用户名: 密码: 验证码:
近场源参数估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信源定位问题是阵列信号处理中的一个重要的研究方向,它的任务是根据天线阵列接收到的数据估计出感兴趣信源的空间位置信息。根据信源与接收阵列之间的距离,信源定位可分为近场定位和远场定位,本文主要对近场源源定位问题进行研究。
     八十年代至今,对信源定位技术的研究主要集中在远场源上,对于近场源参数估计理论方面的研究相对较少。近年来,对近场源参数估计理论方面的研究逐渐引起国内外学者的关注,成为阵列信号处理领域中的一个新的热点。经过十余年的发展,国内外很多学者对近场源参数估计问题进行了研究,取得了许多优秀的成果,但是在某些方面仍然存在很多问题亟待解决,如计算量、参数配对、估计精度、宽带非平稳信源等。本文以二阶统计量、分数低阶统计量、分数阶傅里叶变换和四阶累积量为主要数学分析工具,分别从参数配对、阵列孔径、二维极化敏感阵列、非高斯噪声、计算量和宽带非平稳信号等几个方面对近场源的参数估计问题进行了深入的研究。
     本文创造性工作如下:
     1、利用四阶累积量和非中心对称均匀十字阵列,提出基于白化降维技术、子空间分解以及矩阵束的近场源方位角、仰角和距离参数联合估计算法,这些算法采用非中心对称的阵列结构,且无需额外的参数配对程序,可直推导出待估计参数的闭式解,具有高估计精度、低计算复杂度和高阵列孔径利用率等特点。
     2、利用极化敏感阵列抗干扰能力强、分辨力高等优点,以二阶统计量和四阶累积量为主要数学分析工具,对二维极化敏感阵列下近场源参数估计问题进行研究,提出了一种基于二阶统计量的近场源方位角、仰角、距离和极化信息等五维参数联合估计算法,以及三种基于四阶累积量的近场源五维参数联合估计算法,有效的解决不同高斯噪声情况、阵列孔径利用率以及计算量和计算复杂度等问题。
     3、针对冲击噪声无二阶统计量和高阶累积量的特点,研究了服从SαS稳定分布的冲击噪声下近场源方向角和距离二维参数联合估计问题,提出了一种基于分数低阶统计量的FLOS-ESPRIT算法,它可有效抑制冲击噪声对信号的影响,并且对加性高斯白噪声同样有效。
     4、针对子空间分解计算量大的问题,提出两种基于传播算子和二阶统计量的近场源方向角和距离二维参数联合估计算法:PM-MUSIC和PM-ROOT-MUSIC。利用传播算子估计出的噪声子空间代替奇异值分解得到的正交解,从而缓解了MUSIC算法估计精度与计算量之间的矛盾。
     5、利用分数阶傅里叶变换,初步解决了近场宽带非平稳信源的二维参数估计问题,提出一种基于FRFT-MUSIC的近场宽带非平稳信源方向角和距离二维参数联合估计算法,其特点是无交叉项干扰,适于加性噪声环境,具有较高的估计精度。
     本文共分八章,具体内容如下:
     1、介绍阵列信号处理技术的发展历史,综述近场源参数估计理论及国内外研究现状,提出近场源参数估计中有待于研究和解决的问题,确定本文的研究内容。
     2、介绍本文所用到的矩阵论方面的基础知识、极化敏感阵列的基础知识以及分数低阶统计量、二阶统计量和高阶累积量的定义和性质。
     3、研究标量传感器下基于四阶统计量的近场源定位算法,针对目前近场源定位算法中估计精度和计算复杂度等问题,提出了四种无需参数配对的近场源参数二维参数和三维参数估计算法:1)基于四阶累计量和子空间分解的近场源方向角和距离二维参数联合估计算法,采用非中心对称均匀线阵,其特点是有效降低了阵列孔径的损失,无需参数配对,直接推导出待估计参数的闭式解,降低了算法的复杂性;2)将上述算法扩展到二维接收阵列,提出基于非中心对称十字阵列的近场源方位角、仰角和距离三位参数联合估计算法;3)基于矩阵束的近场源方位角、仰角和距离三维参数联合估计算法,算法采用非中心对称十字阵列,其特点是不需要构造高维累积量矩阵,且矩阵束的广义特征值中包含参数配对信息,降低了算法的计算量和复杂度,减少了阵列孔径的损失;4)基于白化降维技术的近场源方位角、仰角和距离三维参数联合估计算法,算法采用非中心对称十字阵列,其特点是无需构造高维累积量矩阵、参数自动配对,降低了算法的计算量和复杂度,提高了阵列孔径的利用率。
     4、研究二维极化敏感阵列下基于二阶统计量和四阶累积量的近场源五维参数联合估计算法:1)基于二阶统计量和TLS-ESPRIT的近场源方向角、仰角、距离和极化信息等五维参数联合估计算法,采用中心对称的十字阵列,其特点是计算量小,估计精度高,且仅需要一次简单的参数配对;2)基于四阶累积量和矩阵束的近场源方向角、仰角、距离和极化信息等五维参数联合估计算法,采用中心对称的十字阵列,其特点是不需要构造高维累积量矩阵,参数配对方法简单,具有较低的计算复杂度;3)基于四阶累积量和子空间分解的近场源方向角、仰角、距离和极化信息等五维参数联合估计算法,采用非中心对称十字阵列,其特点是降低了阵列孔径损失,无需参数配对,直接推导出待估计参数的闭式解,降低了算法的复杂度;4)基于四阶累积量和联合对角化的近场源方向角、仰角、距离和极化信息等五维参数联合估计算法,采用非中心对称十字阵列,其特点是不需要构造高维累积量矩阵,利用白化降维技术和联合对角化直接估计出信源参数,不需参数配对,有效的提高了阵列孔径的利用率,降低了算法的复杂度。
     5、研究了服从SαS稳定分布的冲击噪声下近场源方向角和距离二维参数联合估计问题,提出了一种基于分数低阶统计量的FLOS-ESPRIT算法,算法采用中心对称的均匀线阵,其特点是可以抑制冲击噪声对信号的影响,并且对加性高斯白噪声同样有效。
     6、对传播算子方法进行研究,提出两种基于传播算子的近场源方向角和距离二维参数联合估计算法:PM-MUSIC和PM-ROOT-MUSIC,其特点是利用传播算子估计出噪声子空间的最小二乘解代替由奇异值分解得到的正交解,达到降低计算量的目的。
     7、对近场宽带非平稳信源下的参数估计问题进行研究,提出了一种基于FRFT-MUSIC的近场源方向角和距离二维参数联合估计算法,其特点是在较低的信噪比下仍具有较高的估计精度。
     8、对全文进行总结,展望下一步工作,提出了今后有待于进一步研究的问题。
The signal source localization is one of the most important research aspects in array signal processing, whose purpose is to deal with the data received from the antenna array, reduces the interfering signal and noise signal, and estimates the spatial location information of the interested source. According to the distance between the source and the receiver array, the source localization can be classified into far-field source localization and near-field source localization.
