电磁波与低维固体表面等离体子相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着电磁异性材料(Electromagnetic Metamaterial)的发展,表面等离体子(Surface Plasmons)因其潜在的发展前景而受到人们的广泛关注,特别是电磁异性材料界面表面等离体子的研究更是近年来的热点。本论文从表面等离体子的基本原理及性质出发,详细研究了电磁异性材料界面本征模式对入射电磁波的响应特性,并利用衰减全反射方法分析了入射电磁波与表面等离体子的相互作用,分析了影响反射率变化的物理因素及机制。另外,基于绝对零温时低维固体等离体子的电磁响应特性,本文还讨论了温度对自由电子系统色散关系的影响。
     本论文的第一部分主要研究电磁异性材料界面表面等离体子的本征模式,及其在入射电磁波作用下的衰减全反射波谱。其主要内容和创新如下:
     首先,详细分析了电磁异性材料单界面的本征模式,通过计算发现,在这种材料界面上,表面等离体子不仅可以由p-极化(TM modes)的入射波激发,也可以由s-极化(TE modes)的入射波激发,形成表面等离体子激元,且其传播特性随着参数值的改变而不同。除此之外,和金属界面不同,电磁异性材料界面的表面等离体子激元既能在材料的禁带(Stop-band)区域内传播,也能在材料的通带(Pass-band)区域内传播,且可能由一条变为低频和高频的两条分支。接着,利用衰减全反射方法详细的讨论了两种极化模式下入射电磁波与表面等离体子的相互作用,并计算和分析了影响耦合的几个因素,结果证明:(1)当入射电磁波与表面等离体子满足波矢匹配条件时,两者能够相互耦合,且其耦合强度受中间层厚度、电磁异性材料阻尼系数的影响;(2)入射角度和电磁异性材料占空比等参数对其相互耦合的频率和强度大小都有重要的影响。
     其次,计算了电磁异性材料平板结构上下界面本征模式的相互耦合,包括对称型和非对称型结构。文中指出,随着平板厚度的增加,上下界面表面等离体子本征模式的相互耦合逐渐减弱,直至演化为半无限大情形。同样的,本文也分析了衰减全反射波谱中反射率随中间层厚度和平板厚度的变化关系,结果再次表明中间层厚度不影响耦合频率而影响耦合的强度,但电磁异性材料平板厚度却对两者都有影响。
     本论文的第二部分主要探讨了自由电子气系统中,非零温度对Lindhard函数和色散关系的影响。从微观理论出发,首先给出在绝对零温时不同维数(三维、二维、一维)下Lindhard函数和色散关系的解析表达式,接着,详细计算了温度对两者的影响,并给出了物理解释。数值计算的结果表明,温度在不同维数下对Lindhard函数和色散关系的影响与费米波矢(或费米温度)的取值有关,而且温度不改变频率对波矢的函数关系。小波矢极限下,室温范围附近,当费米波矢较大时,随着温度的增加,色散关系接近零温时的曲线,但当费米波矢较小时,色散曲线则远离零温值。
Along with the development of the electromagnetic metamaterials, the surface plas-mons retrieve much more attention due to their potential applications, especially for the study of the surface plasmons associated with the metamaterials in recent years. Started with the fundamental principles and the properties of the surface plasmons, we investigate the responses of the eigen modes to the incident waves in detail. Furthermore, the interac-tion between the surface plasmon and the incident wave has been analyzed by the attenuated total reflectivity (ATR) technique. We present the physics factor and the mechanism influ-encing the reflectivity. Beside, we discuss the impacts of the temperature on the dispersion relations based on the analysis forms at the absolute zero.
