瞬态极化雷达测量、检测与抗干技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用极化信息提高雷达的检测、抗干扰和识别等能力是当前新体制雷达发展的趋势之一。瞬态极化概念及相关理论的提出为时变、宽带和动态极化信息的表征与处理提供了有力的理论工具,促进了全极化新体制雷达的研制和发展。采用瞬态极化信息处理理论和技术进行信息处理的同时全极化测量体制雷达,可称为瞬态极化雷达。由于瞬态极化雷达可通过单次观测获取目标极化散射矩阵的全部信息,且可对极化散射矩阵进行瞬态极化信息处理,因此其极化信息获取与处理能力更强,与传统极化雷达相比在目标检测、抗干扰和目标识别等方面具有较大优势。在瞬态极化雷达系统研制和发展需求的牵引下,本文对极化测量、极化校准、极化检测和极化抗干扰等瞬态极化雷达关键技术进行了研究,并通过瞬态极化雷达实验系统开展的内、外场试验对部分研究成果进行了验证。
     第一章,概述了雷达极化学的研究内容和发展历程,以及极化雷达测量体制和关键技术的研究现状和发展趋势;介绍了瞬态极化雷达的概念,归纳了瞬态极化雷达系统发展和应用中待解决的部分技术问题;简要阐述了论文的主要研究内容。
     第二章,研究了瞬态极化雷达的目标极化散射特性测量问题。针对极化雷达研制阶段发射信号的波形选择和参数设计问题,提出了基于瞬态极化模糊函数矩阵的发射信号极化测量性能评估方法,为极化雷达发射信号的波形选择和参数设计提供了理论基础;针对传统极化测量方法对发射信号的正交性约束在工程中难以实现的问题,提出了基于瞬态极化模糊函数矩阵的极化测量新方法,有效消除了因发射信号非正交性引入的测量误差;最后介绍了瞬态极化模糊函数矩阵的参数估计方法。
     第三章,研究了瞬态极化雷达的测量校准问题。针对传统极化校准方法忽略天线空域极化特性、工程实施难度较大等缺陷,提出了基于金属球和标准信号源的极化校准新方法,在充分考虑天线空域极化特性的前提下实现了极化测量校准,降低了校准实施难度,提高了校准精度;针对极化雷达天线空域极化特性引入的与来波极化相关的测向误差,研究了测向误差与极化测量误差间的耦合关系,发现了该耦合误差的产生机理,并提出了相应的误差消除方法。
     第四章,研究了瞬态极化雷达的目标检测问题。针对经典极化检测算法假定极化雷达接收信号对应的目标极化散射矩阵测量值满足互易性,而实际接收信号会因天线空域极化特性产生互易性偏离现象的问题,在考虑天线空域极化特性影响的前提下,推导了高斯噪声条件下确定性目标的最佳检测算法,提出了相应的准最佳极化检测实现方法,研究了高斯噪声条件下起伏目标、非高斯噪声条件下确定性目标的最佳极化检测方法,利用非互易性条件下的交叉极化信息提高了极化雷达的目标检测性能。
     第五章,研究了瞬态极化雷达的抗干扰问题。针对干扰极化变化造成传统极化抗干扰方法性能下降的问题,提出了瞬态极化滤波方法,实现了目标回波时、频域内干扰信号的极化检测、估计和抑制,提高了变极化干扰的抑制性能;针对极化周期调制干扰,以弹载干扰机为研究对象,提出了干扰极化跟踪滤波方法,与传统的固定极化滤波器相比具有更好的极化抑制性能;针对具备目标极化散射矩阵模拟能力的全极化复杂调制假目标干扰,提出了相应的假目标极化鉴别方法,提高了极化雷达的假目标鉴别能力。
As one of the development tendencies of current new radar system, the polarizationinformation is used to improve the radar abilities, such as detection, anti-jamming andrecognition, etc. The conception and theory of instantaneous polarization provides a pow-erful theory tool to represent and process the variable, wideband and dynamic polarizationinformation. It also motivates the manufacture and development of new full-polarimetricradar system. The simultaneous full-polarization measurement radar, which uses the in-stantaneous polarization theory and technology to process the information, can be calledinstantaneous polarization radar (IPR). Because the IPR can achieve the measurment ofentire polarization scattering matrix (PSM) through one observation and process the PSMusing instantaneous polarization theory, it is more powerful in measurement and process-ing of the polarizatoin information. Therefore, it has the obvious advantage in target de-tection, anti-jamming and target reorganization comparing with traditional polarimetricradar. Motivated by the development of the IPR system, this dissertation focused on themethodsofpolarimetricmeasurement,polarimetriccalibration,polarimetricdetectionandpolarimetric interference suppression. Part of the research results was testified by the out-door tests.
     Chapter 1 summarizes the development of the polarimetric radar theory, the polar-ization measurement system and the key techniques of polarimetric radar. The conceptof IPR is given; the unresolved problems in the IPR development are listed. The majorresearch topics of this dissertation are summarized.
     In Chapter 2, the PSM measurement method for IPR is studied. To resolve the prob-lem of signal selection and parameter design of IPR’s transmitting signals, the evaluationmethodofPSMmeasurementperformanceofthetransmittingsignalsisprovidedbasedonthe instantaneous polarimetric ambiguity function matrix (IP-AFM), which provides thetheory foundation of the signal selection and parameter design for polarimetric radar. Tosuppress the measurement error that is produced by the cross-correlation between twoorthogonally polarized transmitting signals exists in the traditional PSM measurementmethod, the new PSM measurement method based on IP-AFM is proposed. To achievethe new PSM measurement, the IP-AFM estimation method is introduced.
     In Chapter 3, the calibration method for IPR is studied. Because the spatial polar-ization characteristics of antenna are neglected by the traditional polarimetric calibrationmethod, the new polarimetric calibration methods based on mental sphere or standard signal transmitter are introduced. With consideration of the spatial polarization charac-teristics of antenna, the PSM measurement error is calibrated by the new methods. Thecalibration difficulties are reduced, the calibration precision is improved. By studying theangle of arriving (AOA) measurement error, which is associated with the polarization ofthe received signals, the causation of the coupling measurement error between polariza-tion and AOA is analyzed. The calibration method for this coupling measurement error isintroduced.