     Since the 1980s, the source localization technology research is focused on the far field source; by contrast, the research of parameter estimation theory for near-field was relatively less. In recent years, however, the theoretical study of near-field source parameter estimation, which is a new research focusing on the array signal processing, has gradually attracted the attention of scholars. After a development over one decade, many scholars have studied the parameters estimation problems of near-field and have achieved many excellent achievements. Nevertheless, there still remain many problems to be solved in some aspect, such as parameter matching, computation, estimation accuracy, coherent sources and broadband non-stationary signals etc. In this dissertation, the parameters estimation of near-field source is studied from the following six aspects respectively, parameters pairing, array aperture,2-D polarization sensitive array, non-Gaussian noise computation, and broadband non-stationary signals, by means of second order statistics, fractional lower order statistics, fractional Fourier transform and higher order cumulant.
     The creative work of this dissertation focuses on five aspects as follows.
     1. Utilizing the four order cumulant and non-centro-symmetric cross array, proposes bearing, elevation and range parameters estimation algorithm of near-field based on whiten dimension reduction, subspace decomposition and matrix pencil. The algorithms adoptes the non-centro-symmetric array construction, doesn't require any spectral peak search and additional parameter matching, can directly obtain the closed form solution of the parameters to be estimated, and has the features of high estimation accuracy, low complexity, and high utilization of the array aperture.
     2. Utilizing the advantages of anti-interference ability and higher resolution for the polarization sensitive array, by means of second-order statistics and fourth-order cumulant as the main tools of mathematical analysis, studies the parameter estimation problem of near-field based on 2-D polarization sensitive array, proposed one algorithm to estimate elevation, bearing, range, polarization information of near-field based on second order statistics and three algorithms based on four-order cumulant, and solved some problems effectively, such as high-efficiency array aperture, low computation and low computational complexity.
     3. Aiming at the impulsive noise features for no second-order statistics and no higher order cumulant, studies the 2-D parameters estimation problem of near-field in SaS Stable distribution impulsive noise, proposes a FLOS-ESPRIT algorithm based on fractional lower order statistics. The algorithm can inhibit the effect of impulsive noise, and has good effect in additive white Gaussian noise too.