     In the first part of this thesis, we demonstrate the eigen modes on the interfaces of the electromagnetic metamaterials and calculate the ATR spectra. The contents and the conclusions are presented as follows:
     Firstly, the eigen modes on the semi-infinite metamaterial are studied. All the results show that the interfaces associated with metamaterial can support the surface plasmon po-laritons, which are excited by p- or s-polarized incident waves (i.e.TM or TE modes). The propagating properties are dependent on the coefficients of the metamaterial. Moreover, the surface plasmon polaritons not only propagate in the frequency regions of the stop-bands, but also propagate in the pass-bands of the metamaterial, which is different from metal. The dispersion relations may become two branches with lower and higher frequency, respec-tively. After that, using the ATR spectra, the coupling between the incident waves and the surface plasmons are detail discussed. Then, several factors contributed to the coupling are calculated and analyzed. When the matching conditions are satisfied, the incident waves couple with the surface plasmons and the coupling strengths are influenced by the thickness of the middle layer or the damping of metamaterial. However, the incident angle and the fractional ratio of the unit cell occupied by the interior of the split ring in metamaterial will affect the coupling frequency and the coupling strengths.
     Secondly, we calculate the eigen modes on the upper and lower interface of the mate-material slab with finite thickness. The coupling of the eigen modes for the symmetry and antisymmetry case are given successfully. We point that the interactions decrease with the increasing thickness of the slab, which will evolve into the case of the semi-infinite when the thickness is large enough. Similarly, the ATR spectra dependent on the thicknesses of the air and the slab are presented. We conclude that the thickness of the air influences the cou- pling strength without changing the coupling frequency, whereas the slab thickness effects the coupling strength and frequency simultaneously.
     In the second part of this thesis, based on the free electrons system, we discuss the influence of temperature on the Lindhard function and the dispersion relations. Firstly, at the absolute zero, the analysis forms of Lindhard function are derived for different dimensions (three dimension two dimension、one dimension). Secondly, we calculate the change of Lindhard and the dispersion numerically. At the same time, the explanations are presented. We find that the influence of temperature is correspond to the Fermi wavevector (or the Fermi Temperature), which does not change the relation between frequency and wavevector. At the limit of small wavevector, the dispersion relations near the room temperature are close to the zero one with the increasing temperature when the Fermi wavevector is larger. However, the tendency is contrary when the Fermi wavevector is smaller.
引文
[1]Agranovich V M. Surface polaritons. Amsterdam:North-Holland,1982.
    [2]Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin:Springer,1988.
    [3]Wu Z, Nelson R L, Haus J W, et al. Long-range surface plasmon devices design using subwavelength metal gratings. J. Nonlinear. Opt. Phys.,2008,17:413-423.
    [4]王保清,郑臻荣,顾培夫,等.基于表面等离子激元的亚波长器件研究.浙江大学学报(工学版),2010,44:364-367.
    [5]Zayats A V and Smolyaninov I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons. J. Opt. A:Pure Appl. Opt,2003,5:sl6-s50.
    [6]李正中.固体理论.第二版.北京:高等教育出版社,2002,90-92.
    [7]Henry C and Hopfield J J. Raman scattering by polaritons. Phys. Rev. Lett.,1965, 15:964-966.
    [8]Ritchie R H. Plasma losses by fast electrons in thin films. Phys. Rev.,1957,106(5): 874-881.
    [9]Pines D and Bohm D. A collective description of electron interactions:II. collective vs individual particle aspects of the interactions. Phys. Rev.,1952,85:338-353.
    [10]Pines D. Collective energy losses in solids. Rev. Mod. Phys.,1956,28:184-199.
    [11]Ruthemann G. Discrete energy losses of moderately fast electrons by transmission through thin sheets. Ann. Phys.,1948,2:113-134.
    [12]Lang W. The reduction in velocity of medium-fast electrons in transmission through thin metal foil. Optik,1948,3:233-246.
    [13]Powell C J and Swan J B. Origin of the characteristic electron energy losses in alu-minum. Phys. Rev.,1959,115:869-875.
    [14]Powell C J and Swan J B. Origin of the characteristic electron energy losses in mag-nesium. Phys. Rev.,1959,116:81-83.
    [15]Stern E A and Ferrell R A. Surface plasma oscillations of a degenerate electron gas. Phys. Rev.,1960,120:130-136.
    [16]Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys.,1968,216(4):398-410.
    [17]Kretschmann E and Raether H. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. Tell A,1968,23:2135-2136.
    [18]Bruns S R and Raether H. Plasmon Resonance Radiation from Non-radiative Plas-mons. Z. Phys.,1970,237:98-106.
    [19]Kretschmann E. The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys.,1971,241:313-324.
