(2): 213~219.
    [69] Hui C, Yongliang W, Buhong W. The pre-processing method based on signal conjugate cyclostationary [C]. Proc. IEEE Antennas and Propagation Society International Symposium, 2003, 3: 280~283.
    [70] Charge P, Yide W. Saillard J. An extended cyclic MUSIC algorithm [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-02), 2002, 3: III-3025~III-3028.
    [71] Charge P, Yide W, Saillard J. An extended cyclic MUSIC algorithm [J]. IEEE Trans. Signal Processing, 2003, 51(7): 1695~1701.
    [72] Yanguang Y, Xiaotao H, Zhimin Z. A new method of direction finding for cyclostationary signal sources with uniform circular array [C]. Proc. 7th International Conference on Signal Processing (ICSP-04), 2004, 1: 431~434.
    [73] Hong J, Shuxun W. 2-D direction finding of cyclostationary signals in the presence of both multiplicative noise and additive noise [C]. Proc. 14th IEEE Personal, Indoor and Mobile Radio Communications (PIMRC-03), 2003, 3: 2393~2396.
    [74]刘若伦,徐景,王树勋.复杂噪声中的二维DOA估计新方法[J].电子学报,2000, 28(12): 94~96.
    [75] Hong J, Shuxun W. Azimuth/elevation estimation for cyclostationary coherent sources using higher order cyclic cumulant [C]. Proc. 14th IEEE Personal, Indoor and Mobile Radio Communications (PIMRC-03), 2003, 3: 2480~ 2484.
    [76] Liang J, Minli Y, Qinye Y. 2-D direction finding of coherent signals via temporo-spatial processing [J]. Journal of Electronics (China), 2000, 17(1): 31~37.
    [77] Liang J, Minli Y, Qinye Y. 2-D DOA estimating of multipath signals by exploitation of cyclostationarity [C]. Proc. Midwest Symposium on Circuits and Systems (MWSCAS-98), Notre Dame, IN, USA, 1998, 608~611.
    [78]金梁.基于时空特征结构的阵列信号处理与智能天线技术研究[D].西安:西安交通大学, 1999.
    [79] Minli Y, Qinye Y. Signal selective 2-D direction finding for non-Gaussian cyclostationary sources [C]. Proc. IEEE International Symposium on Circuits and Systems (ISCAS-99), Orlando, FL, USA, 1999, 4: 451~454.
    [80]姚敏立,蒋伯峰,殷勤业.基于高阶循环平稳特性的二维波达方向估计算法[J].信号处理, 1999, 15(4): 346~351.
    [81] Hoctor R T, Kassam S A. Array redundancy for active line arrays [J]. IEEE Trans. Image Processing, 1996, 5(7): 1179~1183.
    [82] Gelli G, Izzo L. Minimum-redundancy linear arrays for cyclostationarity-based source location [J]. IEEE Trans. Signal Processing, 1997, 45(10): 2605~2608.
    [83]姚敏立,殷勤业,汪仪林.基于最小冗余线阵的共轭循环ESPRIT算法[J].电子科学学刊, 1999, 21(5): 577~584.
    [84] Minli Y, Liang J, Qinye Y. Selective direction finding for cyclostationary signals by exploitation of new array configuration [C]. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-99), Phoenix, AZ, USA, 1999, 5: 2885~2888.
    [85] Weimin J, Minli Y, Jianshe S. Spectral correlation MUSIC algorithm for cyclostationary signals by exploitation of new array configuration [C]. Proc. IEEE International Symposium on Circuits and Systems (ISCAS-05), 2005, 4: 3159~3162.
    [86] Hong J, Shuxun W. Direction-finding of cyclostationary sources with minimum-redundancy linear arrays by fourth-order cyclic cumulants [C]. Proc. IEEE International Conference on Communication Technology Proceedings (ICCT-03), 2003, 2: 1835~1838.
    [87] Zhigang L, Jinkuan W. Unitary cyclic MUSIC algorithm in a multipath environment [C]. Proc. EUSIPCO 2004, Vienna, Austria, 2004, 2155~2158.