     4. For the problem of large computation, proposes two 2-D parameter estimation algorithm of near-filed:PM-MUSIC and PM-ROOT-MUSIC. The algorithms used the noise subspace estimated by propagator method instead of orthogonal solution of SVD, and solved the contradictions between estimation accuracy and computation of MUSIC algorithm.
     5. For two-dimensional parameters estimation problem of the wideband near field sources of non-stationary, proposes a bearing and range parameters joint estimation algorithm of near field wideband non-stationary sources based on FRFT-MUSIC. Its characteristics are no cross-term interference, have high estimation accuracy, and can be applied for additive noise environment.
     This dissertation consists of eight chapters.
     1. It introduces the development of array signal processing technology, summarizes the theories of near-field parameter estimation as well as the current research situation at home and abroad, proposes the content to be studied and solved, and defines the research content of this dissertation.
     2. It introduces the fundamental knowledge of matrix theory and the polarization sensitive array, introduces the definition and nature of fractional lower order statistics, fractional Fourier transform and higher-order cumulant.
     3. It studies the localization algorithm in scalar sensor array based on four-order cumulant. Aiming at the problems of estimation accuracy and complexity, it proposes four parameters estimation algorithm without parameter pairing:(1) A joint estimation algorithm of bearing and range for near-field based on four-order cumulant and subspace decomposition, the algorithm adopts non-centro-symmetric array, and the aperture loss is effectively avoided, the parameters can be paired automatically, reduces the complexity of computation; (2) Above algorithm extends to the 2-D receiver array, proposes 3-D parameter joint estimation algorithm without parameters pairing for near-field sources based on non-centro-symmetric cross array; (3) A 3-D parameter joint estimation algorithm of near-field sources based on MP, the proposed algorithm adopts non-centro-symmetric cross array, so the array aperture loss is effectively avoided. Furthermore, the algorithm estimates the parameters of near field by generalized eigenvalue decompose; the parameter pairing information is contained in the magnitude value of the generalized eigenvalue, so doesn't require the extra parameter pairing method of various parameters, and reduces the complexity of computation. (4) Proposed bearing, elevation and range parameters estimation algorithm of near-field based on whiten dimension reduction, the algorithm need not construct high dimensional cumulant matrix, parameters pairing automatically, reduces the computation and complexity, and improves the utilization of the array aperture.
     4. It studies the localization algorithm in 2-D polarization sensitive array based on second order statistics and four-order cumulant:(1) Proposed bearing, elevation, range, and polarization information joint estimation algorithm of near-field based on second order statistics, its features are small computation, high estimation accuracy, and requires a simple parameters pairing only. (2) Proposed 5-D parameters joint estimation algorithm of near-field based on four order cumulant, it need not construct high dimensional cumulant matrix, pairing parameters easily and low complexity. (3) Proposed a joint 5-D parameters estimation algorithm of near-field sources based on four-order cumulant and subspace decomposition, adopts non-centro-symmetric cross polarization sensitive array, avoids the aperture loss effectively, without parameters pairing, reduced the complexity. (4) Proposed 5-D parameters estimation algorithm of near-field based on four order cumulant and joint diagonalization technology, adopts non-centro-symmetric cross polarization sensitive array, need not construct high dimension cumulant matrixes, estimates the signal parameters by whiten dimension reduction and joint diagonalization technology, without parameters pairing, reduces the computation and complexity, improves the utilization of the array aperture.
     5. It studies the localization algorithm of near-field in impulsive noise environment, proposes a FLOS-ESPRIT algorithm based on fractional lower order statistics to estimate bearing and range parameters of near-field, The algorithm adopts the center symmetric uniform linear array, can inhibit the effect of impulsive noise, and apply in additive white Gaussian noise environment too.
     6. It studies the propagator method, and proposes two algorithms of 2-D parameters estimation for near-field:PM-MUSIC and PM-ROOT-MUSIC, the algorithms use the noise subspace estimated by propagator method instead of orthogonal solution of singular value decomposition, and solve the contradictions between estimation accuracy and computation of MUSIC algorithm for reduce computational purposes.
     7. It studies the parameter estimation problem of broadband non-stationary of near field source, proposes a bearing and range joint estimation algorithm of near field source based on FRFT-MUSIC, and it characterizes of high estimation accuracy in low SNR.
     8. A brief summary of the dissertation is given, prospects the future work, and proposes the problems to be studied in future.
引文
[1]Harry L. Van Trees, Optimum Array Processing. New York:A JOHN WILEY & SON SINC,2001.
    [2]王永良.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [3]王波.基于高阶统计量与分数低阶统计量的近场源定位方法研究[D].吉林大学博士论文,2006.
    [4]陈建.二维波达方向估计理论研究[D].博士论文,吉林大学,2007.
    [5]张贤达.通信信号处理[M].北京:国防工业出版社,2000.
