光学区雷达目标结构成像的理论及其在雷达目标识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以宽带雷达体制为研究背景,在复杂背景下,主要研究了雷达背景杂波的仿真、雷达目标一维、二维结构成像的机理和方法,还研究了基于目标结构成像的识别方法等问题。
     在序论中,首先简要回顾了目标电磁散射特性,以及雷达目标识别领域的研究方法和前人所作的工作,扼要总结了现代谱估计中谐波估计理论的现状和发展,介绍了本文研究的主要内容。
     第二章以高分辨雷达杂波仿真为研究对象,以零记忆非线性变换(ZMNL)为研究手段,推演了几种典型杂波在ZMNL变换前后输入输出间非线性变换关系,提出了求解输入输出非线性关系式的快速数值求解方法(“误差控制”法)。回顾了产生均匀分布、高斯分布随机序列的数学原理,提出了基于AR模型的相关高斯杂波仿真方法。最后给出了多种杂波的仿真结果。
     第三章以宽带阶梯变频雷达为研究背景,在白噪声和杂波条件下,研究了提取目标强散射中心的参数估计方法。首先从目标多散射中心理论出发,推演了描述目标散射特性的频域散射数学模型。在白噪声背景下,深入研究了几种典型的散射中心估计方法。在杂波背景下,研究了对杂波种类不敏感的散射中心估计方法。基于目标一维结构信息,提出了全极化条件下目标一维距离像的匹配识别方法;以目标散射中心为特征,提出了基于散射中心位置的相关匹配识别方法。最后用实验验证了个各算法的性能。
     第四章在宽带体制下,推导了目标多散射中心的二维频域散射数学模型,分析了目标二维结构成像的两维分辨力和测量数据的坐标变换。在白噪声背景下,针对目标二维散射模型自相关函数“边缘解耦”特性,提出了估计目标二维散射中心的MP2D算法。在杂波背景下,研究了提取目标二维散射中心的RELAX算法。最后,用实验验证了两种算法的性能。
     第五章总结了本文的研究工作,指出了需要进一步解决的问题。
In this paper, under the wideband radar background, the simulation method of radar clutter, the principle and estimation method of one-dimension and two-dimension physical structure features of radar target, some classification method using physical structure features of target, etc. are studied.
    In chapter 1, the fields of electromagnetic scattering characteristics of target, the method and previous researched result in the radar target recognition domain, the present situation and progress of harmonious estimation theory in modern spectrum estimation are briefly reviewed, also the main works of this paper are introduced.
    In chapter 2, some statistics models of radar clutters are investigated under the high resolution radar, and some relation between the input and output correlation coefficient of zeros memory nonlinearity(ZMNL) are analyzed, then the fast numerical method(called error controlled method) which utilize calculating input and output correlation coefficient of ZMNL is proposed. After the mathematics principle which use simulating well and Guassian probability distribution are reviewed, the simulation method of correlation Gaussian clutter based on AR model is presented. Finally, some experiment results are given.
    In chapter 3, under the wideband radar system, some parameter estimation methods of scattering center are studied in the white noise and clutter background. Based on the multi scattering center theory, the frequency model describing electromagnetic scattering characteristics of target is developed. Then, some typical scattering center estimation methods are lucubrated. In clutter condition, the parameter estimation algorithm which is no sensitivity to clutter is studied. Finally, based on one-dimension structure characteristics of target, the fully polarized correlation match recognition algorithm using range profile and the correlation match recognition algorithm using the scattering center position are proposed, and the experiment results suggest that the two recognition algorithms have fine classification characteristics.
    In chapter 4, firstly, the two-dimension scattering model of target under high resolution radar system is developed, the two dimension resolution rates are reviewed and coordinate transformation of data are discussed. Then, in white noise condition, a two-dimension scattering center estimation method which is called matrix pencil method of two-dimension harmonious restructure (MP2D) is proposed. The two-dimension RELAX algorithm which is used estimating the two-dimensional scattering center in clutter circumstance is studied.
    In chapter 5, the main works of this dissertation are summarized and the future researched areas are pointed out.