    [88] Xin J, Tsuji H, Hase Y, Sano A. Cyclic Direction Finding of Coherent Signals inArray Processing [J]. IEICE Trans. Fundamentals, 1998, E81-A, 1560-1569.
    [89] Zhigang L, Jinkuan W, Fuli W. Unitary solution to coherent cyclic DOA estimation problem [C]. Proc. 8th International Conference on Signal Processing (ICSP-06), Beijing, China, 2006, 1.
    [90] Hong J, Shuxun W, Haijun L. Multipath direction finding in both multiplicative noise and additive noise environments via exploitation of cyclostationarity [C]. Proc. IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication. 2004, 2: 765~768.
    [91] Yungting L, Juhong L. Direction-finding methods for cyclostationary signals in the presence of coherent sources [J]. IEEE Trans. Antennas and Propagation. 2001, 49(12): 1821~1826.
    [92] Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1985, 33(4): 806~811.
    [93] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1989, 37(1): 8~15.
    [94] Juhong L, Yisheng L. 2-D Direction finding for coherent Cyclostationary Signals under random array position errors [J]. IEICE Trans. Fundamentals, 2005, E88-A(8): 2165-2174.
    [95] Xin J, Tsuji H, Sano A. Higher-order cyclostationarity based direction finding of coherent sources [C]. Proc. 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC-99), Annapolis, MD, USA, 1999, 358~361.
    [96] Jingmin X, Sano A. Linear prediction approach to direction estimation of cyclostationary signals in multipath environment [J]. IEEE Trans. Signal Processing, 2001, 49(4): 710~720.
    [97] Jingmin X, Sano A. Directions-of-arrival estimation of cyclostationary signals in multipath propagation environment [C]. Proc. 11th IEEE Signal Processing Workshop on Statistical Signal Processing, Singapore , 2001, 524~527.
    [98] Jingmin X, Tsuji H, Ohmori H, Sano, A. Directions-of-arrival tracking of coherent cyclostationary signals without eigendecomposition [C]. Proc. IEEE 3rd Signal Processing Workshop on Signal Processing Advances in Wireless Communications (SPAWC-01), Taiwan, China, 2001, 318~321.
    [99] Hong J, Shuxun W, Haijun L. Forward-backward linear prediction to direction finding of coherent sources using higher-order cyclic statistics [C]. Proc. IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication, 2004, 2: 737~740.
    [100] Hong J, Shuxun W, Haijun L. An improved approach for higher-ordercyclostationarity based direction-finding of coherent sources using forward-backward linear prediction [C]. Proc. IEEE 5th Workshop on Signal Processing Advances in Wireless Communications (SPAWC-04), 2004, 576~580.
    [101] Hong J, Shuxun W, Haijun L. An effective direction estimation algorithm in multipath environment based on fourth-order cyclic cumulants [C]. Proc. IEEE 5th Workshop on Signal Processing Advances in Wireless Communications (SPAWC-04), 2004, 263~267.
    [102] Haijun L, Shuxun W, Hong J. A new approach of higher-order cyclostationarity based direction estimation of coherent narrow-band signals [C]. Proc. IEEE 7th International Conference on Signal Processing (ICSP-04), 2004, 1: 470~474.
    [103] Haijun L, Shuxun W, Hong J. Blind DOA estimation using higher order cyclostationarity and linear prediction in multipath environment [C]. Proc. IEEE 7th International Conference on Signal Processing (ICSP-04), 2004, 1: 483~486.
    [104] Hong J, Shuxun W. On temporal smoothing for two-dimensional direction-of-arrival estimation of coherent signals in multiplicative and additive noises environment [C]. Proc. 2005 Asia-Pacific Conference on Communications, Perth, WA, 2005, 119~123.
    [105] Hong J, Shuxun W. Azimuth and elevation estimation for multipath signals exploiting cyclostationarity and temporal smoothing technology [C]. Proc. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE-05), 2005, 2: 1066~1070.
    [106] Qian Z, Lan W, Yan W, Jiacai H. Cyclostationarity-based DOA and polarization estimation for multipath signals with a uniform linear array of electromagnetic vector sensors [C]. Proc. IEEE 5th International Conference on Machine Learing and Cybernetics (ICMLC-05), Guangzhou, China, 2005, 2047~2052.