    [6]庄钊文.极化敏感阵列信号处理[M].北京:国防工业出版社,2005.
    [7]石宇.阵列信号处理中信号参数估计的研究[D].吉林大学博士论文,2008.
    [8]邱天爽.统计信号处理:非高斯信号处理及其应用[M].水利电力出版社,2004.
    [9]叶中付.统计信号处理[M].中国科学技术大学出版社,2009.
    [10]张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社,1996.
    [11]Stoica P, Nehoria A.MUSIC Maximum Likelihood, and Cramer-Rao Bound [J]. IEEE Trans on ASSP,1989,37(5):720-741.
    [12]Stoica P, Nehoria A.Performance Study of Conditional and Unconditional Direction of Arrival Estimation [J].IEEE Trans.onASSP,1990,38(10):1783-2713.
    [13]Tsakalides P, Nikas C L.Maximum Likelihood Localization of Sources in Noise Modeled as a Stable Process [J].IEEE Trans.on SP,1995,43(11):2700-2713.
    [14]Ye H, DeGroat R D.Maximum Likelihood DOA Estimation and Asymptotic Cramer-Rao Bounds for Aadditive Unknown Colored Noise [J].IEEE Trans.on SP,1995,43(4): 938-949.
    [15]Pesavento M, Gershman A B. Maximum-Likelihood Direction-of-Arrival Estimation in the Presence of Unknown Nonuniform Noise [J].IEEE Trans. on SP,2001,49(7): 1310-1324.
    [16]Xin J, Sano A.Linear Prediction Approach to Direction Estimation of Cycle Stationary Signals in Multipath Environment [J].IEEE Trans.On SP,2001,49(4):710-720.
    [17]Xin J, Sano A.MSE-Based Regularization Approach to Direction Estimation of Coherent Narrowband Signals Using Linear Prediction [J].IEEE Trans.On SP,2001,49(11): 2481-2497.
    [18]Schmit R O.Multiple Emitter Location and Signal Parameter Estimation [J]. IEEE Trans.On AP,1986,34(3):276-280.
    [19]Zoltowski M D,Kautz G M,Silverstein S D.Beamspace Root-MUSIC[J].IEEE Trans.On SP,1993,41(1):344-364.
    [20]Rao B D, Hari KV S.Weighted Subspace Methods and Spatial Smoothing Analysis and Comparison [J].IEEE Trans.On SP,1993,41(2):788-803.
    [21]Roy R, Thomas K.WSPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques [J].IEEE Trans.On ASSP,1989,37(7):984-995.
    [22]Swindlehurst A L, Ottersten B, Roy R, Et Al. Multiple Invariance ESPRIT [J]. IEEE Trans. On SP,1992,40(4):867-881.
    [23]Chiang HH,Nikias, CL.The Esprit Algorithm with Higher-Order Statistics[J], Workshop Higher Order Spectral Anal.Vial CO, Jun,1989,163-168.
    [24]Porat B, Friedlander B.Direction Finding Algorithms Based on Higher-Order Stastics [J]. IEEE Trans.On SP,1991,39(9):2016-2024.
    [25]Forster P, Nikias C L.Bearing Estimation in the Bispectrum Domain[J]. Proc.IEEE,1991, 39(9):1994-2006.
    [26]Dogan M C, Mendel J M.Applications of Cumulants to Array Processing Part I: Aperture Extension and Array Calibration [J], IEEE Trans.On SP,1995,43(5): 1200-1216.
    [27]Gonen E,Mendel J M.Applications of Cumulants to Array Processing,Part IV:Direction Finding in Coherent Signals Case [J].IEEE Trans.On SP,1997,45(9):2265-2276.
    [28]A.Belouchrain, M.G. Amin.Blind Source Separation Based on Time-frequecny Signal Representations [J]. IEEE Trans. Signal Processing,1998,46 (11):2888-2897.
    [29]A.Belouchrain, M.GAmin.Time-frequency MUSIC [J].IEEE Signal Processing Lett., 1999,6(5):109-110.
    [30]M.G. Amin.Spatial Time-frequency Distributions for Direction Finding and Blind Source Separation [J]. Proc. SPIE,1999,3723:62-70.
    [31]Zhang Y, Mu W and M.G. Amin.Time-frequency Maximum Likelihood Methods for Direction Finding [J].Franklin Inst.,2000,337(3):483-497.
    [32]李丽萍,黄克骥等.基于STFT的相干宽带调频信号2-D到达角估计[J].电子与信息学报.2005.27(11):1760-1764.
    [33]陶然.分数阶傅里叶变换及其应用[M].北京:清华大学出版社,2009.
    [34]齐林,陶然等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学:E辑,2003,3(8):749-759.