     In Chapter 4, the target detection method for IPR is studied. The PSM measure-ment result of the received signals is assumed to be reciprocity in the traditional detectionmethod. Because of the influence of the spatial polarization characteristics of antenna,this assumption can not be satisfied in practice. With consideration of this influence, theoptimal polarimetric detection algorithm of stable target in Gaussian noise is studied, theengineering realization method of this algorithm is given. The optimal detection methodsof fluctuant target in Gaussian noise and stable target in non-Gaussian noise are also stud-ied. The detection performance is improved because of the usage of the cross-polarizationsignals under the non-reciprocity assumption.
     In Chapter5,theanti-jammingmethodforIPRisstudied. Toresolvetheproblemthatthe performance of traditional polarimetric filter is dropped when the jamming polariza-tion is changing, the instantaneous polarimetric filter (InPol-filter) is introduced. ThroughInPol-filter, theinterferencethatpresentsinthetime-frequencyareaofthetargetbackscat-tering can be detected and suppressed automatically after the polarization estimation. Andthesuppressionperformanceofthevariablypolarizedjammingisimproved. ThePSMes-timation method based on the outputs processed by polarimetric filter is given. Take thejamming in midcourse of missile trajectory as the typical example, the polarization track-ing filter to suppress the polarization modulation jamming is introduced. The jammingsuppression performance is improved by the polarization tracking filter comparing withthe traditional polarization filter with invariable receiving polarization. The decoy distin-guishmethodoffull-polarimetricmodulationdecoyarealsostudied,thedecoydistinguishability of IPR is improved.
引文
[1]张直中.雷达信号的选择与处理[M].北京:国防工业出版社, 1979.
    [2]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社, 1999.
    [3] Giuli D. Polarization diversity in radars[J]. Proceeding of the IEEE, 1986, 74(2):245–269.
    [4]赵飞.美国防空雷达发展现状[J].地面防空武器, 2006, 1(1):45–50.
    [5] Zebker H A, van Zyl J J. Imaging radar polarimetry: a review[J]. Proc. of IEEE,1991, 79(11):1583–1606.
    [6]杨运甫,陶然,王越, et al.极化雷达系统的原理与关键技术[J].雷达科学与技术, 2004, 2(1):1–6.
    [7] Henry J C. The Lincoln Laboratory 35 GHz airborne SAR imaging radar system[C]//Proceeding of Telesystems Conference. Atlanta, USA, 1991:353–358.
    [8] Titin-Schnaider C, Attia S. Calibration of the MERIC full-polarimetric radar: the-ory and implementation[J]. Aerospace Science and Technology, 2003(7):633–640.
    [9] Dreuillet P, Paillou P, Cantalloube H. P band data collection and investigationsutilizing the RAMSES SAR facility[C]//IGARSS. 2003:4262–4264.
    [10] EnderH,JoachimG. Experimentalresultsachievedwiththeairbornemulti-channelSAR system AER-II[C]//EUSAR. 1998:315–318.
    [11] Dzenkevich A V, Vostrov E A, Melnikov L J. IMARC-multifrequency multipolar-ization airborne SAR system[C]//Radar 97. Edinburgh, UK, 1997:491–495.
    [12] Goodman R, Tummela S, Carrara W. Issues in ultra-wideband, wide beam SARimage formation[C]//IEEE Intemational Radar Conference. 1995:470–485.
    [13] Efard R, Cohen M, Sjoberg E S. Advanced intrapulse polarization agile radar neardeployment[J]. Microwave System, 1984, News-14.
    [14] Cohen M N, Sjoberg E S. Intrapulse polarization agile radar. Advances in radartechniques[M]. Peter Peregrinus Ltd, 1985.
    [15]张国毅.高频地波雷达极化抗干扰技术研究[D].哈尔滨:哈尔滨工业大学研究生院, 2002.
    [16]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [17] Barbur G. Processing of Dual-Orthogonal CW Polarimetric Radar Signals[D].Delft, Netherland: Technology University Delft, 2009.
    [18]曾勇虎.极化雷达时频分析与目标识别的研究[D].长沙:国防科学技术大学研究生院, 2004.
    [19]王雪松.宽带极化信息处理的研究[M].长沙:国防科技大学, 1999.
    [20]冯德军,王雪松,肖顺平, et al.全极化高分辨雷达距离像统计识别方法[J].电子与信息学报, 2006, 28(3):517–521.
    [21]徐振海,王雪松,周颖.基于PWF融合的高分辨极化雷达目标检测算法[J].电子学报, 2001, 29(12):1620–1623.
    [22]徐振海,王雪松,施龙飞, et al.信号最优极化滤波及性能分析[J].电子信息学报, 2006, 28(3):498–501.
    [23]曾勇虎,王雪松,肖顺平, et al.高分辨极化雷达检测中极化滤波器的选择[J].系统工程与电子技术, 2005, 27(2):201–287.
    [24]李永祯,王雪松,徐振海.基于强散射点径向积累的高分辨极化目标检测研究[J].电子学报, 2001, 29(3):307–310.
    [25]李永祯,王雪松,李军.基于Stokes矢量的高分辨极化检测方法[J].现代雷达,2001, 23(1):52–58.
    [26]李永祯,王雪松,肖顺平, et al.基于IPPV的真假目标极化鉴别算法[J].现代雷达, 2004, 26(9):38–42.
    [27] Melvin L S, Banner G P. Radars for the detection and tracking of ballistic missiles,satellites, and planets[J]. Lincoln Laboratory Journal, 2000, 12(2):217–244.
    [28] Giuli D, Fossi M, Facheris L. Radar Target Scattering Matrix MeasurementThrough Orthogonal Siganls[J]. IEE Proceedings-F, 1993, 140(4):233–242.
    [29]李永祯.瞬态极化统计特性及处理的研究[D].长沙:国防科学技术大学研究生院, 2004.