引文
[1] Barton D K, Sputnik Ⅱ as observed by C band radar, IRE Nat. Conf. Rec. 1959, 7(5) : 67-73
    [2] .Kennaugh E M, Moffatt D L, Transient and impulse response approximation, Proc, IEEE, 1965, 53(3) :893-901
    [3] Moffatt D L, Interpretation and application of transient and impulse response approximation in electromagnetic scattering problem, Report 2415-1, The electrosciense laboratory, The Ohio state university.
    [4] Baum C E, On the singularity expansion method for the solution of electromagnetic interaction problem, Interaction Note 88, AFWL,1971
    [5] Blaricum M L, Mittra R, A technique for extracting the poles and residues of a system directly from its transient response, IEEE Trans, on AP, 1975, 23(6) : 777-781
    [6] Repjar A G, Ksienski A A, Object identification from mutifrequency radar return, Radio and Elec. Engineer, 1975,45(4) :161-167
    [7] Lin Y T, Ksienski A A, Indentification of complex geometrical shapes by mean of low-frequency radar return, Radio and Elec. Engineer, 1976,46(10) :472-486
    [8] Brittingham J N et. al., Poles extraction from real-frequency information, Proc. IEEE 1985, 68(1) : 13-19
    [9] Jain V K, Sarkar T K, Weiner D D, Rational modeling by Pencil of Function method, IEEE Trans, on ASSP, 1983,31(3) : 564-573
    [10] Hua Y B, Sarkar T K, Generalized Pencil-of Function method for extracting poles of an EM system from transient response, IEEE Trans. on AP, 1989, 37(2) : 229-234
    [11] Kennaugh E M, The K-pulse concept, IEEE Trans, on AP, 1981, 29(2) : 327-331
    [12] Kim H T, Moffatt D L, K-pulse for a thin circular loop, IEEE Trans, on AP 1985, 33(12)
    [13] Fok F T S, moffatt D L,Wang N, K-pusle estimation from the impulse response of a traget, IEEE Trans, on AP, 1987,35(8) : 926-933
    [14] Chen K M, Radar waveform synthesis method-A new radar detection scheme, IEEE Trans, on AP, 1981,29(4) : 553-566
    [15] Chen K M, Westmoreland D, Radar waveform synthesis for exciting single-mode backscatters from a sphere and application for target discrimination, Radio Science, 1982, 30(10) : 867-880
    [16] Chen K M, Nyquist D P, Radar discrimination by convolution of radar return with extinction-pulse and single-mode extraction signals, IEEE Trans, on AP, 1986, 34(7) : 896-904
    
    
    [17] Sinclare G, The transmission and reception of elliptically polarized waves, Proc. of IRE, 1950, 38(2)
    [18] Kennaugh E M, Polarization properties of radar reflections, Antenna Lab., Ohio state Univ., Columbus, OH, ZRADC Cont., No.AF28(099)-90, Project Rept. 1952, 339-12(AD2494)
    [19] Huynen J R, A new approach to radar cross-section measurements, IRE international Cony. Rec., 1962, 5
    [20] Brickel S H, Some invariant properties of the polarization scattering matrix, Proc. IEEE, 1965.
    [21] Kuhl F, CoveUi R,. Object identification by multiple observation of the scattering matrix, Proc. IEEE, 1965.
    [22] Morgan L A, Weisbrod S, A feasibility study of RCS matrix signature for target classification, RADC Rep. 1980, RADC-TR 8050
    [23] Kennaugh M, Polarization dependence of RCS-A geometrical interpretation, IEEE Trans. on AP, 1981, 29
    [24] Manson A C, Boerner W M, Interpretation of high resolution polarimetric radar target down-range signature using Kennaugh's and Huynen's target characteristic operator theories, Inverse Method in Electromagnetic Imaging, Part2.
    [25] 庄钊文,雷达频域极化域目标识别的研究,北京:北京理工大学博士论文,1989
    [26] Chamberlain N F, Radar target identification of aircraft using Polarization Diverse Feature, IEEE Trans. on AES, 1991,27(1)
    [27] 陈曾平,雷达目标结构特征识别的理论与应用,长沙:国防科技大学博士论文,1994
    [28] 肖顺平,宽带极化雷达目标识别的理论与应用,长沙:国防科技大学博士论文,1995
    [29] Zwicke P E, Imre J R, A new implementation of the Mellin transform of range profile of ships, IEEE Trans. on PAMI. 1983, Vol.5(2):191-199
    [30] Silverstein P B, Sands O S, Garber F D, Radar target classification and interpretation by means of structural descriptions of backscatter signal, IEEE International Radar Conference, 1991.