    [35]陶然,周云松.基于分数阶Fourier变换的宽带LFM信号波达方向估计新算法[J]北京理工大学学报,2005,25(10):895-899.
    [36]杨小明,陶然.基于分数阶Fourier变换和ESPRIT算法的LFM信号2-D波达方向估计[J].兵工学报,2007,28(12):1438-1442.
    [37]Swindle Hurst AL and Kailath T.Passive Direction-of-Arrival and Range Estimation for Near-Field Sources [J].IEEE Spectrum Estimation and Modeling.Workshop, Minneap-olis, MN USA,1988,123-128.
    [38]Huang Y D and Barkat M.Near-Field Multiple Source Localization by Passive Sensor Array [J]. IEEE Trans. Antennas and Propagation,1991,39(7):968-975.
    [39]Weiss A J, Friedlander B.Range and Bearing Estimation using Polynomial Rooting [J]. IEEE Journal of Oceanic Engineering,1993,18(2):130-137.
    [40]Starer D and Nehorai A.Passive Localization of Near-Field Sources by Path Following [J]. IEEE Trans, On SP, March,1994,42(3):677-680.
    [41]Lee J H,Lee C M and Lee K K.A Modified Path-Following Algorithm using A Known Algebraic Path[J].IEEE Trans,On SP,1999,47 (5):1407-1409.
    [42]Challa R N.and Shamsunder S.High-Order Subspace-Based Algorithms for Passive Localization of Near-Field Sources[C].29th Asilomar Conference, Pacific Grove,CA USA, November,1995,777-781.
    [43]Yuen N and Friedlander B.Performance Analysis of Higher Order ESPRIT for Localization of Near-Field Sources [J].IEEE Trans. On SP,1998,46(3):709-719.
    [44]Martin Haardt and Raghu N.Challa.Improved Bearing and Range Estimation via High-Order Subspace Based Unitary ESPRIT[C]. Thirtieth Asilomar Conference on signals, Systems and Computers,1996,380-384.
    [45]Abed-Meraim K,Hua Y and Belouchrani A.Second-Order Near-Field Source Localization: Algorithm and Performance Analysis[C].Proceedings of Asilomar Conference,Pacific Grove, CA USA,1996,723-727.
    [46]Cekli E, Cirpan H A.Deterministic Maximum Likelihood Method for Localization of Near Field Sources:Algorithm and Performance Analysis[C].Proc.ICASSP,2001, 1077-1080.
    [47]Cekli E, Cirpan H A.Unconditional Maximum Likelihood Approach for Near Field Sources[C].Proc.ICASSP,2001,753-756.
    [48]Lee Ju-Hong and Tung C-H.Estimating the Bearing of Near-Field Cyclostationary Signals [J]. IEEE Trans.On SP 2002,50(1):110-118.
    [49]EmmanuELe Grosicki and Karim Abed-Meraim.A Weighted Linear Prediction Method for Near-Field Source Localization [J]. IEEE Trans.ON SP,2005.53(10):3651-3660.
    [50]R.Jeffers, L.B.Kristine. Broadband Signal Subspace Processing For Range Estimation. Sensor Array and Multichannel Signal Processing Workshop Proceedings [J] 2002, 495-498.
    [51]Abed-Meraim K,Hua Y.3-D Near Field Source Localization using Second Order Statistics [C].Conference Record Of The Thirty-First Asilomar Conference On Signals,Systems and Computers,California,1998,1307-1311.
    [52]Challa R N, Shamsunder S.Passive Near-Field Localization of Mulitple Non-Gaussian Sources in 3-D Using Cumulants [J]. Signal Processing,1998,65:39-53.
    [53]Hung H S, Chang S H, Wu C H.3-D MUSIC With Polynormial Rooting for Near-Field Source Localization[C].Proc.ICASSP, Atlanta,1996,3065-3068.
    [54]Lee C M, Yoon K S, Lee K K.Efficient Algorithm for Localisting 3-D Narrowband Multiple Sources[C]. IEE Proc-Radar Sonar Navigation, Okt:2001,148(1):23-26.
    [55]陈建峰,张贤达.一种新的近场源三维参数联合估计算法[J].电路与系统学报,2003,8(5):1-4.
    [56]陈建峰,张贤达.近场源距离、频率及到达角联合估计算法[J].电子学报,2004,32(5):803-806.
    [57]王洪洋,廖桂生,王万林.近场源频率、波达方向和距离的联合估计算法[J].电波科学学报,2004,19(6):717-721.
    [58]Wang H Y,Liao G S,Li Z F.Joint Frequency Direction Of Arrival, Range Estimation For Near Field Sources[C].7th International Conference on Signal Proceedings,Beijing, China,2004,1-4.