    [30]刘涛.瞬态极化统计理论及应用研究[D].长沙:国防科学技术大学研究生院,2007.
    [31]代大海. POLSAR图像模拟及目标检测与分类方法研究[D].长沙:国防科学技术大学研究生院, 2003.
    [32] BoernerWM. Recentadvancesinextra-wide-bandpolarimetry,interferometryandpolarimetricinterferometryinsyntheticapertureremotesensinganditsapplications[J]. IEE Proc. Radar Sonar Navig., 2003, 150(3):113–124.
    [33] Bartholin R. Experiments with the double refracting Iceland crystal which led tothe discovery of a marvelous and strange refraction[J]. On Physical Hypotheses,1669.
    [34] Sinclair G. The transmission and reception of elliptically polarized radar waves[J].Proc. IRE-, 1950(38):148–151.
    [35] Kennaugh E M. Polariztion properties of radar reflectors[D]. Columbus: Deptart-ment Of Electronic Engineering, The Ohio State University, 1952.
    [36] Gent H. Elliptically Polarized Waves and Theire Reflectors From Radar Targets: aTheoreticalAnalysis[R]. Chelenham,England,UK:TelecommunicationsResearchEstablishment, 1954.
    [37] Deschamps G A. Part 2: Geometrical Reprsentation of the Polarization State of aPlane EM Wave[J]. Proceeding IRE, 1951, 39:540–544.
    [38] Giuli D. Homopolar and Heteropolar Generalized Ambituity Function in Polari-metricRadars.DirectandInverseMethodsinRadarPolarimetry,PartI[M]. Nether-lands: Kluwer Academic Publishers, 1992: 1367–1388.
    [39] Ingwersen P A, Lemnios W Z. Radars for Ballistic Missile Defense Research[J].Lincoln Laboratory Journal, 2000, 12(2):245–266.
    [40] McCormicGC. Anantennaforobtainingpolarization-relateddatawiththeAlbertahail radar[C]//Pro.13th Radar Meteor Conf. 1968:340–347.
    [41] Copeland J D. Radar target classification by polarization properties[J]. Proc. IRE-48, 1960:1290 1296.
    [42] HuynenJR. StudyonBallistic-MissileSortingBasedonRadarCross-SectionData[R]. Palo Alto, CA: Lockheed Aircraft Corp., Missiles and Space Division, 1960.
    [43] Huynen J R. A new approach to radar cross-section measurements[C]//IRE Inter-national Conv. 1962.
    [44] Brickel S H. Some invariant properties of the polarization scattering matrix[J].Proc. IEEE, 1965.
    [45] Kuhl R F. Object Identification by Multiple Observation of the Scattering Matrix[J]. Proceeding of the IEEE, 1965:1110–1115.
    [46] Lowenschuss O. Scattering matrix application[J]. Proc.IEEE, 1965:988–992.
    [47] Huynen J R. Phenomenological Theory of Radar Targets[D]. Netherlands: Tech-nical University Delft, 1970.
    [48] Collier C G. Radar Meteorology in United Kingdom[C]//Proceeding on RadarMeteorology. 1984.
    [49] J J van Zyl e a. Imaging radar polarization signatures: theory and observation[J].Radio Science, 1987, 22(4):529–543.
    [50] Zebker H A, van Zyl J J, Held D N. Imaging radar polarimetry from wave synthesis[J]. Journal of Geophysical Research, 1987(92):683–701.
    [51] Foo B Y, Boerner W M. Basic monostatic polarimetric broad band target scatter-ing analysis required for high resolution polarimetric target downrange crossrangeimaging of airborne scatterers[J]. Measurement, processing and analysis of radartarget signatures, 1985, Z(OSV-ESL).
    [52] Barnes R M. Antenna Polarization Calibration Using In-scene Reflectors[C]//Proc.1986 DARPA Interservice Millimeter Wave Symp. 1986.
    [53] vanZylJJ. Unsupervisedclassificationofscatteringbehaviorusingradarpolarime-try data[J]. IEEE Trans. on GRS, 1989, 27(1):36–45.
    [54] Boerner W M, Foo B Y. Recent advances of the direct and inverse methods in radarpolarimetry: extensionofthephysicalopticsinversescatteringtheory[C]//Proceed-ing of the 2nd International Symposium on Antennas and EM Theory. Shanghai,1989.
    [55] Poelman A J. On using orthogonally polarized noncoherent receiving channels todetect target echoes in Gaussian noise[J]. IEEE Trans. on AES, 1975, 11:660–663.
    [56] Nathanson F E. Adaptive circular polarization[C]//IEEE International Radar Con-ference. 1975:221–225.
    [57] Poelman A J. Cross-correlation of orthogonally polarized backscatter components[J]. IEEE Trans. on AES, 1976, 12:674–682.
    [58] Giuli D, Fossi M, Gheraadelli M. A technique for adaptive polarization filtering inradars[C]//Proceeding of IEEE International Radar Conference. Arlingtion, USA,1985:213–219.
    [59] van Zyl J J. On the importance of polarization in radar scattering problems[D].Pasadena, CA: California Institute of Technology, 1986.
    [60] van Zyl J J, Pages C H, Elachi C. On the optimum polarizations of incoherentlyreflected waves[J]. IEEE Trans. on AP, 1987, 35(7):818–824.
    [61] Kostinski A B, James B D, Boerner W M. On the optimal reception of partially po-larized waves[C]//International Symposium on Radio Propagation. Beijing, 1988.
    [62] Mese E D, Giuli D. Detection Probability of a Partially Fluctuating Target[J]. Pro-ceeding of IEEE, 1984(131):179–182.
    [63] Horn R. The DLR Airborne SAR Project E-SAR[C]//Proceedings of the Interna-tional Geoscience and Remote Sensing Symposium. New York, 1996:1624–1628.
    [64] Cloude S R, Papathanassiou K P. Polarimetric SAR Interferometry[J]. IEEE Trans.on GRS, 1998, 36(5):1551–1565.