    [31] 何松华等,基于宽带毫米波工作体制的雷达目标识别方法探讨,红外与毫米波学报,1992,11(6)
    [32] 肖志河,旋转目标微波成像的滤波—逆投影算法,北京:航天工业部二院207所硕士论文,1986
    [33] Compton R T, Two-dimensional imaging of radar targets with the MUSIC algorithm, Tech. Rep. 719267-1, Ohio state Univ. Electro Sic. Lab., Dec. 1987
    
    
    [34] Walton E K, Moghaddar A, Demattio C, Superresolution radar target imaging, in proc. 1991 Antenna Meas. Techniques Assoc. Symp., Boulder, CO., Oct. 1991,:123-126
    [35] Gupta I J, High-resolution radar imaging using 2-D linear predicton, IEEE Trans. on AP. 1994, 42(1): 31-37
    [36] Odendaal J W, Bamard E, W.I.Pistorius C, Two-dimension supperresolution radar imaging using the MUSIC algorithm, IEEE Trans. on AP 1994, 42(10): 1386-1391
    [37] Tu M W, Gupta I J, Walton E K, Application of maximun likelihood estimation to radar imaging, IEEE Trans. on AP. 1997, 45(1):20-27
    [38] Bhalla R, Ling H, Three dimension scattering center extraction using the shoot and bouncing ray technique, IEEE Trans. on AP 1996, 44(11): 1445-1453.
    [39] Knaell K K, Cardillo G P, Radar tomography for the generation of three dimension imaging, IEE, Pro.-Radar, Sonar Navig., 1995, 142(2): 54-60
    [40] Powers EJ etc al, Cross section and radar equation for nonlinear scatters, IEEE Trans. on AES, 1981, 17(4): 602-605
    [41] Hong J Y etc al, On modeling the nonlinear relationship between fluctuations with nonlinear transfer functions, Proc. of IEEE, 1980, 68(4): 1026-1028
    [42] Harger R V, Harmonic radar system for near-ground infoliage nonlinear scatters IEEE Trans. on AES, 1976, 12(2): 230-245
    [43] Bob X L, Simon H, Chaotic detection of small target in sea clutter, IEEE Proc, 1993
    [44] Lo T, Leung H, Fractal characterisation of sea-scattered signals and detection of sea surface target, IEEE Proc.-F, 1993, 140(4)
    [45] 黎湘,非线性方法在雷达目标识别中的应用研究,长沙:国防科技大学博士论文,1998
    [46] 鲜明,雷达目标宽带信息处理与识别的理论和方法研究,长沙:国防空间大学博士论文,1998
    [47] Watts S, Ward D K, Spatial correlation in K-distribution sea clutter, IEE. Proceedings, 1987, 134(6): 526-532
    [48] Sheen D R, Johnston L P, Statistical and spatial properties of forest clutter measured with polarimetric synthetic aperture radar IEEE Trans. on GPS,1992, 30(3): 578-585
    [51] Menon K R, Balakrishnan N, Janakiraman M, Ramcnand K, Characterization of fluctuation statistics of radar clutter for Indian terrain, IEEE Trans. on GRS 1995, 33(2): 317-323
    [49] 罗贤云孙芳等,雷达地杂波的测试与分析,现代雷达,1994,16(4):10—22
    [50] [美]R.L.Mitchell,陈讯达译,雷达系统模拟,北京:科学出版社,1982
    
    
    [52] Jao J K, Amplitude distribution of composite terrain radar clutter and K-distribution, IEEE trans, on AP, 1984, 32(10) : 1049-1062
    [53] Oliver C J, Representation of radar sea clutter, IEE proceedings, 1988, 135(6) : 497-500
    [54] Raghavan R S, A Method for estimating parameters of K-distributed clutter, IEEE trans, on AES, 1991, 27(2) : 238-246
    [55] Watts S, Radar detection pridiction in K-distribution sea clutter and thermal noise, IEEE trans, on.AES, 1987,23(1) : 40-45
    [56] Frery A C, Muller H J, Yanasse C C F, A model for extremely heterogeneous clutter, IEEE trans, on GRS, 1997, 35(3) : 648-659