    [59]吴云韬,侯朝焕,王荣,孙小东.一种基于高阶累积量的近场源距离、频率和方位联合估计算法[J].电子学报,2003,33(10):1893-1896.
    [60]王波,王树勋.一种基于二阶统计量的近场源三维参数估计方法[J].电子与信息学报,2006,28(1):45-49.
    [61]王波,王树勋.基于二阶统计量的近场定位新算法[J].电子与信息学报,2006,28(6):1004-1008.
    [62]王波,王树勋,韩啸.估计近场源三维参数的新方法[J].吉林大学学报(工学版),2004,34(4):611-616.
    [63]Wang Bo,Wang Shu Xun,Shi Yu.A New Method of Joint Bearing-Elevation-Range Estimation of Near Field Sources.7th International Conference on Electronic Measurement & Instruments (ICEMI'2005)[C], August 15-18, Beijing,China,Vol.1, 435-439.
    [64]Yu Shi,Shuxun Wang,Zijing Zhong.An Algorithm for Near Field Source Location Based on Multistage Wiener Filters[C].International Conference On Signal Processing 2006.(ICSP06) 2006.9.
    [65]石宇,王波,王树勋.基于四阶累积量Root-MUSIC方法的近场信源二维参数估计[J].吉林大学学报(信息版),2007,25(5):465-470.
    [66]Ke Deng, Qinye Yin.Closed Form Parameters Estimation for 3-D Near Field Sources[C]. IEEE International Conference on Acoustics,Speech And Signal Processing,2006,1133-1136.
    [67]Ke Deng, Qinye Yin.Closed from Parameters Estimation for Near Field Sources[C]. IEEE International Symposium on Circuits and Systems,2007,3251-3254.
    [68]Ke Deng,Qinye Yin.Blind Ranges Frequencies and DOAS Estimation for Near Field Sources[C].IEEE International Conference on Acoustics,Speech and Signal Processing, 2006,2125-2128.
    [69]Jiacai Huang, Yaowu Shi.Third-Order Cyclic Moment Based DOA and Range Estimation of Near-Field Sources [C].8th International Conference on Signal Processing 2006.
    [70]黄家才,石要武.一种新的近场源距离及到达角联合估计算法[J].电子与信息学报.2007,29(11):2788-2742.
    [71]Xuezhi Yan,Shuxun Wang,Ke Wang.Localization of Near Field Cyclostationary Source Based on Fourth-Order Cyclic Cumulant[C].9th International Conference on Signal Processing. Oct.26-29 2008 Beijingchina,1629-1632.
    [72]周祎,冯大政,刘建强.基于联合对角化的近场源参数估计.电子与信息学报[J].2006,28(10):1766-1769.
    [73]黄志强,王树勋,王波.基于近场源四维参数的估计方法[J].吉林大学学报(工学版),2006,36(1):72-76
    [74]黄志强,王树勋,王波.基于二阶统计量的四维近场源定位[J].电路与系统学报,2006,11(6):56-60.
    [75]黄志强,王树勋,王波.一种联合估计近场源四维参数的方法[J].电子与信息学报,2007,29(2):414-417.
    [76]Huang Zhiqiang, Wang Shuxun, Wang Bo.A Method for 4-D Parameters Estimation of Near Field Sources[C].IEEE ICNSC 2006,997-1000.
    [77]梁军利,冀邦杰.一种基于平行因子分析的近场源定位新方法[J].电子学报.2007,35(6):1909-1915.
    [78]梁军利,王诗俊.一种无须参数配对的近场源定位新算法[J].电子学报,2007,35(10):1122-1127.
    [79]梁军利,杨树元.基于平行因子分析的信源四维参数联合估计[J].科学通报,2008,53(7):843-850.
    [80]Junli Liang,Shuyuan Yang,junying Zhang.A New Near Field Source Localization Algorit-hm without Pairing Parameters[C].4th IEEE Workshop On Sensor Array and Multichannel Processing,2006,162-165.
    [81]张瑞娟,廖桂生.非均匀噪声环境下宽带近场源定位的两种改进方法[J].雷达科学与技术,2004,2(2):274-278.
    [82]Xuezhi Yan and Hong Jiang.Broadband Near-Field Range and Bearing Estimation Based on Fourth Order Cumulants[C].International Conference on Communications and Mobile Computing,2009,43-46.
    [83]杨志伟,廖桂生.改进的基于Spatial WVD和Hough变换的近场信源参量估计及性能分析[J].光子学报,2007,36(5):937-940.
    [84]Bo Wang, Juanjuan Liu.Time-Frequency ESPRIT Method for Near-Field Source Localization[C]. International Conference on Computer, Mechatronics, Control and Electronic Engineering,2010,214-217.