    [20]Johnson P B and Christy R W. Optical constants of the noble metals. Phys. Rev. B, 1972,6:4370-4379.
    [21]Fischer B, Marschall N and Queisser H J. Experimental studies of optical surface excitations. Surf. Sci.,1973,34:50-61.
    [22]Hollstein T, Kreibig U and Leis F. Optical properties of Cu and Ag in the intermediate region between pure drude and interband absorption. Phys. Status. Solidi. B,1977,82: 545-556.
    [23]Eric F Y K and Theodor T. Incidence angles for optimized ATR excitation of surface plasmons. Appl. Opt.,1988,27(19):4098-4103.
    [24]Ritchie R H. Surface plasmons and the image force in metals. Phys. Lett. A,1972, 38(3):189-190.
    [25]Ray R and Mahan G D. Dynamical image charge theory. Phys. Lett. A,1972,42(4): 301-302.
    [26]Sunjic M, Toulouse G and Lucas A A. Dynamical corrections to the image potential. Solid State Commun,1972,11(12):1629-1631.
    [27]Gadzuk J W and Metiu H. Theory of electron-hole pair excitations in unimolecular processes at metal surfaces. I. X-ray edge effects. Phys. Rev. B,1980,22:2603-2613.
    [28]Chabal Y J and Sievers A J. High-resolution infrared study of hydrogen (1X1) on tungsten (100). Phys. Rev. Lett.,1980,44:944-947.
    [29]Persson B and Ryberg R. Vibrational phase relaxation at surfaces:CO on Ni(111). Phys. Rev. Lett.,1985,54:2119-2122.
    [30]Echenique P M and Pendry J B. Absorpation profile at surfaces. J. Phys. C:Solid State Phys.,1975,8(18):2936-2942.
    [31]Echenique P M, Ritchie R H, Barberan N, et al. Semiclassical image potential at a solid surface. Phys. Rev. B,1981,23:6486-6493.
    [32]Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem.,1998,49:569-638.
    [33]Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature, 1993,361:186-187.
    [34]Berndt R, Gimzewski J K and Johansson P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett.,1991,67(27):3796-3799.
    [35]Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294:1901-1903.
    [36]Gordon J G and Ernst S. Surface plasmons as a probe of the electrochemical interface. Surf. Sci.,1980,101:499-506.
    [37]Schuster S C, Swanson R V, Alex L A, et al. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature,1993, 365:343-347.
    [38]Green R J, Frazier R A, Shakesheff K M, et al. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials,2000,21:1823-1835.
    [39]Sarid D. Long-Range Surface-Plasma Waves on Very Thin Metal Films Phys. Rev. Lett.,1981,47:1927-1930.
    [40]Sarid D, Deck R T, Craig A E, et al. Optical field enhancement by long-range surface-plasma waves. Appl. Opt.,1982,21:3993-3995.
    [41]Quail J C, Rako J G and Simon H J. Long-range surface-plasmon modes in silver and aluminum films. Opt. Lett.,1983,8(7):377-379.
    [42]Barker A S Jr. Direct optical coupling to surface excitations. Phys. Rev. Lett.,1972, 28:892-895.
    [43]Burke J J, Stegeman G I and Tamir T. Surface polariton-like waves guided by thin, lossy metal films. Phys. Rev. B,1986,33:5186-5201.
    [44]Deck R T and Sarid D. Enhancement of second-harmonic generation by coupling to long-range surface plasmons. J. Opt. Soc. Am.,1982,72:1613-1617.
    [45]Quail J C, Rako J G, Simon H J, and Deck R T. Optical second-harmonic generation with long-range surface plasmons. Phys. Rev. Lett.,1983 50:1987-1989.
    [46]Sarid D, Deck R T and Fasano J J. Enhanced nonlinearity of the propagation constant of a long-range surface-plasma wave. J. Opt. Soc. Am,1982,72:1345-1347.
    [47]Stegeman G I, Burke J J and Hall D G. Nonlinear optics of long range surface plas-mons. Appl. Phys. Lett.,1982,41:906-908.
    [48]Craig A E, Olson G A and Sarid D. Experimental observation of the long-range surface-plasmon polariton. Opt. Lett.,1983,8(7):380-382.