    [57] Anastassopoulos V, Lampropoulos G A, rosopoulos A D, High resolution radar clutter statistics, IEEE trans, on AES, 1999, 35(1) : 43-59
    [58] Sun G, Ranson K J, A three-dimensional radar backscatter model of forest canopies, IEEE trans, on GRS, 1995,33(2) : 372-382
    [59] Lin C Y, Sarabandi K, Electromagnetic scattering model for a tree trunk above a titled ground plane, IEEE trans, on GRS, 1995,33(4) : 1063-1070
    [60] Rangaswarray M, Weiner D, Computer generation of correlated non guassian radar clutter, IEEE Trans, on AES, 1995, 31(1) : 106-115
    [61] 王盈等,相关K分布杂波的建模与仿真,信号处理,1997,13(2) :141-146
    [62] Liu B et al, Generation of a random sequence giving a jointly specified marginal distribution and auto covariance, IEEE Trans, on ASSP, 1982,30(2) : 973-983
    [63] James L, Correlated K-distribution clutter generation for radar detect and track, IEEE Trans, on AES, 1995,31(2) : 568-580
    [64] Blaricum M L, Mittra R, A technique for extracting the poles and residues of a system directly from its transient response, IEEE Trans, on AP, 1975,23(6) : 777-781
    [65] Kumaresan R, Tufts D W, Estimating the parameters of exponentially damped signals in noise and pole-zero modeling, IEEE Trans, on ASSP, 1982, 30(6) : 833-840
    [66] Jain V K et al, Rational modeling by pencil-of-function method, IEEE Trans. on ASSP, 1983, 31(3) : 564-573
    [67] Hua Y B et al, Generalized pencil-of-function method for extracting poles of an EM system from its transient response, IEEE Trans, on AP, 1989, 37(2) : 229-234
    [68] Hua Y B, Sarkar T, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans, on ASSP, 1990, 38(5) : 814-824
    [69] Roy R, Paulraj A, Kailath T, ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise, IEEE Trans, on ASSP, 1986, 34(5) : 1340-
    
    1342.
    [70] Roy R, Kailath T, Total least squares ESPRIT, in Pro. 21st asilomar conf. Signals, syst.,comput., 1987,:297-301
    [71] Zoltowski M, Novel techniques for estimation the array signal parameters based on matrix pencil, sunspace rotation, and total least squares, in Proc. IEEE ICASSP, 1988, 4(10):2861-2864
    [72] Zoltowski M, Stavinides D, Sensor array signal processing via a Procrustes rotations based eigen-analysis of the ESPRIT data pencil, IEEE Trans. on ASSP, 1989, 37(6): 832-861
    [73] Kay S M, Modem spectral estimation, Prentice-Hall, Englewood Cliffs, 1988
    [74] Pisarenko V F, The retrieval of harmonics from a covariance function, Geophys.J.Roy. Astron. Soc., 1973, 33(2): 347-366
    [75] Kumaresan R, Tufts D W, Estimating the angle of arrival of multiple plane waves, IEEE Trans. on AES, 1983, 19(1): 134-139
    [76] Schmidt R O, A signal subspace approach to multiple emitter location and spectral estimation, PH.D. dissertation, Stanford University, 1981
    [77] Johnson D H, The application of spectral estimation method to bearing estimation problems, Proc. IEEE, 1982, 70(9): 1018-1028
    [78] Papadopoulos C K, Nikias C L, Parameter estimation of exponentially damped sinusoids using higher order statistics IEEE Trans. on ASSP, 1990, 38(10): 1424-1435
    [79] Pan R, Nikias C L, Harmonic decomposition method in cumulants domains, Proc. IEEE ICASSP'88, 1988,:2356-2359.