    [65] ScheiberR,ReigberA,PapathanassiouKP,etal. OverviewofInterferometricDataAcquisition and Processing Modes of the Experimental Airborne SAR System ofDLR[C]//IGARSS’99, Proceedings of the International Geoscience and RemoteSensing Symposium. Hamburg, Germany, 1999.
    [66] Christensen E L, Dall J. EMISAR: a Dual-Frequency Polarimetric Airborne SAR[C]//Geoscience and Remote Sensing Symposium. 2002:1711–1713.
    [67] Sharay Y, Naftaly U. TECSAR: Design Considerations and Programme Status[J].IEE Proceeding of Radar Sonar and Navigation, 2006, 153(2):117–121.
    [68] Yamaguchi Y, Yajima Y, Yamada H. A Four-Component Decomposition of POL-SAR Images Based on the Coherency Matrix[J]. IEEE GRS Letters, 2006, 3(3):292–296.
    [69]吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报, 2007, 29(5):1258–1262.
    [70] Giul D, Facheris L, Fossi M. Simultaneous scattering matrix measurement throughsignal coding[C]//Proceedings of IEEE 1990 International Radar Conference. Ar-lington, VA, USA, 1990:258–262.
    [71]王雪松,王剑,王涛.雷达目标极化散射矩阵的瞬时测量方法[J].电子学报,2006, 34(6):1020–1025.
    [72]施龙飞.雷达极化抗干扰技术研究[D].长沙:国防科学技术大学研究生院,2007.
    [73] Chang Y, Wang X, Li Y, et al. The signal selection and processing method forpolarization measurement radar[J]. Science in China Series F., 2009, 52(10):1296–1304.
    [74] Petersen W A, Knupp K, Walters J, et al. The UAH-NSSTC/WHNT ARMORC-band Dual-polarimetric Radar: A Unique Collaboration in Research, Educaitonand Technology Transfer[C]//AMS 32nd Conference on Radar Meteorology. Al-buqurque, NM, 2005.
    [75] Bolen S M, Chandrasekar V. Quantitative Cross Validation of Space-Based andGround Based Radar Observations[J]. Journal of Applied Meteorology, 2000, 39(39):2071–2079.
    [76] Brunkow D A, George J, Bringi V N, et al. Recent Data System and AntennaUpgrades to the CSU-CHILL Radar[C]//AMS 32nd Conference on Radar Meteo-rology. Albuqurque, NM, 2005.
    [77] KrasnovOA,LigthartLP,ZhijianL,etal. ThePARSAX-fullpolarimetricFMCWradar with dual-orthogonal signals[C]//Radar Conference. Amsterdam, 2008:84–87.
    [78] Xue-song W, Yongzhen L, Huanyao D, et al. Research on Instantaneous Polariza-tion Radar System and External Experiment[J]. Chinese Science Bulletin, 2010, 55(15):1560–1567.
    [79] Chamberlain N F, Walton E K, Garber F D. Radar target identification of aircraftusing polarization diverse features[J]. IEEE Trans. on AES, 1991, 27(1):58–67.
    [80] PottierE. Onradarfullpolarimetrictargetdecompositiontheoremswithapplicationto classification and identification of real target cross section[C]//Intil Conf. OnRadar. Paris, 1994.
    [81] Cloude S R, Pottier E. Anentropy basedclassification scheme for land applicationsof polarimetric SAR[J]. IEEE Trans. on GRS, 1997, 35(1):68–78.
    [82] Akyildiz Y. Scattering center model for SAR imagery[J]. SPIE Proc., 1999,3869:76–85.
    [83] A J Bennett e. The use of high resolution polarimetric SAR for automatic targetrecognition[J]. SPIE Proc., 2002, 4727:146–153.
    [84] Qong M. A new scattering Mechanism enhencement scheme for polarimetric SARimages[J]. IEEE Trans. on GRS, 2002, 40(12):2582–2592.
    [85] Alfano G, Maio A D, Farina A. Model-based adaptive detection of range-spreadtargets[J]. IEE Proc.-Radar Sonar Naving., 2004, 151(1):2–10.
    [86] Yang J, Dong G W, Peng Y N. Generalized Optimization of Polarimetric Contrast.Enhancement[J]. IEEE Trans. on GRS, 2004, 42(3):171–174.
    [87]代大海.极化雷达成像及目标特征提取研究[D].长沙:国防科学技术大学研究生院, 2008.
    [88]周晓光.极化SAR图像分类方法研究[D].国防科学技术大学研究生院, 2008.
    [89]徐牧.极化SAR图像人造目标提取与几何结构反演研究[D].长沙:国防科学技术大学研究生院, 2008.
    [90]李永祯,王雪松,李金梁, et al.弹道导弹目标的瞬态极化识别[J].应用科学学报, 2005, 23(6):586–590.
    [91]李永祯,肖顺平,王雪松, et al.基于ISVS的微弱信号检测[J].电子学报, 2005,33(6):1028–1031.
    [92]李永祯,肖顺平,王雪松, et al.地基防御雷达的有源假目标极化鉴别能[J].系统工程与电子技术, 2005, 27(7):1164–1168.
    [93] Davidovitz M, Boerner W M. Extension of Kennaugh’s Optimal Polarization Con-cept to the Asymmetric Matrix Case[J]. IEEE Trans. on AP, 1986, 34(4):569–574.
    [94] Guissard A. Mueller and Kennaugh matrices in radar polarimetry[J]. IEEE Trans.on GRS, 1994, 32(3):590–597.
    [95]庄钊文.雷达目标频域极化域目标识别的研究[D].北京:北京理工大学电子工程系, 1989.
    [96]杜耀惟,张强,何卫国.雷达目标极化特性及其在反隐身中的应用[R].信息产业部第十四研究所, 1996.
    [97] FossiM,GherardelliM,GirrninoP,etal. ExperimentalResultsofDual-polarizationBehaviour of Ground Clutter[C]//Record of CIE 1986 International Conference onRadar. Nanjing, 1986.
    [98] Giuli D, Fossi M, Gherardelli M. Polarization Behavior of Ground Clutter DuringDwell Time[J]. IEE Proceedings-F, 1991, 138(3):211–217.