    [49]Yang F, Sambles J R and Bradberry G W. Long-range surface modes supported by the thin-films. Phys.Rev.B,1991,44(11):5855-5872.
    [50]Schildkraut J S. Long-range surface plasmon electrooptic modulator. Appl. Opt.,1988, 27:4587-4590.
    [51]Boltasseva A, Nikolajsen T, Leosson K, et al. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol.,2005,23(1):413-422.
    [52]Charbonneau R, Scales C, Breukelaar I, et al. Passive integrated optics elements based on long-range surface plasmon polaritons. J. Lightwave Technol.,2006,24(1):477-494.
    [53]Nenninger G G, Tobiska P, Homola J and Yee S S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors and Actuators B:Chemi-cal,2001,74:145-151.
    [54]Berini P. Plasmon-polariton modes guided by a metal film of finite width. Opt. Lett., 1999,24(15):1011-1013.
    [55]Berini P. Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express,2000,7(10):332-335.
    [56]Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B,2000,61(15):10484-10503.
    [57]Breukelaar I and Berini P. Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides. J. Opt. Soc. Am. A,2006,23:1971-1977.
    [58]Buckley R and Berini P. Long-range substantially nonradiative metallo-dielectric waveguide. Opt. Express,2009,34(2):223-225.
    [59]John S. Localization of light. Phys. Today,1991,44(5):32-40.
    [60]Betzig E and Trautman J K. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science,1992,257:189-194.
    [61]Luo X and Ishihara T. Surface plasmon resonant interference nanolithography tech-niqu. Appl. Phy. Lett.,2004,84(23):4780-4782.
    [62]Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature,2003,424:824-830.
    [63]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391:667-669.
    [64]Bethe H A. Theory of diffraction by small holes. Phys. Rev.,1944,66:163-182.
    [65]Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture. Science,2002,297:820-822.
    [66]Degiron A, Lezec H H, Barnes W L and Ebbesen T W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett., 2002,81:4327-4329.
    [67]Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B,1998,58:6779-6782.
    [68]Schroter U and Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B,1998,58:15419-15421.
    [69]Kim T J, Thio T, Ebbesen T W, et al. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt. Lett.,1999,24:256-258.
    [70]Thio T, Ghaemi H F and Lezec H J. Surface-plasmon-enhanced transmission through hole arrays in Cr films. J. Opt. Soc. Am. B,1999,16(10):1743-1748.
    [71]Grupp D E, Lezec H J, Ebbesen T W, et al. Crucial role of metal surface in enhanced transmission through subwavelength apertures. Appl. Phys. Lett.,2000,77:1569-1571.
    [72]Thio T, Lezec H J and Ebbesen T W. Strongly enhanced optical transmission through subwavelength holes in metal films. Physics B:Condensed Matter,2000,279:90-93.
    [73]Krishnan A, Thio T, Kim T J, et al. Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Commun.,2001,200:1-7.
    [74]Salomon L, Grillot F, Zayats A V, et al. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys. Rev. Lett.,2001,86:1110-1113.
    [75]Darmanyan A and Zayats A V. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study. Phys. Rev. B,2003,67:35424.
    [76]Barnes W L, Murray W A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett.,2004,92:107401.
    [77]Cao Q and Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett.,2002,88:057403.
    [78]Veselago V G. The electrodynamics of substance with simultaneously negative values of ε and μ. Sov. Phys. Usp.,1968,10(4):509-514.
    [79]Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett.,1996,76(25):4773-4776.
    [80]Pendry J B, Holden A J, Robbins D J, et al. Megnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech.,1999,47(11):2075-2084.
    [81]Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187.
    [82]Shelby R A, Smith D R and Schultz S. Experimental veritcation of a negative index of refraction. Science,2001,292:77-79.
    [83]Grzegorczyk T M, Moss C D, Jie L, et al. Properties of left-handed metamaterials: Transmission, backward phase, negative refraction, and focusing. IEEE Trans. Microw. Theory Tech.,2005,53(9):2956-2967.
    [84]Huangfu J, Ran L, and Chen H, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns. Appl. Phys. Lett.,2004, 84(9):1537-1539.
    [85]Chen H, Ran L, and Huangfu J, et al. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E,200470(5):057605(4).