    [80] Zhang X D, Liang Y C, Li Y D, A hybrid approach to harmonic retrieval in non-Guassian noise IEEE Trans. on Information Theory, 1994, 40(9): 1220-1226
    [81] 石要武,戴逸松,丁宏,有色噪声背景下正弦信号频率估计的互谱 Pisarenko 和MUSIC方法,电子学报,1996,24(10):46-50
    [82] Li J, Stoica P, Efficient mixed-spectrum estimation with application to target feature extraction, IEEE Trans. on SP, 1996, 44(2): 281-295
    [83] Liu Z S, Li J, Stoica P, RELAX-based estimation of damped sinusoidal signal parameters Signal Processing, 1997, 62(2): 311-321
    [84] 蔡庆宇等著,相控阵雷达数据处理及其仿真技术,北京:国防工业出版社,1997
    [85] 梁泰基等编著,统计无线电理论,长沙:国防科技大学出版社,1988
    [86] Hurst M P, Mittra R, Scattering center studies via prony's method, IEEE Trans. on AP, 1987, 35(8): 980-988.
    [87] 何松华等,雷达目标高分辨距离像——极化结构成像方法研究,电子学报,1994,22(7):2-8
    
    
    [88] 冯西安等,正弦信号高分辨频率估计的特征分解方法研究,电子学报,1995,23(7):15-20
    [89] Hurst M P et al, Scattering center analysis via prony's method, IEEE Trans on AP, 1980, 28(3): 182-190
    [90] Hua Y B, Sarkar T K, On SVD for estimating generalized eigenvalues of singular matrix pencil in noise, IEEE Trans on SP, 1991, 39(4): 892-899
    [91] Li J, Stoica P, Efficient mixed-spectrum estimation with application to target feature estimation, IEEE Trans on SP, 1996, 44(2): 281-295
    [92] Kay S M, Nagesha V, Maximum-likelihood estimation ofsignais in autoregressive noise, IEEE Trans on SP, 1994, 42(1): 88-101
    [93] 姜卫东等,基于—维距离像的目标识别方法,现代雷达,1999,21(1):19-22
    [94] Li H J, Yang S H, Using range profiles as feature vector to identify aerospace object, IEEE Trans. on AP, 1993, 41(3): 261-268
    [95] Zyweck A, Bogner R, Radar target classification of commercial aircraft, IEEE Trans. on AES, 1996, 32(2): 598-606
    [96] 张恂,雷达目标的高分辨参数建模及其在目标识别中的应用,长沙:国防科技大学博士论文,1997
    [97] 黄培康等,雷达目标特征信号,北京:宇航出版社,1993
    [98] Bechtel M E, Short pulse target characteristics, in Atmospheric effect on radar target identification and imaging, 1976,: 3-53
    [99] Kouyoumjian R G, Pathak P H, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, 1974, 62(11): 1448-1461
    [100] Senior T B, Diffraction coefficients for a discountinuity in curvature, Electronics letters, 1971, 7(2): 249-250
    [101] Kaminetzky L, Keller J B, Diffraction coefficients for higher order edges and vertices, SIAM J. 1972, 20(1): 109-131
    [102] 王卫东,信号参数估计、人工神经网络及其在雷达目标识别中的应用研究,北京:北京理工大学博士学位论文,1994
    [103] WAX M, Ziskind I, Detection of the number of coherent signal by MDL principle, IEEE Trans. on ASSP, 1989, 37(8): 1190-1196
    [104] WAX M, Kaikath T, Detection of signal by information theoretic criteria, IEEE Trans. on ASSP, 1985, 33(2): 387-392
    [105] Kundu D, Estimating the number of sinusoid in additive white noise, Signal Processing 1997, 56(1): 103-110
    [106] 姜卫东等,雷达目标高分辨距离像的特征提取及识别方法,国防科技大学学报,1999,21(3):55-58
    [107] Steinberg B D, Miscowave imaging of aircraft, Proc. IEEE, 1989.
    
    
    [108] Mesa D L, High resolution radar imaging, Artech House, 1982.
    [109] Cadzow J A, Two dimensional spectral estimation, IEEE Trans. on ASSP, 1981, 29(2): 396-401
    [110] Zhang X D, Chen J, High resolution two dimensional ARMA model, IEEE Trans. on ASSP, 1991, 39(4): 765-769
    [111] 姜卫东等,一种新的二维谐波估计方法,国防科技大学学报,2000,22(1):55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700