    [99]何松华.高距离分辨率毫米波雷达目标识别的理论与应用[D].长沙:国防科学技术大学研究生院, 1993.
    [100]肖顺平.宽带极化雷达目标识别的理论与应用[D].长沙:国防科学技术大学研究生院, 1995.
    [101] Cloude S R, Pottier E. A review of target decomposition theorems in radar po-larimetry[J]. IEEE Trans. on GRS, 1996, 34(2):498–517.
    [102] Firooz Sadjadi e. New experiments in the use of radar polarimetry for improvingtarget recognition performance[J]. SPIE Proc., 1997, 3069:368–374.
    [103] Novak L M, Halversen S D. Effects of polarization and resolution on SAR ATR[J].IEEE Trans. on AES, 1997, 33(1):102–116.
    [104] Unal M H, Ligthart L P. Decomposition theorems applied to random and stationaryradar targets[J]. Progress in Electromagnetics Research, 1998, PIER 18:45–66.
    [105] Dong Y, Forster B C, Ticehurst C. A new decomposition of radar polarizationsignatures[J]. IEEE Trans. on GRS, 1998, 36(3):933–939.
    [106] Firooz Sadjadi e. Improved target classification using optimum polarimetric SARsignatures[J]. IEEE Trans. on AES, 2002, 38(1):38–49.
    [107] Krogager E. New Decomposition of the Radar Target Scattering Matrix[J]. Elec-tronics Letters, 1990, 26(18):1525–1527.
    [108] Cameron W L, Lenng L K. Feature motivated polarization scattering matrix de-composition[C]//IEEE International Conference On Radar. 1990.
    [109] Yang J, Peng Y N, Lin S M. Similarity Between Two Scattering Matrices[J]. Elec-tronics Letters, 2001, 37(3):193–194.
    [110] Holm W A, Barnes R M. On radar polarization mixed target state decompositiontechniques[C]//IEEE National Radar Conference. 1988:249–254.
    [111] Freeman A, Durden S L. A Three-component Scattering Model for PolarimetricSAR Data[J]. IEEE Trans. on GRS, 1998, 36(3):963–973.
    [112] Lee J S, Grunes M, Ainsworth T. Unsupervised classification using polarimetricdecomposition and the complex Wishart classifier[J]. IEEE Trans. on GRS, 1999,37(5):2249–2258.
    [113] Lee J S, Grunes M R, Pottier E. Unsupervised Terrain Classification PreservingPolarimetric Scattering Characteristics[J]. IEEE Trans. on GRS, 2004, 42(4):722–731.
    [114] Mott H. Polarization in Antennas and Radar[M]. New York: Wiley-Interscience,1986.
    [115] Ludwig A C. The Definition of Cross Polarization[J]. IEEE Trans. on AP, 1973(21):116–119.
    [116] WatsonPA,ArbabiM. CrosspolarizationandDiscrimination[J]. ElectronicsLetter,1973, 9(22):516–517.
    [117] Jacobsen J. On the cross polarization of asymmetric reflector antennas for satelliteapplications[J]. IEEE Trans. on AP, 1977, 25(2):286–283.
    [118] Kildal P S. A small dipole-fed resonant reflector antenna with high efficiency, lowcross polarization, and low sidelobes[J]. IEEE Trans. on AP, 1985, 33(12):1386–1391.
    [119] Kildal P S. The hat feed: A dual-mode rear-radiating waveguide antenna havinglow cross polarization[J]. IEEE Trans. on AP, 1987, 35(9):1010–1016.
    [120] Yamaguchi Y. On Characteristic Polarization States in the Cross-Polarized RadarChannel[J]. IEEE Trans. on GRS, 1992, 30(5):1078–1080.
    [121]杨雪霞.双极化与变极化微带天线的研究[D].上海:上海大学研究生院, 2001.
    [122]李勇,张士选.高交叉极化鉴别度天线的近场测量[J].西安电子科技大学学报(自然科学版), 2002, 27(2):223–227.
    [123]刘德虎,刘卫东.交叉极化鉴别率和交叉极化干扰抵消技术在实际中的应用[J].无线通信技术, 2002(3):53–55,60.
    [124] Chiou T W, Wong K L. Broad-Band Dual-Polarized Single Microstrip Patch An-tennaWithHighIsolationandLowCrossPolarization[J]. IEEETrans.onAP,2002,50:399–401.
    [125] Deguchi H, Tsuji M, Shigesawa H. Compact Low-Cross-Polarization Horn An-tennas With Serpentine-Shaped Taper[J]. IEEE Trans. on AP, 2004, 52(10):2510–2516.
    [126]罗佳,王雪松,李永祯, et al.实测天线的空域瞬态极化特性[J].电波科学学报,2007, 22:373–376.
    [127]束咸荣,何炳发.天线收发方向图互易性质疑[J].微波学报, 2008, 24(6):43–46.
    [128] Brown B S. Adaptive polarizaiton direction finding methods. Antennas and Pro-pogation Society International Symposium[J]. AP-S. Merging Technologiesfor the90’s Diegest, 1990, 4:1446–1449.
    [129] Moisseev D N, Unal C M H, Russchenberg H W J, et al. Improved Polarimet-ric Calibration for Atmospheric Radars[J]. Journal of Atmospheric and OceanicTechnology, 2002, 19(19):1968–1977.
    [130] PaquayMH,KoomenPJ,HoogeboomP,etal. Adualpolarisedactivephasedarrayantenna with low cross polarisation for a polarimetric airborne SAR[C]//Radar 92.International Conference. Brighton, 1992:114– 117.
    [131] Schennum G H, Skiver T M. Antenna feed element for low circular cross-polarization[C]//IEEE Proceedings of Aerospace Conference. Snowmass at Aspen,CO, 1997£?3:35–150.
    [132] Ching-Lieh L, I-Chang C, Ching-Ping S. Reduced-size slot antennas with lowcross polarization[C]//Proceedings of 6th International SYmposium on Antennas,Propagation and EM Theory. Taiwan, 2003:15– 18.