    [86]Chen H, Ran L, and Huangfu J, et al. Metamaterial exhibiting left-handed properties over multiple frequency bands. J Appl. Phys.,2004,96(9):5338-5340.
    [87]陈红胜.异向介质等效电路理论及实验的研究[博士学位论文].杭州:浙江大学,2005.
    [88]Chen H, Ran L, Wang D, et al. Metamaterial with randomized patterns for negative refraction of electromagnetic waves. Appl. Phys. Lett.,2006,88(9):031908.
    [89]Ramakrishna S A and Grzegorczyk T M. Physics and applications of negative refrac-tive index materials. SPIE Press,2008.
    [90]Eleftheriades G V and Balmain K G. Negative refraction metamaterials-Fundamental. Principles and Applications. IEEE Press,2005.
    [91]Engheta N and Ziolkowski R W. Metamaterials-physics and engineering explorations. IEEE Press,2006.
    [92]Caloz C and Itoh T. Electromagnetic metamaterials:transmission line theory and microwave applications. IEEE Press,2006.
    [93]Hao Y and Mittra R. FDTD modeling of metamaterials:theory and applications. Artech House Press,2009.
    [94]崔万照,马伟,邱乐德,张洪太.电磁超介质及其应用.北京:国防工业出版社,2008.
    [95]Marques R, Martin F and Sorolla M. Metamaterials with negative parameter:theory, design, and microwave application. John Wiley and Sons. Inc.,2008.
    [96]Ruppin R. Surface polaritons of a left-handed medium. Phys. Lett. A,2000,277: 61-64.
    [97]Ruppin R. Surface polaritons of a left-handed material slab. J. Phys.:Condens. Matter, 2001,13:1811-1819.
    [98]Podolskiy V A, Sarychev A K and Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. J. Nonlinear Opt. Phys. Mater.,2002,11:65-74.
    [99]Shadrivov I V, Sukhorukov A A, Kivshar Y S, et al. Nonlinear surface waves in left-handed materials. Phys. Rev. E,2004,69:016617.
    [100]Darmanyan S A, Neviere M, and Zayats A V. Surface modes at the interface of conventional and left-handed media. Opt. Commun.,2003,225:233-240.
    [101]Park K, Lee B J, Ceji Fu and Zhang Z M. Study of the surface and bulk polaritons with a negative index metamaterial. J. Opt. Soc. Am. B,2005,22:1016-1023.
    [102]Gollub J N, Smith D R, Vier D C, et al. Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability. Phys. Rev. B,2005,71: 195402.
    [103]Zhang H F, Wang Q, Shen N H, et al. Surface plasmon polaritons at interfaces associ-ated with artificial composite materials. J. Opt. Soc. Am. B,2005,22(12):2686-2696.
    [104]Li T, Liu H, Wang F M, et al. Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial. Phys. Rev. E,2007,76:016606.
    [105]Tao F, Zhang H F, Yang X H and Cao D. Surface plasmon polaritons of the metama-terial four-layered structures. J. Opt. Soc. Am. B,2009,26:50-59.
    [106]Zhang H F, Cao D, Tao F, et al. Surface plasmon polaritons of symmetric and asym-metric metamaterial slabs. Chin. Phys. B,2010,19:027301.
    [107]Wu I, Grzegorczyk T M, Zhang Y and Kong J A. Guided modes with imaginary trans-verse wave number in a slab waveguide with negative permittivity and permeability. J. Appl. Phys.,2003,93:9386-9388.
    [108]Peacock A and Broderick N. Guided modes in channel waveguides with a negative index of refraction. Opt. Express,2003,11(20):2502-2510.
    [109]Shadrivov I V, Sukhorukov A A and Kivshar Y S. Guided modes in negative-reftactive-index waveguides. Phys. Rev. E,2003,67:057602.
    [110]Hibbins A P, Lockyear M J, Hooper I R and Sambles J R. Waveguide arrays as plas-monic metamaterials:Transmission below cutoff. Phys. Rev. Lett.,2006,96:073904.
    [111]Chem R and Chang C C. Surface and bulk modes for periodic structures of negative index materials. Phys. Rev. B,2006,74:155101.