    [85]Tsakalides P, Nikias C L.The Robust Covariation-Based MUSIC (ROC-MUSIC) Algorithm for Bearing Estimation in Impulsive Noise Environments [J].IEEE Transaction On.Signal Processing,1996,44(7):1624-1633.
    [86]Liu T H, Mendel J M.A Subspace-Based Direction Finding Algorithm Using Fractional Lower Order Statistics [J].IEEE Trans.Signal Processing,2001,49(8):1605-1613.
    [87]P.Tsakalides, CLNikias. Maximum Likelihood Localization of Sources in Noise Modeled as a Stable Process [J].IEEE Transactions on Signal Processing,1995,43(11): 2700-2713.
    [88]吕泽均,肖先赐.基于时延分数阶相关函数时空处理的子空间侧向算法.信号处理,2003,19(1):51-54.
    [89]Zejun Lu, Xianci Xiao.A Novel Algorithm for 2-D DOA Estimation in the Presence of Impulsive Noise[C].45th Midwest Symposium on Circuits and Systems,2002, Vol.3 21-24.
    [90]何劲,刘中.冲击噪声环境中求根类DOA估计方法研究[J].系统工程与电子技术,2005,27(12):2103-2106.
    [91]何劲,刘中.基于Screened Ratio原理的冲击噪声环境下DOA估计算法[J].电子与信息学报,2006,28(5):875-878.
    [92]黄蕾,张曙.冲击噪声环境下的快速DOA估计[J].哈尔滨工程大学学报,2008,29(6):599-603.
    [93]夏铁骑,万群.利用联合对角化分数低阶空时矩阵进行冲击噪声环境下的二维DOA估计[J].中国科学E:信息科学,2008,38(8):1310-1318.
    [94]夏铁骑,万群.冲击噪声环境下基于任意阵列流形的空时二维DOA估计方法[J].航空学报,2008,29(5):1233-1238.
    [95]王波,王树勋.冲击噪声背景下的近场源二维参数估计方法.电路与系统学报[J],2005,10(5):5-9.
    [96]Compton RT.JR.On The Performance of A Polarization Sensitive Adaptive Array[J]. IEEE Trans. AP,1981,29(5):718-725.
    [97]Compton RT.JR.The Tripole Antenna:An Adaptive Array with Full Polarization Flexibilily [J]. IEEE Trans. AP,1981,29(6):944-952.
    [98]Compton RT.JR.The Performance of A Tripole Adaptive Array Against Cross-Polarized Jamming [J]. IEEE Trans. AP,1983,31(4):682-685.
    [99]Hyung-Rae Park, Hong Wang. An Adaptive Polarization-Space-Time Processor For Radar System, Antennas And Propagation Society International Symposium[C]. AP-S, 1993,2:698-701.
    [100]Hyung-Rae Park, Jian Li. Polarization-Space-Time Domain Generalized Likelihood Ratio Detection of Radar Targets [J], Signal Processing.1995,41:153-164.
    [101]Debora Pastina, Piefrancesco Lombardo. Adaptive Polarimetric Target Detection with Coherent Radar[C]. IEEE International Radar Conference.2000,93-97.
    [102]Jian Li, Compton RT Jr.Angle and Polarization Estimation Using ESPRIT With A Polarization Sensitive Array [J]. IEEE Trans. AP,1991,39(9):1376-1383.
    [103]Jian Li, Compton RT Jr.Angle Estimation Using a Polarization Sensitive Array [J]. IEEE Trans. AP,1991,39(10):1539-1543.
    [104]Jian Li.On Polarization Estimation using A Polarization Sensitive Array[C].IEEE Proc.Sixth Workshop On Statistical Signal And Array Processing,1992,465-468.
    [105]Jian Li and Compton RT Jr.Two-Dimensional Angle and Estimation using The ESPRIT Algorithm [J]. IEEE Trans.AP,1992,40(5):550-555.
    [106]Jian Li.Direction and Polarization Estimation using Arrays with Small Loops and Short Dipoles [J].IEEE Trans.AP,1993,41(3):379-387.
    [107]A Nehorai and E Paldi.Vector-Sensor Array Processing for Electromagnetic Source Localization [J].IEEE Trans.Signal Processing,1994,42(2):376-398.
    [108]M D Zoltowski, K T Wong.ESPRIT-Based Direction-Finding with A Sparse Uniform Array of Electromagnetic Vector Sensors [J].IEEE Trans.Signal Processing,2000,48(8): 2195-2204.
    [109]K T Wong and L Li.Root-MUSIC-Based Direction-Finding and Polarization Estimation using Diversely Plolrized Possibly Collocated Antennas [J].IEEE Antennas and Wireless Propagation Letters,2004,3(1):129-132.