    [133] Sarabandi K, Ulaby F T. A Convenient Technique For Polarimetric Calibration ofSingle-Antenna Radar Systems[J]. IEEE Trans. on GRS, 1990, 28(6):1022–1033.
    [134] Hanle E. Adaptive Chaff Suppression by Polarimetry with Planar Phased Arrays atOff-broadside[C]//IEEE International Radar Conference. Alexandria, VA , USA,1995:108–112.
    [135] Leung K W, Tse K K, Luk K M, et al. Cross-polarization characteristics of a probe-fed hemispherical dielectric resonator antenna[J]. IEEE Trans. on AP, 1999, 47(7):1228– 1230.
    [136]罗佳.天线空域极化特性及其应用[D].长沙:国防科学技术大学研究生院,2008.
    [137]戴幻尧,罗佳,王雪松, et al.抛物面反射天线的空域瞬态极化特性研究[J].电波科学学报, 2009, 24(1):126–131.
    [138]戴幻尧,李永祯,陈志杰, et al.电扫偶极子相控阵天线的空域极化特性分析[J].国防科技大学学报, 2010, 32(1):84–89.
    [139]鲍亮.天线的空域极化信息的分析设计及应用[D].长沙:国防科学技术大学研究生院, 2007.
    [140]戴幻尧,李永祯,王雪松, et al.基于和差波束极化特性的目标极化散射矩阵测量方法研究[J].电子与信息学报, 2010, 32(4):913–918.
    [141]戴幻尧,李永祯,王雪松, et al.单极化雷达的散射矩阵测量新方法及其外场实验研究[J].宇航学报, 2010, 31(6):1602–1607.
    [142] Poelman J. Virtual polarisation adaptation: A method for increasing the detectioncapability of a radar system through polarisation-vector processing[J]. Proc. IEE,Pt. F, 1981, 128(5):261–270.
    [143] Poelman J. Polarisation-vector translation in radar systems[J]. Proc. IEE, Pt. F,1983, 130(2):161–165.
    [144] Poelman A J. Nonelinear Polarization-vector Translation in Radar System: APromising Concept for Real-time Polarization-Vector Signal Processing Via aSingle-Notch Polarization Suppression Filter[J]. Proc. IEE, pt.F, 1984, 131(5):451–465.
    [145] Poelman A J, Guy J R F. Multinotch Logic-Product Polarization Suppression Fil-ters: ATypicalDesignExampleandItsPerformanceinaRainClutterEnvironment[J]. Proc. IEE, pt. F, 1984, 131(4):383–396.
    [146] Gherardelli M. Adaptive polarisation suppression of intentional radar disturbance[J]. IEE Proc Pt. F, 1990, 137(6):407–416.
    [147] Stapor D P. Optimal Receive Antenna Polarization In The Presence of InterferenceAnd Noise[J]. IEEE Trans. on AP, 1995, 43(5):473–477.
    [148]王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:完全极化情形[J].电子学报, 1998, 26(6):42–46.
    [149]王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:部分极化情形[J].电子科学学刊, 1998, 20(4):468–473.
    [150]王雪松,庄钊文,肖顺平, et al. SINR极化滤波器通带性能研究[J].微波学报,2000, 16:29–37.
    [151] Xuesong W, Zhaowen Z, Shunping X. Nonlinear programming modeling and solu-tionofradartargetpolarizationenhancement[J]. ProgressinNaturalScience, 2000,10(1):62–67.
    [152] Xuesong W, Zhaowen Z, Shunping X. Nonlinear optimization method of radartarget polarization enhancement[J]. Progress in Natural Science, 2000, 10(2):136–140.
    [153]王雪松,汪连栋,肖顺平等.自适应极化滤波器的理论性能分析[J].电子学报,2004, 32:1326–1329.
    [154] Xuesong W, Yuliang C, Dahai D, et al. Band Characteristics of SINR PolarizationFilter[J]. IEEE Trans. on AP, April 2007, 55(4):1148–1153.
    [155] Xiaolin Q, Yongtan L. Sequential polarization filtering for a ground wave radar[C]//Proceeding of CIE 1991 International Conference on Radar. BeiJing, 1991.
    [156]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报, 2001, 29(9):1206–1209.
    [157]施龙飞,王雪松,肖顺平, et al.干扰背景下雷达最佳极化的分步估计方法[J].自然科学进展, 2005, 15(11):1324–1329.
    [158]施龙飞,王雪松,肖顺平.转发式假目标干扰的极化鉴别[J].中国科学(F辑:信息科学), 2009, 4(39):468–475.
    [159]李永祯,王雪松,王涛, et al.有源诱饵的极化鉴别研究[J].国防科大学报,2004, 26(3):83–88.
    [160]王涛,王雪松,肖顺平.随机调制单极化有源假目标的极化鉴别研究[J].自然科学进展, 2006, 26(5):611–617.
    [161] Santalla V, Vera M, Pino A G. A Method for Polarimetric Contrast Optimizationin the Coherent Case[C]//Antennas and Propagation Society International Sympo-sium. 1993:1288–1291.
    [162] Yang J, Yamaguchi Y, Boerner W M. Numerical Methods for Solving the OptimalProblem of Contrast Enhancement[J]. IEEE Trans. on GRS, 2000, 38(2):965–971.
    [163] Novak L, Burl M, Irving W. Optimal Polarimetric Processing for Enhanced TargetDetction[J]. IEEE Trans. on AES, 1993, 29(1):234–244.
    [164] Novak L M, Sechtin M B, Cardullo M J. Studies of Target Detection AlgorithmsThat Use Polarimetric Radar Data[J]. IEEE Trans. on AES, 1989, 25(2):150–165.
    [165] Pottier E, Saillard J. Optimal polarimetric detection of radar target in a slowlyfluctuating environment of clutter[C]//IEEE Intl. Radar Conference. 1990:211–216.
    [166] Maio A D. Polarimetric Adaptive detection of range-distributed targets[J]. IEEETrans. on SP, 2002, 50(9):2152–2159.