    [112]Reza A. The optical properties of metamaterial waveguide structures[A thesis for the degree of Master of Science]. Canada:Queen's University,2008.
    [113]Lu W T, Savo S, Casse B D and Sridhar S. Slow microwave waveguide made of negative permeability metamaterials. Microw. Opt. Techn. Lett.,2009,51(11):2705-2709.
    [114]Ishimaru A, Jaruwatanadilok S and Kuga Y. Generalized surface plasmon resonance sensors using metamaterials and negative index materials. Prog. Electromagn. Res., 2005,51:139-152.
    [115]Ginzburg P and Orenstein M. Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification J. Appl. Phys.,2008,104:063513.
    [116]Smith E J, Liu Z, Mei Y and Schmidt O G. Combined surface plasmon and classical waveguiding through metamaterial fiber design. Nano Lett.,2010,10(1):1-5.
    [117]Hibbins A P, Lockyear M J and Sambles J R. Coupled surface-plasmon-like modes between metamaterial. Phys. Rev. E,2007,76:165431.
    [118]Pendry J B, Martin-Moreno L and Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science,2004,305:847-848.
    [119]Garcia de Abajo F J and S'denz J. J Electromagnetic surface modes in structured perfect conductor surfaces. Phys. Rev. Lett.,2005,95:233901.
    [120]Hibbins A P, Hendry E, Lockyear M J and Sambles J R. Prism coupling to 'designer' surface plasmons. Opt. Express,2008,16(25):20441-20447.
    [121]Lockyear M J, Hibbins A P and Sambles J R. Microwave surface-plasmon-like modes on thin metamaterials Phys. Rev. Lett.,2009,102:073901.
    [122]Wang C T, Du C L, Lv Y G and Luo X G. Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves. Opt. Express,2006,14:5671-5681.
    [123]Darmanyan S A, Neviere M and Zayats A V. Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes. Phys. Rev. B,2004,70:075103.
    [124]Ren F F, Chen J, Du Q G, et al. Electromagnetic transmission through one-dimensional gratings with left-handed materials. Phys. Rev. B,2007,75:045127.
    [125]Hibbins A P, Sambles J R and Lawrence C R.. Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate. Appl. Phys. Lett.,2002,81:4661.
    [126]Cuevas M and Depine R A. Excitation of surface plasmon polaritons along the sinu-soidal boundary of a metamaterial. Phys. Rev. E,2008,78:125412.
    [127]Cuevas M and Depine R A. Radiation characteristics of electromagnetic eigenmodes at the corrugated interface of a left-handed material. Phys. Rev. Lett.,2009,103: 097401.
    [128]Hooper I R and Sambles J R. Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces. Phys. Rev. E,2004,70:045421.
    [129]Acuna G, Heucke S F, Kuchler F, et al. Surface plasmons in terahertz metamaterials. Opt Express,2008,16(23):18745-18751.
    [130]Shen L F, Chen X D, Zhong Yu and Agarwal K. Effect of absorption on terahertz sur-face plasmon polaritons propagating along periodically corrugated metal wires. Phys. Rev. B,2008,77:075408.
    [131]Zhang Y X, Hu M, Yang Y, et al. Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction. J. Phys. D:Appl. Phys.,200942: 045211.
    [132]Ramakrishna S A and Grzegorczyk T M. Physics and applications of negative refrac-tive index materials. SPIE Press,2008,267-271.
    [138]Yan W, Shen L F, Ran L X and Kong J Au. Surface modes at the interfaces between isotropic media and indefinite media. J. Opt. Soc. Am. A,2007,24(2):530-535.
    [134]Maiera S A and Atwater H A. Plasmonics:localization and guiding of electromag-netic energy in metal/dielectric structures. J. Appl. Phys.,2005,98:011101.
    [135]Ozbay E. Plasmonics:Merging photonics and electronics at nanoscale dimensions. Science,2006,311:189-193.
    [136]Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmon-ics,2006,1:5-33.
    [137]Maier S A. Plasmonics:fundamentals and applications. United Kingdom:Springer, 2006.
    [138]Yan B R, Lv J H, Kong L H and Hu X W. Numerical studies of the surface and bulk modes in the attenuated total reflection spectra. Chin. Phys. B,2010,19(15).