    [107]黄家才,石要武,陶建武.多径循环平稳信号二维波达方向估计-极化域平滑法[J].电子与信息学报, 2007, 29(5): 1110~1114.
    [108]谢小华,石要武,黄家才.宽带相干信号二维波达方向估计新算法[J].系统仿真学报. 2007, 19(18): 4348~4352.
    [109]庄钊文,孝顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社, 1999.
    [110] Jiacai H, Yaowu S, Hianwu T. ESPRIT-based direction finding and polarization estimation for multisource with a uniform circular array of trimmed vector sensors [C]. Proc. 7th International Conference on Electronic Measurement & Instruments, Beijing, China, 2005, 3: 642~647.
    [111] Tuan D H, Russer P. Signal processing for wideband smart antenna array applications [J]. IEEE Microware Mag., 2004, 5(1): 57~67.
    [112] Liang J, Minli Y, Qinye Y. A novel method for 2-D spatial spectrum estimation of wideband signals [C]. Proc. IEEE 4th International Conference on Signal Processing Proceedings (ICSP-98), Beijing, China, 1998, 1: 397~400.
    [113] Liang J, Wenjie W, Qinye Y. Two-dimensional direction finding for wideband signals using simplified array configuration [C]. Proc. IEEE International Symposium on Circuits and Systems (ISCAS-99), Orlando, FL, USA, 1999, 3: 78~81.
    [114] Allam M, Moghaddamjoo A. Two-dimensional DFT projection for wideband direction-of-arrival estimation [J]. IEEE Trans. Signal Processing, 1995, 43(7): 1728~1732.
    [115] Valaee S, Kabal P. Wideband array processing using a two-sided correlation transformation [J]. IEEE Trans. Signal Processing, 1995, 43(1): 160~172.
    [116] Wylie M P, Roy S. Virtual array processing using wideband cyclostationary signals [C]. Proc. IEEE 29th Asilomar Conference on Signals, Systems and Computers, 1995, 2: 506~510.
    [117] Guanghan X, Kailath T. Array signal processing via exploitation of spectral correlation-a combination of temporal and spatial processing [C]. Proc. 23rd Asilomar Conference on Signals, Systems and Computers, 1989, 2: 945~949.
    [118] Liang J, Qinye Y, Minli Y. Estimating spatial spectrum with generalized spectral-correlationsignal subspace fitting [C]. Proc. IEEE International Symposium on Circuits and Systems (ISCAS-00), Geneva, Switzerland, 2000, 4: 577~580.
    [119]黄知涛,王炜华,姜文利,周一宇.一种基于循环互相关的非相干源信号方向估计方法[J].通信学报, 2003, 24(2): 108~113.
    [120] Zhitao H, Yiyu Z, Wenli J. Angle-of-arrival estimation based on weighted cyclic spectrum [C]. Proc. CIE International Conference on Radar (ICR-01), Beijing, China, 2001, 1108~1111.
    [121] Huiqin Y, Fan H H. Extended wideband cyclic MUSIC [C]. Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2004, 318-322.
    [122] Huiqin Y, Fan H H. Wideband cyclic MUSIC algorithms [J]. Signal Processing, 2005, 85(3): 643~649.
    [123] Liang J, Qinye Y, Bofeng J. Direction finding of wideband signals via spatial-temporal processing in wireless communication [C]. Proc. IEEE International Symposium on Circuits and Systems (ISCAS-00), Geneva, Switzerland, 2000, II: 81~84.
    [124]陈德莉.波达方向估计中阵列误差校正技术研究[D].长沙:国防科学技术大学, 2008.
    [125] Prabhakar S N. Sensor array signal processing [M]. CRC Press, 2001.
    [126]黄知涛.循环平稳信号处理及其应用研究[M].长沙:国防科技大学出版社, 2007.
    [127]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [128]沈凤麟,叶中付,钱玉美.信号统计分析与处理[M].合肥:中国科技大学出版社, 2001.
    [129]黄可生.宽带信号阵列高分辨处理技术研究[D].长沙:国防科学技术大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700