    [167] PLombardo, DPastina, TBucciarelli. Adaptive polarimetric target detection withcoherent radar Part II: detection against Non-Gaussian background[J]. IEEE Trans.on AES, 2001, 37(4):1207–1220.
    [168] Park H R, Li J, Wang H. Polarization-space-time domain generalized likelihoodratio detection of radar targets[J]. Signal Processing, 1995(41):153 164.
    [169] Park H R, Kwag Y K, Wang H. An efficient adaptive polarimetric processor withan embedded CFAR[J]. ETRI Journal, 2003, 25(3):171–178.
    [170] DPastina, PLombardo, TBucciarelli. Adaptive polarimetric target detection withcoherent radar Part I: detection against Gaussian background[J]. IEEE Trans. onAES, 2001, 37(4):1194–1206.
    [171] Garren D A, Odom AC, Osborn M K,et al. Full-polarization matched-illuminationfor target detection and identification[J]. IEEE Trans. on AES, 2002, 38(3):824–835.
    [172] Ferro-famil L, Pottier E, Lee J S. Unsupervised classification of multi-frequencyand fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier[C]//IEEE Proc. IGARSS’. 2000:1104–1106.
    [173] Hajnsek I, Cloude S, Lee J S, et al. Inversion of surface parameters from polari-metric SAR data[C]//IEEE Proc. IGARSS’. 2000:1095–1097.
    [174] TLAinsworth,JSLee,DLSchuler. Multi-FrequencypolarimetricSARdataanalysisof Ocean surface Features[C]//IEEE Proc. IGARSS’. 2000:1113–1115.
    [175] C T Schnaider e a. A polarimetric tool for radar target analysis[C]//Intil Conf. OnRadar. Paris, 1994.
    [176]王涛.弹道中段目标特征提取与识别[D].长沙:国防科学技术大学研究生院,2006.
    [177] Pettengill G H, Kraft L G. Observations Made with the Millstone Hill Radar.Avionics Research: Satellites and Problems of Long Range Detection and Tracking[C]//AGARD Avionics Panel Meeting. Copenhagen, 1958:125–134.
    [178] Close S, Hunt S M, Minardi M, et al. Analysis of Perseid meteor head echo datacollected using the Advanced Research Projects Agency Long-Range Tracking andInstrumentation Radar (ALTAIR)[J]. Radio Science, 2000, 35(5):1233–1240.
    [179]曾清平.雷达极化技术与极化信息应用[M].北京:国防工业出版社, 2006.
    [180] Livingstone C E, Gray A L, Hawkins R K, et al. CCRS C/X-Airborne SyntheticAperture Radar: an R and D Tool for the ERS-1 Time Frame[C]//Proceedings ofthe 1988 IEEE National Radar Conference. 1988:15–21.
    [181] Livingstone C E, Lukowski T I, Rey M T, et al. CCRS/DREO synthetic apertureradar polarimetry-status report[C]//IGARSS’89, Proceedings of the InternationalGeoscience and Remote Sensing Symposium. Vancouver, Canada, 1989:10–14.
    [182] Lemnios W Z, Grometstein A A. Overview of the Lincoln Laboratory BallisticMissile Defense Program[J]. Lincoln Laboratory Journal, 2002, 13(1):9–32.
    [183] Kozma A E, Nichols A D, Rawson R F, et al. Multi-frequency, -polarization SARfor remote sensing[C]//Proceedings of the International Geoscience and RemoteSensing Symposium. Zurich, Switzerland: ESA Publications Division, Noordwijk,The Netherlands, 1986:715–719.
    [184] Horn R, Werner M, Mayr B. Extension of the DLR Airborne SAR System[C]//IGARSS’90, Proceedings of the International Geoscience and Remote SensingSymposium. College Park, Md., 1990.
    [185] Christensen E L, Skou N, Dall J. EMISAR: an Absolutely Calibrated PolarimetricL- and C-band SAR[J]. IEEE Trans. on GRS, 1998, 36(6):1852–1865.
    [186] Igarashi T, Shimada M, and A R. Preliminary Study on DataSets of ADEOS-II andALOS Dedicated to Terrestrial Carbon Observation[J]. Adv. Space Res., 2003, 23(11):2147–2152.
    [187]徐宝祥,叶宗秀,王致君.双线偏振雷达的气象应用[J].气象学报, 1987, 45(4):86–91.
    [188] Sachidananda M, Zrnic D S. Characteristics of Echoes from Alternately PolarizedTransmission[R]. NOAA/NSSL, 1986.
    [189] Bringi V N, Chandrasekar C. Polarimetric Doppler Weather Radar[M]. CambridgeUniversity Press, 2001.
    [190] Mudukutore A, Chandrasekar V,Mueller E A. The Differential Phase Pattern of theCSU CHILL Radar Antenna[J]. Journal of Atmospheric and Oceanic Technology,1995, 12(5):1120–1123.
    [191] Howard S D, Calderbank A R, Moran W. A Simple Signal Processing ArchitectureforInstantaneousRadarPolarimetry[J]. IEEETrans.onIT,2007,53(4):1282–1289.
    [192] Freeman A, Shen Y, Werner C L. Polarimetric SAR Calibration Experiment UsingActive Radar Calibrators[J]. IEEE Trans. on GRS, 1990, 28(3):224–240.
    [193] Whitt M W, Ulaby F T, Polatin P, et al. A General Polarimetric Radar CalibrationTechnique[J]. IEEE Trans. on AP, 1991, 39(1):62–67.
    [194] Nashashibi A, Sarabandi K, Ulaby F T. A Calibration Technique for PolarimetricCoherent-on-Receive Radar Systems[J]. IEEE Trans. on AP, 1995, 43(4):396–404.
    [195] Wiesbeck W, Riegger S. A complete error model for free space polarimetric mea-surements[J]. IEEE Trans. on AP, 1991, 39(8):1105–1111.
    [196] Chen T J, Chu T H, Chen F C. A New Calibration Algorithm of Wide-Band Po-larimetric Measurement System[J]. IEEE Trans. on AP, 1991, 39(8):1188–1192.