    [139]Thomson J J. Cathode rays. Philosophical Magazine,1897,44:293-316.
    [140]Drude P. Electronic theory of metals. Ann. Phys.,1900,3063:566-613.
    [141]顾秉林,王喜坤.固体物理学.北京:清华大学出版社,1989,1-7.
    [142]燕保荣.固体等离体子的色散关系及其应用[硕士学位论文].武汉:华中科技大学,2007.
    [143]Sommerfeld A. The electron theory of metals based on fermi statistics. Z. Phys., 1928,47:1-32.
    [144]汪志诚.热力学.统计物理.北京:高等教育出版社,2001,289-296.
    [145]田强,杨锡震.半导体低维体系简介.物理实验,第21卷第9期:3-6.
    [146]Pines D and Bohm D. A collective description od electron interactions:Ⅰ. Magnetive Interactions. Phys. Rev.,1951,82(5):625-634.
    [147]Pines D and Bohm D. A collective description od electron interactions:Ⅲ. Coulomb interactions in a degenerate electron gas. Phys. Rev.,1953,92:609-625.
    [148]Stern F. Polarizability of a two dimensional electron gas. Phys. Rev. Lett.,1967,18: 546-548.
    [149]Dressel M and Gruner G. Electrodynamics of solids. Cambridge:Cambridge Uni-versity Press,2002,81-87.
    [150]Maldague P F. Many-body corrections to the polarizability of the two-dimensional electron gas. Surf. Sci.,1978,73:296-302.
    [151]郭硕鸿.电动力学,第2版.中国,北京:高等教育出版社,1997,19-44,135-140,173-179.
    [152]Lorentz H A. The theory of electrons. Leipzing:B. G. Teubner,1909.
    [153]方容川.固体光谱学.合肥:中国科学技术大学出版社,2001,11-16.
    [154]Maier S A. Plasmonics:fundamentals and applications. United Kingdom:Springer, 2006,11-14.
    [155]Barnes W L. Surface plasmon-polariton length scales:a route to sub-wavelength optics. J. Opt. A:Pure Appl. Opt.,2006,8:S87-S93.
    [156]Lynch D W and Huttner W R. Handbook of Optical Constants of Solids. New York: Academic,1985.
    [157]Sharma A K and Gupta B D. Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Appl. Opt.,2006,45: 151-161.
    [158]Martin V M and Lagendijk A. Ultrashort surface-plasmon and phonon dynamics. Phys. Rev. Lett.,1988,60:49-52.
    [159]Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett.,1996,77:1889-1892.
    [160]Liu Y M, Pile D F P, Liu Z W, et al. Negative group velocity of surface plasmons on thin metallic films. Proceedings of The International Society for Optical Engineering (SPIE),2006,6323:63231M.
    [161]殷澄.表面等离子体共振理论与实验研究[硕士学位论文].南京:南京理工大学,2007.
    [162]Ehrenreich H and Cohen M H. Self-consistent field approach to the many-electron problem. Phys. Rev.,1959,115:786-790.
    [163]Haug H and Koch S W. Quantum theory of the optical and electronic properties of semiconductors[4thed]. World Scientific Pub,2004,137-139.
    [164]黄昆,韩汝琦.固体物理学.中国,北京:高等教育出版社,1988,158-162.
    [165]Albert D W. Tables of summable series and integrals involving bessel functions. New York:HoldenDay,1968,84.
    [166]Lindhard J. On the properties of a gas of charged particles. Dom. Math. Phys. Meddr, 1954,28(8):1-57.
    [167]Beck D E and Kumar P. Plasma oscillation of a charge layer at an insulator surface. Phys. Rev. B,1976,13:2859-2864.
    [168]Jonson M. Electron correlations in inversion layers. Phys. C,1976,9:3055-3071.
    [169]Neilson D, Swierkowski L and Szymanski J. Excitations of the strongly correlated electron liquid in coupled layers. Phys. Rev. Lett.,1993,71:4035-4038.
    [170]Yan B R, Kong L H, Lv J H and Hu X W. Temperature dependence of polarizability and dispersion in three, two and one dimensional electron gases. Plasma Sci. Technol., 2009,11:515-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700