    [110]Y Hua.A Pencil-MUSIC Algorithm for Finding Two-Dimensional Angels and Polarization using Cross Dipoles [J]. IEEE Trans Antennas and Propagat 1993,41(3): 370-376.
    [111]王建英,曾庆华.用任意阵实现二维到达角和极化的联合估计.电波科学学报[J],1999,14(4):410-415.
    [112]王建英,陈天麒.用四阶累积量实现频率、二维到达角和极化的联合估计[J].中国科学E辑,2000,30(5):424-429.
    [113]徐友根,刘志文.电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计-空间平滑方法[J].通信学报,2004,25(5):28-38.
    [114]王洪洋,王兰美,廖桂生.基于单矢量传感器的信号多参数估计方法.电波科学学报[J],2005,20(1):15-19.
    [115]王兰美,王洪洋.提高信号到达角估计精度的新方法.电波科学学报[J].2005,20(1):91-94.
    [116]黄家才,温秀兰.基于极化域平滑的宽带循环平稳相干源波达方向估计[J].仪器仪表学报,2008,29(10):2230-2234.
    [117]Baha A.Obeidat Yimin Zhang.Range and DOA Estimation of Polarized Near-Field Signals using Fourth-Order Statistics[C].ICASSP,2004,97-100.
    [118]王波,王树勋.基于二阶统计量的近场定位新方法[J].电子与信息学报,2006,28(6):1004-1008.
    [119]Yuntao Wu, So H.C.Passive Localization of Near-Field Sources with a Polarization Sensitive Array [J].IEEE Transactions on Antennas and Propagation,2007,55(8): 2402-2408.
    [120]黄家才,石要武.基于四阶累积量的极化近场源距离、频率及到达角的联合估计算法[J].吉林大学学报(工学版),2006,36(6):973-977.
    [121]Jia-Cai Huang and Yao-Wu Shi.Joint DOA,Range and Polarization Estimation of Near-Field Sources using Second Order Statistics[C].International Conference on Machine Learning and Cybernetics,2006,3470-3474,13-16 Aug.2006.
    [122]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2008.
    [123]戴天时.矩阵论[M].长春:吉林科学技术出版社,2000.
    [124]燕学智.近场无线定位算法及超声定位AGV技术研究[D].吉林大学博士论文,2008.
    [125]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [126]黄家才.极化阵列信号处理的理论与方法研究[D].吉林大学博士论文,2007.
    [127]何劲.a稳定分布噪声背景下阵列信号处理方法研究[D].南京理工大学博士论文,2007.
    [128]刘成材.基于分数低阶统计量的DOA和TDOA估计算法研究[D].吉林大学硕士论文,2006.
    [129]刁鸣,缪善林.一种二维ESPRIT算法参数配对新方法[J].系统工程与电子技术,2007,29(8):1226-1229.
    [130]Kedia V S, Chanda B.A New Algorithm for 2-D DOA Estimation[J].Signal Processing, 1997,60(3):325-332.
    [131]周袆,冯大政,刘建强.一种新的近场源三维参数联合估计方法.电波科学学报[J].2006,21(5):722-726.
    [132]Cumulant-Based Approach to the Harmonic Retrieval and Related Problems [J].IEEE Trans. Signal Processing,1991,39(5):1099-1109.
    [133]Zoltow Ski M D.Solving the Generalized Eigenvalue Problem with Singular Forms [J]. Proc of IEEE,1987,75(11):1546-1548.
    [134]A.Belouchrain, K.Abed-Meraim.A Blind Source Separation Technique using Second Order Statistics [J].IEEE Trans.Signal Processing,1997,2(45):434-444.
    [135]J.F.Cardoso and A.Souloumiac.Blind Beamforming for Non-Gaussian Signals [J], IEEE Proceeding Radar and Signal Processing,1993,140(6):362-370.
    [136]王建英等.用L阵实现频率二维到达角和极化的联合估计[J].电波科学学报,2001,16(1):30-33.
    [137]夏铁骑.二维波达方向估计方法研究[D].电子科技大学博士论文,2008.
    [138]Sylvie Marcos.Performances Analysis of the Propagator Method for Source Bearing Estimation[C].IEEE International Conference on Acoustics,Speech, and Signal Processing.1994,237-240.
    [139]Sylvie Marcos.The Propagator Method for Source Bearing Estimation [J]. Signal Processing.1995,42(2):21-138.
    [140]吴云韬,廖桂生.一种波达方向、频率联合估计快速算法[J].电波科学学报,2003,18(4):380-384.
    [141]Tayem.L-Shape 2-Dimensional Arrival Angle Estimation with Propagator Method[C]. IEEE 61st Vehicular Technology Conference.2005,6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700