    [197] K¨ahny D, Schmitt K, Wiesbeck W. Calibration of Bistatic Polarimetric Radar Sys-tems[J]. IEEE Trans. on GRS, 1992, 30(5):847–852.
    [198] GorgucciE,ScarchilliG,ChandrasekarV. CalibrationofRadarsUsingPolarimetricTechniques[J]. IEEE Trans. on GRS, 1992, 30(5):853–858.
    [199]邹鲲,梁甸农.低频UWBSAR极化校准模型[J].信号处理, 2006, 22(2):244–247.
    [200] SarabandiK, UlabyF T,TassoudjiM A. Calibration of Polarimetric Radar SystemsWith Good Polarization Isolation[J]. IEEE Trans. on GRS, 1990, 28(1):70–75.
    [201] Chevalier P, Ferreol A, Albera L, et al. Higher order direction finding from arrayswith diversely polarized antennas: the PD-2q-MUSIC algorithms[J]. IEEE Trans.on SP, 2007, 55(11):5337–5349.
    [202] Poelman J, Guy J R F. Multinotch logic-product polarisation suppression filters: Atypical design example and its performance in a rain clutter environment[J]. Proc.IEE, Pt. F, 1984, 131(4):383–396.
    [203] Poelman A J, Guy J R F. Nonlinear polarization-vector translation in radar sys-tems: a promissing concept for Real-time polarization-vector signal processing viaa single-notch polarization suppression filter[J]. IEE Proceedings, 1984, 131(5):451–464.
    [204] Poelman A J, Hilgers C J. Effectiveness of multinotch logic-product polarisationfilters in radar for countering rain clutter[J]. IEE proceedings-F, 1991, 138(5):427–436.
    [205] Pottier E, Lee J S. Unsupervised classification scheme of polsar images based onthecomplexwishartdistributionandtheH/A/apolarimetricdecompositiontheorem[C]//EUSAR2000. 2000.
    [206] Lo′pez-Mart′?nez C, Pottier E, Cloude S R. Statistical assessment of eigenvector-based target decomposition therems in radar polarimetry[J]. IEEE Trans. on GRS,2005, 43(9):2058–2073.
    [207] MHellmann, EKrogager. Comparison of decompositions for Pol-SAR image in-terpretation[C]//IEEE Proc. IGARSS’. 2000:1313–1315.
    [208] Chaney R D, Burl M C, Novak L M. On the performance of polarimetric targetdetection algorithms[C]//IEEE International Radar Conference. 1990:520 525.
    [209]黄培康,殷红成,许小剑.雷达目标特性[M].背景:电子工业出版社, 2005.
    [210]冯德军,王雪松,肖顺平, et al.弹道中段雷达目标识别与对抗[J].航天电子对抗, 2004(05):31–35.
    [211] Skolnik M I. Introduction to Radar Systems[M]. 3rd. New York: McGraw-Hill,2001.
    [212] Levanon N, Mozeson E. Radar Signals[M]. New York: Wiley, 2004.
    [213] Oppenheim A V, Schafer R W, Buck J R. Discrete-time Signal Processing[M].Prentice-Hall Inc., 1999.
    [214]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社, 1984.
    [215]常宇亮,王雪松,李永祯, et al.极化测量雷达的信号选择与处理[J].中国科学(F辑:信息科学), 2009, 39(12):1296–1304.
    [216]赵锋,王雪松,肖顺平.高耦合系数条件下径向速度估计的新方法[J].电子学报, 2005, 33(9):1571–1575.
    [217]徐振海,陈明辉,金林, et al.雷达动目标极化散射矩阵瞬时测量技术[J].现代雷达, 2008, 30(8):53–57,60.
    [218]徐振海.极化敏感阵列信号处理的研究[D].长沙:国防科学技术大学研究生院, 2004.
    [219] Kay S M,罗鹏飞等译.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社, 2003.
    [220]李金梁.雷达目标的极化检测[D].长沙:国防科学技术大学研究生院, 2005.
    [221] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables[M]. New York: Dover Publication Inc., 1965.
    [222]帕普里斯A,佩莱S U.概率、随机变量与随机过程[M].西安:西安交通大学出版社, 2004.
    [223] BarnardTJ,WeinerDD. Non-Gaussian.ClutterModelingwithGeneralizedSpher-ically Invariant Random Vectors[J]. IEEE Trans. on SP, 1996, 44(10):2384–2390.
    [224] Rangaswamy M, Weiner D, Aydino¨ztu¨rk. Non-Gaussian Random Vector Identifi-cation Using Spherically Invariant Random Processes[J]. lEEE TRANSACTIONSON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29(1):111–124.
    [225]王雪松,代大海,徐振海, et al.极化滤波器的性能评估与选择[J].自然科学进展, 2004, 14(4):442–448.
    [226]王雪松,徐振海,代大海, et al.干扰环境中部分极化信号的最佳滤波[J].电子与信息学报, 2004, 26(4):593–597.
    [227] Poelman A J, Hilgers C J. Effectiveness of Multinotch Logic-product PolarizationFilters In Radar For Countering Rain Clutter[J]. IEE Proceeding-F, 1991, 138(5):427–437.
    [228]施龙飞,王雪松,徐振海. APC迭代滤波算法与性能分析[J].电子与信息学报,2006, 28(9):1560–1564.
    [229]李永祯,王雪松,肖顺平, et al.有源假目标的高分辨极化鉴别研究[J].兵工学报, 2005, 26(6):754–760.
    [230]罗宏.动态雷达目标的建模与识别研究[D].北京:航天工业总公司第二研究院论文, 2000.
    [231]冯德军,陈志杰,王雪松, et al.基于一维像序列的导弹目标运动特征提取方法[J].国防科技大学学报, 2005, 27(6):43–47.
    [232]王涛,周颖,王雪松, et al.雷达目标的章动特性与章动频率估计[J].自然科学进展, 2006, 16(3):344~350.
    [233] Skolnik M I. Radar Handbook[M]. New York: McGraw-Hill, 1990.
    [234]张贤达.信号处理中的线性代数[M].北京:科学出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700